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Abstract There exist significant challenges in accurately predicting unusual tropical cyclone (TC) tracks. This study applies the
orthogonal conditional nonlinear optimal perturbations (O-CNOPs) method to the Weather Research and Forecast (WRF) model
to improve ensemble forecast reliability of unusual TC tracks. Ensemble forecast experiments were conducted for twenty-three
forecast periods of five TCs, all of which exhibited sharp turns, to examine the effectiveness of O-CNOPs. Results demonstrate
that the O-CNOPs method outperforms the singular vectors (SVs) and bred vectors (BVs) methods by providing more stable and
reliable improvements in TC track forecasting skills, from both deterministic and probabilistic perspectives. Notably, the O-
CNOPs shows a superior ability to generate ensemble members that accurately predict the sharp turns of TCs at lead times from
one to five days. These results highlight the superiority of the O-CNOPs method over the SVs and BVs methods in enhancing the
forecasting accuracy of TC tracks, particularly for forecasting unusual TC tracks. This study underscores the potential of O-
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CNOPs to be extended to real-time TC forecasting and to play an important role in operational track forecasts.
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1. Introduction

Tropical cyclones (TCs) that occur over the western North
Pacific (WNP) frequently bring extreme winds and heavy
rainfall to China and pose significant threats to lives and
property (Li and Zhao, 2022). The accuracy of TC-related
wind and rainfall forecasts largely depends on the accuracy
of TC track forecasts (Conroy et al., 2023; Qian et al., 2024).
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Therefore, a precise TC track forecast is essential to mitigate
the severe impacts of TC-related disasters.

Over the past few decades, significant advancements have
been made in TC track forecasting. However, substantial
challenges remain in both long-time forecasts of TC tracks
and the prediction of unusual TC tracks. Long-time fore-
casting of abnormal TC tracks is particularly difficult (Zhang
et al., 2018; Chen et al., 2020; Tang et al., 2021; Li et al.,
2023; Liu et al., 2024). Notably, in recent years, the frequent
occurrence of TCs with unusual tracks over the WNP has
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posed even greater challenges to operational TC forecasts.
For instance, most meteorological services failed to forecast
the sharp northward turn of TC In-Fa (2021) three days be-
fore TC turning. Even when initialized at the time ap-
proaching the turn, some forecasting centers still missed the
turn, resulting in track errors significantly exceeding the
annual-mean track error for the year 2021 (Xiang et al.,
2022; Liu et al., 2024). Similarly, during the early stages of
TC Khanun (2023), the leading meteorological services,
such as the European Centre for Medium-Range Weather
Forecasts (ECMWF) and the US National Centers for En-
vironmental Prediction (NCEP), consistently predicted that
the storm would make landfall in China (Nie et al., 2025).
However, the cyclone abruptly turned sharply northeastward,
avoiding China entirely. It was then predicted to strike Japan
but unexpectedly shifted northward again, ultimately making
landfall in the Republic of Korea. Another example is TC
Saola (2023). Most meteorological services did not accu-
rately forecast the loop at the early stage of the TC, causing
prominent errors in the predicted landfall location. These
examples highlight that the long-time forecasts generally
struggle to replicate the unusual TC tracks. Even when
forecasts are initialized close to the time of turning, they still
exhibit very large forecast uncertainties regarding TC tracks.

Ensemble forecasting has been widely adopted by Me-
teorological Departments to improve TC forecasting skill,
provide the information of forecast uncertainty, and generate
probabilistic forecasts (Puri et al., 2001; Dube et al., 2020).
Advances in ensemble forecasting methods have sig-
nificantly enhanced TC forecasting skill (Duan et al., 2018;
Zhang et al., 2023). It is widely accepted that fast-growing
initial perturbations, superimposed on control forecasts to
represent initial uncertainties, are crucial for improving the
reliability of ensemble forecasts (Toth and Kalnay, 1993,
1997; Palmer, 2019; Magnusson et al., 2019). Particularly,
numerous studies have highlighted the role of environmental
steering flows, which are sensitive to initial conditions, in
modulating TC tracks (Yamaguchi and Majumdar, 2010;
Wang and Ni, 2011; Miller and Zhang, 2019; Miyachi and
Enomoto, 2021; Ma et al., 2022; Zhang et al., 2023). This
sensitivity underscores the initial value problem of TC track
forecasts. The ECMWF has adopted the singular vectors
(SVs) method and the NCEP previously used the bred vec-
tors (BVs) method to account for the initial uncertainties in
TC track forecasting. Both methods aim to generate fast-
growing initial perturbations that replicate the forecast error
growth and encompass the forecast uncertainties, achieving
great success in improving TC track forecasting skill
(Cheung and Chan, 1999; Cheung, 2001; Yamaguchi et al.,
2009; Yamaguchi and Majumdar, 2010; Diaconescu and
Laprise, 2012; Palmer, 2019). However, limitations remain.
The BVs, responsible for growth behavior of initial pertur-
bations prior to forecast initialization, often fail to maintain
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large growth rates during longer forecast lead times. This
limitation frequently results in insufficient ensemble spreads
to encompass the actual trajectory of the cyclones (Chan and
Li, 2005; Lang et al., 2012; Thanh et al., 2016; Zhang et al.,
2023). On the other hand, although SVs represent a group of
fast-growing initial perturbations on control forecasts, they
are derived from linearized dynamics of atmosphere motions
and could possibly underestimate the forecast uncertainty
when nonlinearities are playing an important role (Puri et al.,
2001; Lang et al., 2012; Huo et al., 2019; Zhang et al., 2023).

Duan and Huo (2016) generalized SVs to the nonlinear
regime and proposed the orthogonal conditional nonlinear
optimal perturbations (O-CNOPs) method to fully account
for the influence of nonlinearities. O-CNOPs represent a set
of mutually orthogonal initial perturbations that have the
maximum nonlinear evolution in their respective subspaces
within a finite time interval (Duan and Huo, 2016; Huo et al.,
2019; Zhang et al., 2023). Duan and Huo (2016) adopted a
simple Lorenz-96 model (Lorenz, 1996) to address the dy-
namic rationality of the O-CNOPs and showed a sig-
nificantly higher ensemble forecasting skill for the O-
CNOPs than that of the SVs. Furthermore, Huo et al. (2019)
extended the O-CNOPs to TC track ensemble forecasting
using the fifth-generation Pennsylvania State University,
National Center for Atmospheric Research Mesoscale Model
(MM5) and showed clear advantages of O-CNOPs over
methods based on random perturbations (RPs), BVs, and
SVs. Although the MMS5 model is generally considered less
advanced and performs poorly in TC track simulations
compared to the Weather Research and Forecasting (WRF)
model (Pattanayak and Mohanty, 2008), subsequent studies
reaffirmed the strength of O-CNOPs. Zhang et al. (2023)
applied the O-CNOPs to TC track ensemble forecasting
using the WRF model and found that the method consistently
outperformed both the SVs and BVs methods, demonstrating
superior deterministic and probabilistic forecasting skill.
These findings underscore the significant potential of O-
CNOPs for further improving TC track forecasting accuracy,
making it a promising tool for operational meteorological
applications.

As discussed above, long-time forecasts of unusual TC
tracks remain particularly challenging, and so far, the cap-
ability of O-CNOPs in forecasting such unusual tracks has
not been systematically evaluated. This raises a key question:
can the O-CNOPs method greatly improve the accuracy of
forecasting unusual TC tracks? To address this, the present
study employs the O-CNOPs method to conduct ensemble
forecasting experiments particularly for unusual TC tracks
using the WRF model.

The rest of the paper is organized as follows. Section 2
describes the O-CNOPs method. Section 3 provides an
overview of the TC cases with unusual tracks adopted in this
study, along with an evaluation of the ensemble forecasting
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performance achieved using the O-CNOPs, SVs, and BVs
methods, and then details why the O-CNOPs is prone to
capture the sharp turns of TC tracks. Finally, Section 4
provides the summary and discussion.

2. The O-CNOPs method and associated nu-
merical model

In this study, we employ the O-CNOPs method within the
WRFV3.6 model (Skamarock et al., 2008) to generate en-
semble members for forecasting unusual TC tracks. Al-
though our previous study (Zhang et al., 2023) also utilized
WRFV3.6 and O-CNOPs for TC track forecasts, its focus
was not on unusual tracks. Building on that, we continue to
use WRFV3.6 but apply the O-CNOPs approach in a dif-
ferent manner, specifically tailored to forecasting unusual
TC tracks. To avoid redundancy, we do not elaborate on the
WRFV3.6 model here, as its details can be found in Zhang et
al. (2023). Instead, we only present the specifics of our O-
CNOPs implementation below.

The O-CNOPs, denoted as xy; (=1, 2, 3,
set of distinct initial perturbatlons that are mutually ortho-
gonal and exhibit maximal nonlinear growth within a pre-
defined time interval [0, 7], referred to as the “optimization
time interval” (OTI; see Zhang et al., 2023), in their re-
spective constrained subspaces Q; (Duan and Huo, 2016).

...), constitute a

The jth CNOP is obtained by solving the optimization pro-
blem given in eq. (1).

I(xq) - max[PM (Xo+xy) - PM,(XO)]T

X0 €

xC[PM,(Xo+x ) = PM, (X)), (1)
The subspace Q; is represented by
Q=
{xojeR" ijClejéé}, j=l,
{xy e R| x[Cxy<oxy L Quk=loj-1 ] j>1

2)
where X, € R" represents the state vector, and M denotes the
nonlinear propagator of the numerical forecast model. The
superscript “T” indicates a transpose, and J is a positive
value defining the maximum allowable amplitude of the
initial perturbation. The operator P serves as a local pro-
jection, taking a value of 1 when the final perturbations fall
within the “verification region” (i.e., the region of interest for
forecast accuracy) and 0 otherwise. In the current study, the
verification region is defined as a fixed 10°x10° box cen-
tered on the TC position at the optimization time, a choice
made to isolate the properties of the uncertainties in the TC
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circulation at this time (Tseng and Lai, 2020), while the in-
itial perturbations are generated over the entire model do-
main. In egs. (1) and (2), both C, and C, adopt the total moist
energy and are expressed by eq. (3).

||5X||é1 = [0XIZ,
©)

The eq. (3) involves the zonal wind perturbation (u’),
meridional wind perturbation (v’), potential temperature
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perturbation (0°), surface pressure perturbation (p’), and
water vapor mixing ratio perturbation (q'). It also prescribes
the physical reference temperatures §=300 K, 7,=270 K, and
pressure p =1000 hPa. In eq. (3), g represents the gravita-
tional acceleration, R, and c,, are the dry air gas constant and
the constant-pressure specific heat of dry air, while N and L
denote the Brunt-Vaisala frequency and the latent heat of
condensation per unit mass, respectively. The vertical in-
tegrations of the kinetic and potential energy terms, asso-
ciated with w’, v', 0" and p' , extend up to the top level, while
the water vapor term q' is limited to below 500 hPa.
Referring to Zhang et al. (2023), we choose the OTI=6 h,
initial perturbation amplitude 6=1.8, and ensemble size
N=21, for which the O-CNOPs ensemble achieves the
highest ensemble forecasting skill for TC tracks. In this
study, we still adopt the Spectral Projected Gradient 2
method (Birgin et al., 2000), as used in Zhang et al. (2023), to
solve the optimization problem given by eq. (1) and compute
the O-CNOPs. Since unusual TC motion may be influenced
by multi-scale interactions, we employ a model domain with
an increased resolution of 30 km horizontally and 31 vertical
levels, extending from the surface to the top of the atmo-
sphere at 50 hPa, for ensemble forecasting experiments in
this study. In contrast to the approach used in Zhang et al.
(2023), where O-CNOPs are calculated at a horizontal re-
solution of 60 km and 15 vertical levels, followed by en-
semble forecasts at the same resolution, the present study
first calculates the O-CNOPs at this coarser resolution and
then linearly interpolates them to a higher resolution of
30 km horizontally and 31 vertical levels. The interpolated
O-CNOPs are subsequently used to construct the initial
perturbations for the actual ensemble forecasts. The en-
semble size N=21 mentioned above requires 10 such initial
perturbations. These initial perturbations, along with their
negative counterparts, are then superimposed onto the initial
field of the control forecast to generate 20 perturbed initial
fields, with the control forecast utilizing the Global Forecast
System (GFS) at 1.0°%1.0° resolution and 6-hour intervals to
provide the initial and boundary conditions. The WRFV3.6
model with higher resolution is then integrated to generate 20
perturbed forecasts, which, along with the control forecast,
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constitute 21 ensemble members for each case.

To assess the performance, the O-CNOPs ensemble fore-
casts are compared with those generated using traditional
methods, including the SVs method implemented in the
ECMWF and the BVs method previously used by NCEP.
The configurations for both the SVs and BVs are identical to
those employed in Zhang et al. (2023), where it was shown
that O-CNOPs achieves higher forecasting skill than both
SVs and BVs under various configurations. A brief overview
of the SVs and BVs methods was provided in Appendix A of
Zhang et al. (2023).

3. Ensemble forecasts for unusual TC tracks

In this section, we first describe the TCs with unusual tracks,
and then assess the ability of O-CNOPs to improve the en-
semble forecasting skill of unusual tracks compared with
SVs and BVs.

3.1 Cases overview

To explore the ensemble forecasts of unusual tracks, it is
necessary to distinguish unusual TC tracks from typical ones.
However, a universally accepted definition of sudden TC
track changes has not yet been established (Li et al., 2023). In

Sci China Earth Sci

operational forecasting in China, thresholds of a 45° right
deflection or a 30° left deflection within 12 h are commonly
used to identify unusual TC tracks. These criteria have also
been used in previous studies, such as Gong et al. (2018).
Interestingly, Dai et al. (2014) provided the rationale behind
the above criteria, illustrating that in the WNP, the occur-
rence probability of a right deflection exceeding 45° within
12 h is less than 2.8% and that of a left deflection exceeding
30° is less than 8.7%. These criteria effectively identify sharp
turning tracks, distinguishing them from gradually recurving
ones. Besides, we do not consider the short fluctuations
around a relatively smooth track, so the TC’s movements
should be relatively stable after passing the turning point.
Based on these criteria, we select three TCs exhibiting
unusual tracks (i.e., Hinnamnor (2022), Khanun (2023),
Saola (2023)) from 2022 to 2023. Additionally, Megi (2010)
and Tembin (2012), previously analyzed in Zhang et al.
(2023) without a focus on unusual tracks, also satisfy these
criteria and are included in this study. All five TCs had
significant impacts on China.

The tracks of these five TCs are shown in Figure 1, which
highlights six sharp turning points (as marked by red stars).
Both Megi (2010) and Hinnamnor (2022) underwent an
abrupt northward turn, while Khanun (2023) followed a
zigzagging track with a sharp northeastward turn on 4 Au-
gust 2023 and another abrupt northward turn on 7 August

50°N 7 e—e Megi(2010)
e—e Hinnamnor(2022)
e—e Khanun(2023)
*—e Saola(2023).,
40°N — S vy
\ \i ’:;ﬂ?v
30°N —
20°N—
10°N —|_

20000 29 August

V0000 30 July

1200 15 October

110°E

120°E

|
140°E

130°E 150°E

Figure 1 Best tracks of the five selected TCs(i.e., Megi (2010), Tembin (2012), Hinnamnor (2022), Khanun (2023), Saola (2023)) as obtained from the

China Meteorological Administration (CMA). The starting points of each track
intervals. The red stars denote six unusual turning points of the five TC case.

correspond to their first initialized times, with subsequent tracks marked at 6-h
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2023. Meanwhile, Tembin (2012) and Saola (2023) exhibited
counterclockwise looping tracks. For the five TC cases, a
total of eighteen forecast periods, detailed in Table 1, span
between five and ten days, depending on each TC’s lifetime.
Since Khanun (2023) experienced two abrupt turns during its
forecast periods, there are twenty-three ensemble forecast
experiments for the six turning points.

3.2 Evaluation of ensemble forecasts for sharp TC
turns

We conduct twenty-three ensemble forecast experiments for
the six turning points of the five TCs, following the metho-
dology outlined in section 2. Each forecast has 21 ensemble
members, resulting in a total of 483 ensemble members
generated for each method, i.e., the O-CNOPs, SVs, and
BVs. Utilizing these ensemble members, we evaluate the
probability of accurately capturing the sharp turns of the
TCs. Additionally, the performance of ensemble mean
forecast is also evaluated by quantifying the track errors
during the turning stages. The results are analyzed and
compared among the three methods.

Figures 2—4 show the control forecasts and the corre-
sponding ensemble forecasts using BVs, SVs and O-CNOPs.
The results reveal that the control forecasts significantly

Table 1 Forecast periods (UTC) for each TC”
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deviate from the best track, especially when initialized well
before the TC turning timing. These forecasts frequently fail
to accurately capture the timing, location, and angle of the
TC turn. In this case, effective ensemble forecasts should
adequately represent the uncertainty, allowing the true TC
track to fall within the ensemble spread. However, as shown
in Figures 2—4, the ensemble members made by BVs and
SVs tend to closely cluster around the control forecasts,
while the best tracks often fall outside the ensemble spread,
particularly for longer lead times. Differently, O-CNOPs can
provide more ensemble members that obviously deviate
from the corresponding control forecasts and often exhibit a
broader spread to cover the best tracks. Statistically, among
the twenty-three forecasts, eighteen forecasts using O-
CNOPs successfully span the best track with their turning
locations, timing, and angles, while only five forecasts using
SVs and four forecasts using BVs achieve this outcome (see
Table 1). This implies that the O-CNOPs method has a sig-
nificantly higher probability of capturing the sharp TC turns
in forecasts compared to the SVs and BVs.

Now we quantify the probabilities of the ensemble mem-
bers made by O-CNOPs capturing the sharp turn of TCs,
including their turning location, timing, and angle. Such
probabilistic assessments in real-world forecasts can provide
useful warning information for decision-makers. To address

TC names Forecast periods (UTC) 0O-CNOPs SVs BVs
12:00 15 October 2010 to 12:00 23 October 2010 \/ X X
) 12:00 16 October 2010 to 12:00 23 October 2010 \/ x x
Meet 12:00 17 October 2010 to 12:00 23 October 2010 \/ \/ X
12:00 18 October 2010 to 12:00 23 October 2010 v Vv Vv
00:00 21 August 2012 to 00:00 29 August 2012 \/ x x
Tembin 00:00 22 August 2012 to 00:00 29 August 2012 x x x
00:00 23 August 2012 to 00:00 29 August 2012 v v v
00:00 29 August 2022 to 00:00 06 September 2022 X X x
00:00 30 August 2022 to 00:00 06 September 2022 \/ x x
Hinnamnor
00:00 31 August 2022 to 00:00 06 September 2022 v v v
00:00 01 September 2022 to 00:00 06 September 2022 \/ X x
00:00 30 July 2023 to 00:00 09 August 2023 \/ X X X X X
00:00 31 July 2023 to 00:00 10 August 2023 v v x x x x
Khanun 00:00 01 August 2023 to 00:00 10 August 2023 \/ x x x x x
00:00 02 August 2023 to 00:00 10 August 2023 \/ \/ X X x x
00:00 03 August 2023 to 00:00 10 August 2023 v v v x v X
00:00 26 August 2023 to 00:00 02 September 2023 X x x
Saola 00:00 27 August 2023 to 00:00 02 September 2023 \/ X x

a) Check marks (\/ ) indicate that the ensemble members for the O-CNOPs, SVs or BVs successfully encompass the best track including the turning
location, time, and angle. Cross marks (x) indicate that the ensemble members fail to span these key turning features.
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Figure 2 The ensemble forecasts of TC tracks during the first forecast periods of Megi (2010), Tembin (2012), Hinnamnor (2022), Khanun (2023) and
Saola (2023) generated by the BVs (left column), SVs (middle column), and O-CNOPs (right column). Here are the best tracks (red lines), control forecasts
(black lines), ensemble mean forecasts (blue lines) and the ensemble member forecasts. Time phases marked with different colors represent 0-24 h (gray
lines), 24-48 h (orange lines), 48-72 h (green lines), 72-96 h (magenta lines), 96120 h (light blue lines), 120-144 h (yellow lines), 144-168 h (pink lines)
and 168-192 h (purple lines), 192-216 h (dark green lines), and 216240 h (brown lines).

this question, we define allowable error bounds for forecast forecast accuracy. The different combinations of error
accuracy in predicting the sharp turn components (turning bounds in Table 2 produce a total of twenty-seven categories
location, time, and angle). This unusual approach has been of distinct degrees of accuracy for evaluating TC turning

designed since there is no standardized metric for TC turning forecasts. In Figure 5, the percentage of the number of en-



Figure 3 Same as Figure 2, but for the tracks in the second forecast periods of Megi (2010), Tembin (2012), Hinnamnor (2022), Khanun (2023) and Saola

(2023).

semble members that capture the sharp TC turns among the
483 members generated from the 23 forecast experiments is
plotted for each kind of degree of accuracy. It is shown that,
across all degrees of accuracy, the percentages achieved by
the O-CNOPs method, i.e. 10%—63%, are consistently and
significantly higher than those obtained using SVs and BVs,
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making.

1.e. 3%-38% and 2%—33%. It highlights the potential of O-
CNOPs to provide more ensemble members that better
capture the sharp turns of TCs and provide more reliable
probabilistic information regarding the occurrence of sharp
turns, which could enhance forecast guidance and decision-
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Figure 4 Same as Figure 2, but for the tracks in the last forecast periods of Megi (2010), Tembin (2012), Hinnamnor (2022) and Khanun (2023).

Figure 6 further provides the percentage of ensemble
members that capture the sharp turn among the total en-
semble members at lead times of 24, 48, 72, 96, and 120 h.
These calculations assume allowable error bounds of 120 km
for turning location, 12 hours for turning time, and 10° for
turning angle. Note that the control forecasts of five TCs
often only capture the turning time and location within the
above allowable degree of accuracy for lead times of 1-2
days, but fail to accurately forecast the angle of deflection
(see Figure 4). In contrast, from Figure 6, it is evident that the
O-CNOPs produces more members capable of reproducing
the sharp turn 1 to 5 days in advance compared to the SVs
and BVs. Specifically, at lead times from 1 to 3 days, more
than 50% of O-CNOPs ensemble members capture the sharp
turns of these TCs. At a lead time of 4 days, nearly 50% of

the O-CNOPs ensemble members succeed, and at a lead time
of 5 days, more than 30% of the O-CNOPs ensemble
members still capture the sharp turns. For the BVs and SVs,
however, only at lead times of 1 and 2 days do more than
50% of the ensemble members successfully capture the sharp
turns. Beyond 3 days, the percentages drop sharply, with less
than 10% of ensemble members capturing the sharp turn at
lead times of 4 and 5 days. This limitation significantly re-
duces their ability to provide advanced warning for TC track
changes. Taking Khanun (2023) as an example, when in-
itialized at five days prior to its first sharp turn, the control
forecast and all members for the BVs and SVs erroneously
predicted landfall along the southeastern coast of China.
However, about 30% of the ensemble members for the O-
CNOPs successfully predicted its sharp northeastward turn
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Figure 5 The percent of the number of the ensemble members capturing
the TC turns among the total number of ensemble members for the twenty-
three forecast periods (so a total of 483 forecasts). Yellow is for BVs,
purple is for SVs, and blue is for O-CNOPs. The notation Eijk (i= 1, 2, 3;
J=1, 2, 3; k=1, 2, 3) represents the category of the degrees of accuracy
provided by ith error bound for turning location, jth error bound for turning
time, and kth error bound for turning angle in Table 2.

Table 2 Error bounds for the forecast accuracy in predicting the timing,
location, and angle of TC turn.

Error bounds Turning location Turing time Turning angle

1 60 km 6h 5°
2 120 km 12h 10°
3 180 km 18h 15°

(see Figure 2). Therefore, the O-CNOPs demonstrates a su-
perior ability to generate more members that successfully
predict the sharp turns of TCs at longer lead times, thereby
offering more valuable warning information on the sudden
changes of TC tracks.

We further quantify the deterministic skill of ensemble
mean forecasts made by BVs, SVs, and O-CNOPs in fore-
casting the sharp turns of the TC tracks. Firstly, we compare
the forecast errors of turning location and time among the
control forecasts and three ensemble mean forecasts. As
shown in Figure 7, the forecast errors of the turning location
and time for the O-CNOPs ensemble mean forecast (152 km,
8 h) are smaller than those of the control forecast (225 km,
11 h). Particularly, O-CNOPs exhibit clear advantage over
BVs and SVs in reducing large forecast errors related to the
turning position and turning time. Although O-CNOPs show
higher probabilistic skill in capturing the turning angle, the
ensemble mean generated by O-CNOPs, as well as those for
BVs and SVs, performs worse than the control forecast in
forecasting the turning angle within 12 h. The sharp turning
angles within 12 h of the ensemble mean forecasts are overly
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Figure 6 The percentage of ensemble members successfully capturing
the TC sharp turns relative among the total number of ensemble members
generated by O-CNOPs (blue), the SVs (purple), and the BVs (yellow) at
different lead times when the degree of accuracy is prescribed by the fol-
lowing error bounds: 120 km for turning location, 12 h for turning timing,
and 10° for turning angle.

smoothed compared to each individual ensemble member
due to filtering effects (see Figures 2—4). From another
perspective, Qian and Mao (2023) computed the track errors
during the turning stages to evaluate the forecasting skill for
the sharp turns of the TC tracks. Building upon this ap-
proach, we also examine the ensemble mean forecast errors
for TC tracks during the turning stages, starting 24 hours
before and ending 24 hours after the turning time. The en-
semble mean forecast errors of the twenty-three forecasts,
together with the control forecasts, are presented in Figure 8
using box—whisker plots. It is shown that the track errors of
control forecasts gradually increase as TCs approach their
turning points. Ensemble mean forecasts for the BVs and
SVs provide only minor improvements over the control
forecasts, with error reduction rates of less than 3%. Notably,
the ensemble mean forecasts using O-CNOPs significantly
decrease track errors during sharp turns across all three
quantiles (25th, 50th and 75th). Specifically, the O-CNOPs
ensemble mean forecasts reduce the track errors of the
control forecasts by over 29% on average across all twenty-
three forecasts. For control forecasts with errors in the upper
quartile (indicating relatively large track errors), O-CNOPs
achieve error reductions exceeding 34%, whereas the re-
ductions for SVs and BVs are less than 2%. Furthermore, the
smallest interquartile range, defined as the difference be-
tween 25th and 75th quantiles, demonstrates that the O-
CNOPs method provides more stable and consistent im-
provement to the control forecasts compared to the SVs and
BVs methods.
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Figure 8 Box plots of track errors for the twenty-three forecasts during
TC turning stage (defined as 24 h before to 24 h after the turning time) in
the control forecasts (black) and ensemble mean forecasts using BVs
(yellow), SVs (purple), and O-CNOPs (blue). The red points represent the
mean values, the other points are the outliers, and the boxes show the 25th,
50th and 75th percentiles. The top and bottom lines indicate the largest and
smallest values excluding outliers.

3.3 Explaining why the O-CNOPs ensemble members
are more prone to capture TC sharp turn

Among the eighteen forecast periods in Table 1, the control
forecast of Khanun (2023) has the largest track errors during
its first forecast period, which was initialized at 00:00 UTC
on 30 July 2023 (approximately 5 days prior to its sharp
northeastward turn). As stated in Section 1, this sharp

northeastward turn of Khanun (2023) also posed great
challenges to operational forecasts. For such a difficult
forecast case, only O-CNOPs ensemble is capable of gen-
erating ensemble members that noticeably deviate from the
corresponding control forecasts and exhibit a broader spread
to encompass the best track, thereby achieving better forecast
reliability (see Figure 2). In the rest of this section, we take
the forecast of Khanun (2023) initialized at 00:00 UTC on 30
July 2023 as an example to illustrate why O-CNOPs are
more prone to generate ensemble members that capture the
sharp northeastward turn of Khanun (2023), whereas both
SVs and BVs fail to do so.

The perturbed total moist energies (TMEs) differ in ver-
tical structures among the three methods (see Figure 9). The
initial TMEs for BVs exhibit the largest magnitudes at the
upper layers above 300 hPa, and the TMEs for SVs have the
largest magnitudes in the low level below 800 hPa, while O-
CNOPs have the largest TMEs in the middle to lower pres-
sure levels, as illustrated in Zhang et al. (2023). Actually, the
initial uncertainties in the middle to lower troposphere can
lead to large forecast uncertainties of TC tracks (Wang and
Ni, 2011; Torn et al., 2018). Notably, O-CNOPs are unique in
effectively capturing this critical sensitivity. As a result, the
sensitivity of O-CNOPs promotes a more significant am-
plification of TMEs across all vertical layers compared to
SVs and BVs (see Figure 9). Consequently, O-CNOPs are
more prone to generate ensemble members able to diverge
more from the control forecast, which misses the sharp
northeastward turn of Khanun (2023), thus producing a lar-
ger ensemble spread that has a superior ability to capture
sharp turns of TC tracks (see Figure 2).

Figure 10 shows the horizontal structures for the first three
BVs, SVs and O-CNOPs, along with the 500 hPa geopo-
tential height and steering flow for the control forecast at the



Zhang H, et al.

Sci China Earth Sci 1

(a) BVs (b) SVs (c) O-CNOPs
00 100 100
S 2004 200- 200 -
<
£ 300 3004 300 A
a
¢
T 5001 500 500
6001 600 600
700+ 700 700
850 850 850 -

10 20 30 40 50 60
Energy (J/kg)

10 20 30 40 50 60
Energy (J/kg)

10 20 30 40 50 60
Energy (J/kg)

Figure 9 When initialized at 00:00 UTC on 30 July 2023 for TC Khanun (2023), vertical profiles of the TMEs (unit: J/kg) averaged over the entire analysis
domain and across all ensemble members respectively generated by (a) BVs, (b) SVs and (¢) O-CNOPs at the initial time (black curves) and at the lead times
of 24 to 168 h (colored curves).
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Figure 10 Horizontal structures of vertically averaged TMEs (shading; unit: J/kg) for the first three BVs, SVs and O-CNOPs. The blue contours and black

streamlines show the 500 hPa geopotential heights (unit: gpm) and deep-layer (from 250 to 850 hPa) mean winds (unit: m/s).

initial time. It is known that Khanun (2023) initially moves
northwestward due to the southeasterly steering flow asso-
ciated with the western Pacific subtropical high (WPSH) and
the subsequent unusual movement of Khanun (2023) is de-
termined by the intensity and location changes of the WPSH
(Chen et al., 2024). As is visible in Figure 10, the TMEs for

BVs are scattered around the TC and its associated large-
scale flows, while both SVs and CNOPs concentrate their
TMEs in the confluence regions of the circulations re-
presented by WPSH and Khanun (2023). However, their
energy distributions differ: the SVs place their TMEs to the
northwest of Khanun (2023), while O-CNOPs form a half-
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annulus distribution around Khanun (2023). Both of them
reflect the influence of WPSH on the TC, but the O-CNOPs
ensemble provides a much larger spread than the SVs en-
semble (and also the BVs ensemble) in the vicinity of
Khanun (2023) and its surrounding steering flow at the initial
stage (see Figure 11a). This broader spread is attributed to
the fully nonlinear optimal growth nature of O-CNOPs. This
would contribute to much larger alterations in the location
and structure of Khanun (2023), which interact dynamically
with the WPSH and further influence its intensity and loca-
tion, in turn modulating the movement of the TC.

(a1) O-CNOPs oh

Sci China Earth Sci

Figure 12 shows the 5880-gpm contour at 500 hPa for the
three ensembles, outlining the structures of WPSH. The O-
CNOPs ensemble displays much larger diversity in the in-
tensity and location of WPSH (see Figure 12a), representing
its larger uncertainties, especially as the forecast approaches
the northeastward turn of Khanun (2023). This enhanced
spread of WPSH is accompanied by a broader range of
steering flows along its edge (see Figure 11a), which is cri-
tical in determining the TC’s northeastward turn. As a result,
the O-CNOPs ensemble generates substantial variability in
the turning location and angle of its members (see Figure 2).
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Figure 11 The black streamlines and shading respectively denote the ensemble mean and the corresponding ensemble spread of steering flow (unit: m/s)
made by the O-CNOPs (al-a5), SVs (b1-b5), and BVs (c1—c5) at the initial time and at the lead times of 48 to 120 h.
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Figure 12 Ensemble spaghetti plots of 500 hPa geopotential height of 5920, 5880 and 5840 gpm (contours), along with their spreads (shaded; unit: gpm),
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forecast, the colored contours represent the five O-CNOPs members that successfully predict the sharp northeastward turn of Khanun (2023), and the gray

contours represent the remaining ensemble members.

However, the SVs and BVs ensembles show much less di-
versity in the intensity and location of the WPSH (see Figure
12b and Figure 12c), leading to a smaller spread in the
steering flows surrounding the TC (see Figure 11b and
Figure 11c). Therefore, the tracks of Khanun (2023) in both
SVs and BVs ensembles exhibit smaller spreads around the
control forecast, failing to cover the actual turning location
and angle (see Figure 2). As discussed in Section 3.2, both
SVs and BVs erroneously predict Khanun (2023) to make
landfall on China’s eastern coast before turning eastward
with a much smaller angle compared to the best track.
Conversely, the O-CNOPs ensemble adequately represents
the uncertainty associated with the TC’s sharp turn, provid-
ing a high probability of capturing the northeastward turn of
Khanun (2023).

Let us now elucidate the dynamics through which O-
CNOPs vyield large ensemble spreads in terms of turning
location and angle. Initially, Khanun (2023) is steered
northwestward by the strong WPSH. At a lead time of about
48 h, the northern WPSH rapidly weakens and eventually
splits into two ridges by around 96 h: a weak subtropical

ridge to the west of TC (marked by A in Figure 12) and a
subtropical ridge (the main body of the WPSH) to the east of
TC (marked by B in Figure 12). The western ridge provides a
southward steering flow that counteracts the northward
steering flow from the eastern ridge (see Figure 11), causing
the TC to slow down before its turn. During this stage, the O-
CNOPs ensemble shows large spreads north of Khanun
(2023), indicating the uncertainties in the intensity of the
WPSH and the location of the eastern and western ridges (see
Figure 12a2). These uncertainties may adequately interpret
the probability for the strength of the northwestward steering
flow and then the northwestward speed of TC movement.
Furthermore, the movement speed before the TC turn may
affect the farthest northwestward location that TC can reach,
i.e., the turning location of Khanun (2023). In the control
forecast, the TC track has a much higher northwestward
speed than the best track, resulting in a northwestward-
biased turning location relative to the observed turning lo-
cation. This bias can partly be attributed to the rapid weak-
ening and westward withdrawal of the western ridge in the
control forecast, as depicted by the black contours in Figure
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12. In contrast, the O-CNOPs ensemble, as shown above,
presents a large spread in the TC movement speeds, thereby
yielding a large spread in the turning location of Khanun
(2023). Some ensemble members, particularly those with a
stronger western ridge (represented by the colored contours
in Figure 12a), accurately predict the actual turning location.
Additionally, as an anticyclone develops on the southern side
of TC (marked by C in Figure 12), the southwesterly flow in
its northwestern portion strengthens and combines with the
southerly flow in the western portion of the eastern ridge (see
Figure 11). This interaction forces Khanun (2023) to turn
sharply northeastward at a lead time of about 120 h. At this
time, the O-CNOPs ensemble shows greater diversity in the
intensity and location of the southern and eastern antic-
yclones, as evidenced by the large spread along the south-to-
east portion of the TC (see Figure 12a3). This variability
contributes to the large spreads in the relative magnitudes of
the northern and western components of the steering flow
surrounding TC (see Figure 11a5), and results in a broader
spread in the TC moving direction after deflection as well as
the turning angle of Khanun (2023). In the control forecast,
the TC moves northward rather than northeastward as the
best track at lead times of 120 to 144 h. This discrepancy is
possibly due to an overestimation of the northward steering
flow from an excessively strong eastern ridge and an un-
derestimate of the northeastward steering flow from a rela-
tively weak southern anticyclone. However, these O-CNOPs
members with colored contours in Figure 12a, characterized
by a stronger southern anticyclone and a much weaker
eastern ridge than the control forecast, correct the turning
angle of the control forecast, and then make the TC move
northeastward after the turn.

In conclusion, the O-CNOPs can provide ensemble
members that effectively represent the uncertainties in the
surrounding steering flows that influence the TC turn
through the dynamic interactions between the TC and the
WPSH. This enables O-CNOPs to capture the sharp north-
eastward turn of Khanun (2023), while both SVs and BVs
fail to do so.

4. Summary and discussion

The forecast of unusual TC track remains a challenge in
operational forecasting. In this study, we examine the per-
formance of O-CNOPs in improving ensemble forecasting
skill for unusual TC tracks. Using the WRF model, we apply
0O-CNOPs, SVs and BVs to generate initial perturbations and
conduct ensemble forecast experiments for the unusual
tracks of five TC cases (i.e., Megi (2010), Tembin (2012),
Hinnamnor (2022), Khanun (2023) and Saola (2023)), cov-
ering twenty-three forecast periods during which the TCs
experienced sharp turns. Utilizing these forecasts, we first
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evaluate the probabilities of the ensemble members gener-
ated by O-CNOPs, BVs and SVs in capturing the sharp turns
of TCs. The results reveal that O-CNOPs have a greater
capacity to generate more ensemble members that reproduce
the sharp turns of TCs at much longer lead times, thereby
providing more valuable early warning information on the
sharp turns of TC tracks. Furthermore, the ensemble mean
forecasts generated by O-CNOPs demonstrate more stable
improvements over the control forecasts in predicting TC
turns. Results show that O-CNOPs outperform SVs and BVs
in predicting the sharp turns of TCs, both in deterministic and
probabilistic aspects.

Using Khanun (2023) as an example, this study explains
why O-CNOPs outperform SVs and BVs in generating en-
semble members that reproduce the sharp TC track turning.
That is because O-CNOPs properly identify the energy-re-
lated sensitivity of TC movement in the middle to lower
troposphere and the dynamics-related sensitivity in the an-
nulus around Khanun (2023). The most unstable structures of
O-CNOPs provide ensemble members that effectively depict
the large uncertainties in the surrounding steering flow as-
sociated with the northeastward turn of Khanun (2023)
through the dynamical interaction between Khanun (2023)
and the WPSH, thereby capturing the location and angle of
the sharp northeastward turn of TC. In contrast, both SVs and
BVs fail to do so and miss its sharp northeastward turn.
Moreover, the ensemble forecasts generated by O-CNOPs
also provide a unique dataset for understanding the dyna-
mical processes that may cause unusual TC movements and
limit TC track predictability, offering a possible direction for
reducing error sources through targeted observations or
model improvements.

The results underscore the great potential of O-CNOPs in
enhancing the forecasting reliability of unusual TC tracks.
However, it is worth noting that the model resolution adopted
in this study (30 km) is still too coarse for some TC cases.
For example, all the ensemble forecasts generated by O-
CNOPs, BVs and SVs have poor performance in forecasting
the looping motion of Saola (2023). This limitation could be
attributed to the inability of a 30-km resolution to properly
resolve the small-scale TC structure and its interaction with
the surrounding environment. Consequently, higher-resolu-
tion WRF simulations are needed to address such TC cases.
One of the challenges in adopting higher resolutions is the
significant computational cost associated with traditional
optimization algorithms used to calculate O-CNOPs. For-
tunately, recent research by Ma et al. (2025) proposed a
parallel iterative method to efficiently calculate O-CNOPs.
They demonstrated its high efficiency and effectiveness in
ensemble forecasts using an idealized model. By applying
this efficient algorithm to a higher-resolution WRF, we an-
ticipate achieving skillful ensemble forecasts of TC tracks in
real time. It is also hoped that the application of such an
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efficient algorithm can be extended to convective-scale en-
semble forecasts for TC intensity, TC-induced precipitation,
and other high-impact weather systems.

Nowadays, some data assimilation schemes have been
applied to naturally provide initial conditions for ensemble
forecasts, such as the Ensemble Kalman Filter (EnKF).
These schemes can provide good initial analysis fields and
reflect the effect of observational distribution on initial un-
certainties (Wang and Bishop, 2003; Ma et al., 2008; Feng et
al., 2016). However, they often generate insufficient spread,
leading to an underestimation of forecast uncertainties,
which commonly requires an inflation coefficient to partially
compensate for this limitation (Yang et al., 2015; Zheng and
Zhu, 2016; Duan et al., 2019; Li and Zhao, 2022). This study
only compares the O-CNOPs method with these traditional
initial perturbation methods based on dynamical error
growth theory (i.e., BVs and SVs). Future work will compare
the performance of O-CNOPs and EnKF for ensemble
forecasts of TC tracks. Besides initial errors, model errors
also influence TC forecasts. The O-CNOPs method only
considers the effect of initial uncertainties to generate en-
semble forecasts. Although O-CNOPs achieve better relia-
bility compared to traditional initial perturbation methods,
the spread-skill relationship is still imperfect for measuring
the reliability of the ensembles. For example, under the
configuration determined by Zhang et al. (2023), O-CNOPs
tend to overestimate the forecasting uncertainties of TC
tracks. Duan et al. (2022) demonstrated that dynamically
coordinated growth of initial and model perturbations helps
produce ensembles with higher reliability when both initial
and model errors are present in forecasts. Therefore, adopt-
ing combined modes of initial and model perturbations, such
as the C-NFSVs proposed by Duan et al. (2022), is crucial for
accounting for the combined effects of initial and model
uncertainties in ensemble forecasts and thereby enhancing
forecast reliability.
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HKIESE: FHO-CNOPs ik Bt 5 & MR AR 4R & Tl ) T S ik

REHE T 3 R HERA FilAhoX — % ) i A, BVASELE Il H e 1m)
B AR TR, &6 Fidi A O AT e DLFF I R8> 1) b
PrEgie, FERAR TR R 25028 1202 145 24 B A2 TR
WZE(MAREE, 2022; Li%, 2023; Liuss, 2024). 2K
Hh, 20234 G KRBT, RO R SR R
O (ECMWF) A3 [E [F 5 #5814 0 (NCEP) 4% it
Todi b0 8 TN HoR B Bl [, (BRBEAT kI R
HRRFE AR F), TR 7P EGEm RS,
2025); b, JRE TR SR AT REZE T HAS, (R %%
BRI AL RS, R e E. FFE, F5%
TR o O o BEAERA TR & R TRR0 AL BT A 4T e ik
T, FEOG R AHROR Z WO, H AT, K Rk A
o d & M LA & KA, BIMELE & KUlkiL %
) E A, B A TR ATI A7 AE A BOR AN € 1.

H b, a2 M TS, 2t EmE
PFIARECTT Al oE PR AN 8 P IF R AR 22 Pl i
BF B (PuriZs, 2001; DubeZs, 2020). FEA Tk 521
RIEWRAES T & R AR K -F )42 T7+(Duans, 2018;
Zhang%F, 2023). & XE%EEEZIHAE G| SR,
X W6 3 1) A8 Ak B RS (Yamaguchi flMajumdar,
2010; FRMAMRAI, 2011; Millerf1Zhang, 2019;
MiyachiflEnomoto, 2021; Ma%, 2022; Zhang%,
2023), IXFREBUBE R T RIAE AN E TEAE S R AT T
b R E AR H BRI, AR TR B s g
KAYIIE IS KA IR VIIE A & 1, 2 D4R & Pildik
A EE M (T SCB# (Toth MK alnay, 1993, 1997; Palmer,
2019; MagnussonZs, 2019). ECMWFXH % & A&
(SVs)J7i%, TMINCEP & {8 FH S48 7] & (BVs) /7 2K 1
WIWEATHE 1, SVsFIBVsYY B 78 7= A Pt i K AW ik
Pl DA IR R 22 A SG AR, AT 78 23 ZAE Tt
AW ENE, 1EG RNEAES TR P S T B R Y)
(Cheung#1Chan, 1999; Cheung, 2001; YamaguchiZ¥,
2009; YamaguchifllMajumdar, 2010; DiaconescuflLa-
prise, 2012; Magnusson¥, 2019; Palmer, 2019). AT,
KRB T IEWARAE — L /IR M. BVsZIiE 1 fiidk
I B H PRGN, A DAFE A TR IS R4 R
K, W RHESEBUE R, SRV 7R Pl
4 Z AM(ChanfILi, 2005; LangZ¥, 2012; Thanh%%,
2016; ZhangZ, 2023). SVsf& kAR i K e i)
WILEIE), ARE7 s ZIE K g s) i ARy B 1%
s, DRI AT B 2 (A TR AN A 2 P (Puri®s, 2001;

2

Lang%%, 2012; Huo%%, 2019; Zhang%¥, 2023).

NT AT AR L FE 2, Duan Al
Huo(2016)¥ SVsifi & SR AR, 20 T IR 444
L M B AR I Bh(O-CNOPs) 77k, O-CNOPsARFE T 1
— BB, SRR S R AR A B R AR 2 M R R 1 —
HIEZHIEEH 5 (DuanflHuo, 2016; Huo%%, 2019;
Zhang%%, 2023). DuanfliHuo(2016)#! F & H.#] Lorenz-
961 I IF T O-CNOPsIHIEN & ik, RINHES
W I R T SVsrvk. #E—0H, Huo%(2019)%0-
CNOPs /7 ¥ 5 T MMS#E 20EE 4T 6 KU 12 4 & TR,
HERIE TSNS (RPs). BVsFISVsTiiZk.
WRFAE MM Ay ik, 5t & R A2 R e
7 58 (Pattanayak fllMohanty, 2008). f& £ 703 T
WRF 0k — 5 5 4F T O-CNOPs J7 ¥ 1AL e
Zhang%(2023)¥0-CNOPs J7 1% 3 F T WRFEL T Ji@
G KA TIRARLS, L e AR TRk H 35 18
= TBVsHISVs ik, R, O-CNOPs/7yA/EHE & X
AR TR 5 T B R ), RS Bk B
I R (N FH i

WIHTFTIR, 58 6 KRR K I R 43 7 X,
i H AT I O-CNOPs 71 7E 5 3 42 Tl
R ILHEAT RGP, S H— A O-
CNOPs 7 ¥ /& 75 % i F H T+ 5 i & XU A28 11 Tl
FoI50 N7 RIZX— 8, %7 O-CNOPs 5 12
FITFWRFHL, 5 58 G KR AR T 45 & TR 50
L.

2 O-CNOPsJ5 £ FIWRFV3.645 5t

4 O-CNOPs 7% M FH T-WRFV3.64% :(Skamar-
ockZE, 2008) L AR G WILATLEN, SHX = & X ER 1L TT
JEEATIRIRE. R Zhang®5(2023) A WRFV3.6 5
O-CNOPsHIZE & HI T & NI R £ A iR, (HIF AT 4E
TRE KL, ASEHWRFV3.6EER, {HXO-
CNOPs /75 [ N FH S AT T %, LI RE G
AT RS TR LS. AU IAWRFV3.6
B BAARCE, FHRYET 7 2% Zhang®5(2023). A&
1 A ZHO-CNOPs /7 VA IF HL AR B F SRS

O-CNOPs(it xy;, j=1, 2, 3,..)/¢ —4UHEIEZC
WILERE, BAES & ARG B0, <](EPOTL, W
Zhang®%, 2023)A, 1£7% B XN 52 8] (Q) o B AT i
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KAEL M & (DuanflHuo, 2016). 55/ MCNOPZ 1T
PRA I R (7 R (1)) i

Iry) = max| P, (X, +x,) —PM,(XQ)]T

Xo; € &

xcz{PMT(xoﬂoj)—PMT(xo)], (1)

Hrp, FERQ &
9=

{xoj ER"

xE}_Clxoj<5 }, j=l,

{xoj eR| xICxy<dx, L Quk=1,...,j~ 1 } ji>1,

(2)
X, € R'FERRE AR, MEREB AR
F. EFRTRREE, S>0R RN AVIGIshIRIE. P
RN R E T, TR X (HP Pl O X )
WHUE N, XIRANUE 0. AT FEK Sk X 8%
N UARALES %I & KT B A 0 100x 1078 F, 42 B
I 21 & KU AH 9% B9 AN 1 € 14 451 (Tseng Fl Lai,
2020), UGB DX I 35 BB X S, 7E 7 7%
(A1), CFIC, I BUA SR A8 (TMEs)/E N B bk
BRI, 52 ST (T FEQ)):

2 _ 2
X2 =X,

55,0,

L,
t—q
c,l,

g

NG

2
P
u’vi 0°+R,T|— dodD,
P

3)
Hep, wy v 0 p Mgl Enah bR, £1h
K ALt RESEMKTIREGE; 0=300K, T=
270K p =1000hPay S H VI SH, gl JIINiEE,
R Fllc, /&2 S AU R 58 i EE#E, N /2 Brunt-
Vaisala#iiZe, L& AL SRR B E . ShRe i
HRETI(w's v’y O Ml )FETE BT ) b EAT B 2 AR 7,
M 7K IS i(q ) I M 1000hPa % 500hPaidk 17 3 ELAR 47
R 5 Zhang%5(2023) ik 5 45 2R, *4OTI = 6h, ¥]4h
MBhIRMEI=1.8. &G M AKN=21Ff, O-CNOPsJ7 %
£ & MERAT B G TR SEBIL T o e IO B TR B .
M ARIBEHE — R REGSHICE. 5Zhang5(2023)
— 5, EF AT R FH SPG2iE AR BV (BirginZE, 2000)3K
fige e A ) (1), AMTTERTFO-CNOPsHUWILh 5. %
BB G Wig 352 3 2 REEA BAER RIS, %0t

FAETEA THRARLS R T 5 A 0o R, RiIK
o 30km, HEZHCON31ZE(E M ) E
#50hPa). ANFEAIZE, ZhangZ5(2023)7EH 73 HER OK T
Iy HER N60km, TEEJZHON15E) T 58 O-CNOPsH)
KA S EGTHAREE; ZF R AE R — R
THH O-CNOPs, i Ji5 4 F& 26 1 4 {5 1) 58 /& 4 P
Gokm/ACEAHER, 31EEREZEH), 1ENES TR
W MpIaRsh. T 10N CLIIRIG I sh, A k214
AR, BEME, #AIEIE) LIE ARshx s
KB INAE R TR BRI 88, P20 011635h 1.
FIFH 1 53 PR FOWRF V3. 6856 26 1% 26 4 4 37 30 47 AR
5y, F3E] 20BN TR, R Le B TR 5 4 ) TR
ghfy, LR BN EA TR AR L. b, Pl TR 1
WIUE 56 A A3 5 44 ENCEP f#) 4 BR 4R & 45 (GFS)
BT AL, FKP A3 HER N 1.0°%1.0°, B E] 43 HE RN
6h.

N T VFAEO-CNOPs /7 L K TR 68, FRATHEXS E
O-CNOPs 51£ 4t J7 1 (BNECMWE % FH 1 S Vs J7 12l
NCEP & K FHIBVs 1 15) 1 & K 25 & ik 45 1.
SVsHIBVsH A S B 5 Zhang55(2023) — 2.
Zhang%7(2023) Y H X Z PG SHA G, ERER
SVsHIBVsI A& Tl 43755 4 {K T-O-CNOPs. SVsAll
BV {8 5444 7] 2 W, Zhang®5(2023) By SR A.

3 FH GRS A TR

ARATG I EEA S B A XA, X EEB
O-CNOPs5SVs. BVsTE$g & i & X2 k1
HFRE .

3.1 AR

T BRI TR S RS AR R TR T,
Je LB X o S B AR B4R, AR, H AT MR
H— A IE bR AR 8 SR H 6 RS (LISE, 2023).
FEH E LS TR, G R 548 AR & 12h Y
45 u A Pt 300, X —ARvERE )2 N #)
S G KBS A S FU 4 (Gong®E, 2018). 3k =1%
LEQOIHMGAITIRI, TEFICRFE L, 120 AT K
T45°1 & g4 H B2 /N T-2.8%, 1 22 41K T-30°
GG KBRS IR N T-8.7%. X — W7 4s 1o Bk
PRERRAE T AR, BUWE R FIR BME AT LA 2L
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HhOT Ik H R 8 R I B RS AR, S R R kAR
XA TEsk. Bhah, X BAREE G KR IR, 2
K & KT 5 IR FEARC AR R B ). ARHE F ik bR
#E, M20224FFI20234FIEHL T =N A A R E AN G
20225 & KFF G 20234 G KR8
AT Pre. A& Zhang:(2023) K KA T 7o 6 KR,
HHE A 20105 6 XA #F120124 6 KR FE T
A FiRbRUE, Ry g st 4. L ESAS & KA
ol ¥yt v P A T R R,

BlIJE7R T BAESAS & AN 7 3 4%, A T 6
ARSI RS, Hdr, <l R R
ISR IRARALT, <RI AR I B E (0
202348 H4 HAE [ AR Mg i . 8 H7THAAEHA
R RV R A T AR AL AL IR 2 ), < REE
TR R B R AR ) HY B I BT 4T 8 AEXESAS & A
i, FGEHCT 18RI BR(FE WL D). BT AE SR
AN AN, TR KA MF, 7ES5~10K
Z M. TR RAT B IR EUE [ (RF B2 S e

[ 1), 61> e 1) 36 e 1 23K B A Tl ik .

32 ARG MR TR

TEO T e ) T 23 IR B TR AR S H, BRI T
A 2N EA R, =M TJ7%E(0-CNOPs. SVsAll
BVs) & R A K483 M EG L. FET B4 & ik
SER, RTATE SV T =R RN G AU R TR
(FIRE R IR 45T, I i 55w B B R AR 1 22,
PP AR AP I Tl 14 .

B2, B3, E4g T 2 Tk BL K O-CNOPs.
SVsHIBVsAE R & MBS A TS R, B,
2 1) AR AE LAME B 5 XU o 5 1m) PR ). o7 2R
FEE, JUFHRAE & KSR ) AT R B iR, A2 )
PRI I B8 B B 4. FEIXFIBE LT, A RLNSE S
TR T B R RIETIRA e, (AR AR T 6
B R HUWEFTR, BVsSHISVSA R IIES K
K2 BB F SR H TR R, JC IR TR K 24T
e, R VRETIRE & 2 4. H5Z AN, O-

A 8129 H 00k
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F 1 5AERAMIZE BB TR BB (A R, R R

a KA TRAR I BL(Hp VA 1 7L O-CNOPs SVs BVs
20104104 15H12:00%20104£10 H 23 H 12:00 Vv x x
4t 20104E10H 16 H 12:00%220104-10 H 23 H12:00 Vv x x
o 20104£109 17 12:002520104F£ 10523 H12:00 v v x
20104F10/9 18 A 12:002520104F 105 23 H12:00 Vv v v
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e & RAE UL 5 W B Re BA W fo o &, Rl
b a2 1T (VA= O € e Ao F=1) A € SO R

TR 12 BAEELFR), ERbm S
SRR mTE, & XA T R ERE, 3
A E R B miIE. 5SBVsMSVsH L, O-
CNOPsEESTER M AT MR BNEE L 2P H E KES
BB, MM AR 2% 1 4% n) o B A R A B
P AERB ARG R, PR R e R R (a0 ] 1 22
FI R EEEL TR, AR 16 RIEIeATE
B, NI HERA TidR S i 2 . i — 20, & RS
37 A J H— AN S R BE(hRid N C), H bl
VORI R, S AR v R P 0 I SR A
A B4 TRAR I 2020 1200 BR AR K AR R4, B )
FAL T EFS). M, O-CNOPs&HE & S K <
JiE B 20 ) 7 S PR i R A B b R B o K S B
(FH 123 & RURE I 22 A 00 ) K B OB mT ). AT
(PR35 I B A i 5o 51 S < Hh Ak ) 4 /5 78 1) 4y
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XS RISk, TR & REL [ S A 3h 5 )
KA M . FERE TR A, AR v i s R
) 5 AT Al B R I e e K e M 553 365 R
FA ) 5] SR, S 7542 1] il e i b Tl &5 X0
TER W] 5 (120~144h) b b, REEF IR AR
SFETS . BRI, O-CNOPsHEA H &R 43 K H3 I A4
A S ASRE R AR I v 5 A PR B 3 T (A
Bl 12a & R S E L ITR), A RIEIE 16k
WG AR 2, RO T R85 1 AR 0T
FRAT.

25 I, O-CNOPsA: B I4E & i A RES A ACRAE &
KRB FAAEAT e, HimiEd S K5 WPSHZ (A
B BAE A R g2 & KA ). 1X fH450-CNOPs /7 ¥2:
REfE I PE R &I R AL 4% 2, MSVsAIBVs A
5 U 3 DASIZEL.

4 BEAS

S B B AR TR — B 45 TR A 55 %0
FH% 520-CNOPs 7 VATESE &1 7 0 6 KBS A2 Tk 7 15
FHIVER, K O-CNOPs 5 v F 1 Fh 42 8t 7715 (SVs
BVs)MNH T WRFBL A= AL LA TR MG sh, XI5
B 5 BA R G KA (RI20 104 £ K fil 1
20124F“RFEL 20224 & R FF R 20234FE & K
“CREH2023F G RCTFR) TR RS P, It
ALFE23AN N £ KU ) TR O B, JE TR A TR s 1,
T 5 XF0-CNOPs. BVsHISVs 2 ) 2 [ Tl A
BT THERATAL. 455K, O-CNOPs ket
HEA S s e i Tk & Mz m, noA 6 R
BRAZRMEEANENEPWEEE. KA, O-
CNOPs% &~ ¥ Tl ik GE % 56 faoe HhR T+ & X5 % 7%
[ R TG 2565 K G, Tow A0 T R %
TR, O-CNOPSTEHE ) 57 B A% TR B 15 77 T AR R I
H T EAA.

PL20234E & KR E5 R, ZF Tt — R T
O-CNOPs i VETE £ WU 5 B ) T A A 4% 4t 75 32
FIPIERJR R, O-CNOPsHENS Bk EHh IR 7] & X2 3h 5%
NBURIHRE KRR, DL & KA T S8k 1 3h 7
BUKIX. HO-CNOPsH AN € 45 16 77 A I B & il 7t
Al & XS WPSHZ [l (23 I EAE ISR, A%
ZH 5 & REE [ B YA S 5 S SmA R e,
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R RS AL S S E S A, Mk
T, SVsFIBVs#A A it 78 73 % ] 5 R G )i 72 A
B I, DRI HG 77 A PR 4R 1 DR 4 AR e P B R 3511
RAbm 2L, Wik, IO-CNOPs/™ 4 I & it &
LA TR TR SR EICE MG R, Xt & X7 5 i2s)
TE ML MR, PR TUHI L) & KR AR W] TR P ) S B
KZ, JAKIES HARI . 5 ok &5 R pa b
FERVFARAE TV AETT M),
LIRGERE, O-CNOPsH i /1 itk 7 & X
RGP TSN, HFEZERBHE, X THEs
AN, WRFRE R 17K 43 2 (30km) T3 45 A AR
K&, 511, O-CNOPs. BVsFISVsHE Al 71 ¥ A e -F I
20234 & KETRPr T #1847, X AT Be A2 K N30-km %y
HERTCVE T AT /N RBE & U N 4 4 S L 5 PR
WS A AR, R, 3R st U R 2+ 22
(1, LTI EZEHR R 2 — &R 50-CNOPs R fif 532
Fre R T R, BT, Maf§(2025)0T 2
(AT ARHT AT F T PRI T 5L O0-CNOPs, 2T
AR AVIS R 1 AR S A PR ) R A S A A
LR EIEN AT S PR WRFAL R, A S =4k
EHII & KBRS TR ShAb, % m R T $h
JERIFH T 6 RGREE . G K DL AR S R RS
IR R B A T, BT R k45 B A 55
HAT, #4 KRS IR EKF)EE R 772 E 1k
Iz N T EA VG, (HElrA R 2 7R
[Ffk, FARBALET Rede om R EWI46 s, A
D43 A7 0 HT 46 AN € 14 1 5218 (Wang A Bishop, 2003
MaZ%, 2008; Feng®%, 2016), 1H'E =L FIEE A B R IS
B AL IR /DS, S EOIHR AN S MR A, B F I
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Duan®¥, 2019; LiflZhao, 2022). %W FAXKTEE T O-
CNOPsTi k55 TR Z8) NI K H W 1L & 7%
(BVsHISVs), KkFit—2 KRG HT0-CNOPs %5
EnKF /715 & KBRS A& T R I ZE 5. BRIan
R ZEAL, BERRZENT G KR AR TR 1) M AN T 240
O-CNOPs{U % & T WA v, R STkl 5 itk
TG %, BEAEIE-TERET R (A T4
HEGHMRTEEIATESE. B, KHZhangss
(2023)#f5E ARG AL B, O-CNOPsfHi[a T &l & KU
BIRIRAH 2 V. Duan:(2022)[HF 48 H, ATk R
SRl A E R R R 2 A GR ZE R, WIiRHR ) 5K
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