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ABSTRACT

This paper reviews the development of ensemble weather forecast and the primary techniques employed in the
main ensemble prediction systems (EPSs) designed by China and other countries. Here, the emphasis is placed on the
advancements in the China Meteorological Administration (CMA) global and regional ensemble prediction systems
(i.e., CMA-GEPS and CMA-REPS), with particular attention to operational technologies such as initial and model
perturbation methods and the applications of ensemble forecast. Through comparative verification with EPSs from
other leading international numerical weather prediction (NWP) centers, CMA’s EPSs demonstrate forecast skills
comparable to its global counterparts. As EPSs progress to convective scales and coupled systems between sea, land,
air, and ice, the paper addresses some key challenges in ensemble forecast technologies across the aspects of opera-
tion, science, integration of artificial intelligence (Al), merging of weather and climate models, and challenging user
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requirements. Finally, a summary of conclusions and future perspectives on ensemble forecast are provided.
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1. Introduction

Numerical weather prediction (NWP) is one of the
greatest scientific advancements of the 20th century, of-
ten described as a “quiet revolution” (Bauer et al., 2015;
Shen et al., 2020). Among its key achievements, four-di-
mensional variational data assimilation (4DVar) and en-
semble forecasting are regarded as two major milestones.
The atmospheric system is inherently nonlinear, charac-
terized by chaos that is sensitive to minor initial perturba-
tions. Even with ideal numerical models, uncertainties in
the initial states—arising from errors in observations and
assimilation systems—Iead to significant forecast errors
as the forecast lead time increases (Lorenz, 1963; Chou,
1986; Mu et al., 2003, 2011). Additionally, numerical

models employ discretization schemes, sub-grid paramet-
erizations, and other approximations to represent the dy-
namical and physical processes of the atmosphere. Con-
sequently, single deterministic NWP has inherent fore-
cast uncertainty (Li et al., 2000; Arakawa, 2004; Chen et
al., 2004). Quantifying this uncertainty has thus become
a critical focus for NWP. The ensemble prediction sys-
tem (EPS), which may transform single deterministic nu-
merical forecasts into probability density function (PDF)
distributions and estimate the uncertainty of determini-
stic numerical forecasts, was first developed through the
Monte Carlo method (Epstein, 1969; Leith, 1974).
Theoretically, the evolution of the PDF over time can
be described by the Liouville equation. However, solv-
ing this equation is highly challenging and practically in-

Supported by the National Natural Science Foundation of China (U2242213 and 42341209).

*Corresponding author: chenj@cma.gov.cn
© The Chinese Meteorological Society 2025



JUNE 2025

feasible, even for a nonlinear system with only a few de-
grees of freedom. To address this issue, the ensemble
forecasting method was developed (Molteni et al., 1996).
This method utilizes specific mathematical techniques to
generate a set of initial conditions, each potentially rep-
resenting the true state of the atmosphere. These initial
conditions are then integrated by a numerical model to
produce an ensemble of forecasts, from which the PDF
distribution of future weather variables can be derived.
When the initial condition ensemble accurately captures
the distribution of initial analysis errors and the model
has adequate precision, the ensemble forecast can reli-
ably approximate the atmospheric state’s PDF.

The core challenge in ensemble forecasting lies in ap-
propriately representing error sources and accurately es-
timating uncertainties in NWP. The well-documented
sources of NWP errors originate from both initial condi-
tions and the model’s inherent limitations. Correspond-
ingly, ensemble forecasting methods are derived from the
first (initial condition) and second (model) predictability
theories. Various perturbation methods are designed to re-
present initial condition errors and model uncertainties,
leading to the development of initial condition and mo-
del perturbation methods (Chen et al., 2002; Du et al.,
2018). In terms of initial condition perturbation, me-
thods such as the singular vector (SV; Buizza, 1997), the
breeding of growing mode (BGM; Toth and Kalnay,
1993), the perturbed observations (Houtekamer and De-
rome, 1995), the ensemble transform Kalman filter
(ETKF; Wang and Bishop, 2003; Wei et al., 2006), the
ensemble transform with rescaling (ETR; Wei et al,,
2008), the ensemble square root filter (EnSRF; Whitaker
and Hamill, 2002; Zhou et al., 2022), and hybrid perturb-
ations combining SV perturbations with ensemble data as-
similation (EDA; Isaksen et al., 2010) have been deve-
loped. In terms of model perturbation, proposed methods
include the multi-physics scheme (Chen et al., 2003), the
stochastically perturbed parameterization tendencies
(SPPT; Buizza et al., 1999; Tan et al.,, 2013), the
stochastic kinetic energy backscatter scheme (SKEB;
Shutts, 2005; Peng et al., 2019), and the stochastically
perturbed parameterization (SPP; Jankov et al., 2019; Xu
et al.,, 2019). These studies have significantly contrib-
uted to the continuous improvement of operational EPSs
in terms of overall performance and reliability.

Since the 1990s, significant progress has been made in
operational ensemble forecasting, driven by advance-
ments in ensemble forecasting theory and technology. In
1992, the ECMWF and the NCEP established the first
global medium-range EPS, marking a major milestone in

Chen, J., Y. J. Zhu, W. S. Duan, et al.

535

operational ensemble forecasting (Toth and Kalnay,
1993; Molteni et al., 1996; Buizza, 1997). Following re-
markable improvements in model technology and com-
puter power, ECMWF took a pioneering step in June
2023 by upgrading its operational NWP system. The tra-
ditional EPS combined a high-resolution deterministic
model with a lower-resolution ensemble forecast model.
The new system, however, employs high-resolution mo-
dels for both deterministic and ensemble forecasts, offer-
ing a more accurate representation of forecast uncer-
tainty at higher resolutions. In 2006, the World Meteoro-
logical Organization (WMO) launched the Observing
System Research and Predictability Experiment (THOR-
PEX) Interactive Grand Global Ensemble (TIGGE) as an
important component of the THORPEX initiative (Jiao,
2010). In recent years, ensemble forecasting has expan-
ded to fields such as data assimilation, physical process
parameterization, flood forecasting, severe weather pre-
diction, and typhoon track forecasting. The ensemble
forecasting approach has become an integral part of the
entire operational NWP process (Buizza et al., 2018).

Chinese scientists have also been actively engaged in
ensemble forecasting research and operations since the
early stages (Li et al., 1997; Chen et al., 2002; Li and
Chen, 2002). In terms of initial condition perturbation,
methods such as conditional nonlinear optimal perturba-
tion (CNOP; Mu et al., 2003; Duan and Huo, 2016), the
heterogeneous physical mode method (Chen et al., 2005),
nonlinear local Lyapunov vectors (NLLV; Feng et al.,
2014), multi-scale hybrid initial perturbation (Zhang et
al., 2015), and multi-scale SV (Ye et al., 2020) have been
proposed. Regarding model perturbation, studies have fo-
cused on methods such as the multi-physics scheme
(Chen et al., 2003), SPPT (Tan et al., 2013), nonlinear
forcing SV (NFSV; Duan et al., 2013), SPP (Xu et al.,
2019), and a model tendency perturbation method com-
bining systematic and random errors (Han et al., 2023).
China’s operational EPS has evolved from initially rely-
ing on imported spectral models to the self-developed
GRAPES-EPS (Chen and Li, 2020). The initial perturba-
tion methods have advanced from the ETKF (Ma X. L. et
al., 2008; Long et al., 2011; Zhang et al., 2017) to the
multi-scale SV initial perturbation method (Liu et al.,
2011; Ye et al., 2020). Furthermore, a combination of
SPPT and SKEB has been implemented to generate mo-
del perturbations. These advancements collectively rep-
resent a milestone in the development of China’s EPSs
(Chen and Li, 2020; Shen et al., 2020).

This paper first reviews the ensemble weather fore-
casting methods and the primary techniques employed in
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the main EPSs designed by China and other countries,
emphasizing the development of China Meteorological
Administration (CMA) global EPS (CMA-GEPS) and re-
gional EPS (CMA-REPS), including operational techno-
logies, initial and model perturbation methods, and the
applications of ensemble forecast. Besides, a comparison
of the EPS settings and verification results between the
CMA-GEPS and other major international NWP centers
is presented. Furthermore, the paper addresses some of
the key challenges in ensemble forecast technologies
from the aspects of operation, science, integration with
artificial intelligence (AI), merging of weather and cli-
mate models, and challenging user requirements. The
summaries and future perspectives of ensemble forecast
are concluded at the end.

2. Review of ensemble forecast methods

2.1 Sources of initial errors and advances in initial
perturbation methods

Initial errors play a critical role in numerical simula-
tions, primarily arising from inaccuracies in observation,
as well as errors introduced during the processes of data
assimilation. The initial condition perturbation (ICP)
method, which aims to describe errors in model initial
conditions, has been developed within global medium-
range EPSs. The development of ICP methods has gone
through several stages, from the initial human-generated
random perturbations to statistically-based perturbation
techniques, such as the Monte Carlo, BGM, SV, ETKF,
and CNOP. These methods have been widely applied in
the construction of various EPSs, providing effective in-
formation about forecasting uncertainty and enhancing
prediction skill.

2.1.1 Initial perturbation for estimating assimilation
analysis errors

The primary function of these methods is to estimate
the error probability distribution in assimilated analyses.
For instance, the Monte Carlo random perturbation me-
thod generates initial conditions by superimposing ran-
dom noise or perturbations on control fields (Hollings-
worth, 1979), while the time-lagged average method util-
izes analyses from different past times as perturbed ini-
tial conditions (Hoffman and Kalnay, 1983). As an ex-
ample, the initial version of the GEPS developed by the
Canadian Meteorological Centre (CMC) employed Monte
Carlo-based random perturbations of observations to cre-
ate ensemble initial conditions (Houtekamer et al., 1996).
With the development of data assimilation systems and
EPSs, ensemble Kalman filter (EnKF) initial perturba-
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tion method, which randomly perturbed observation data,
is used by Canada’s EPS (Houtekamer and Mitchell,
2005) and the NCEP (Zhou et al., 2016). While these
perturbation methods demonstrate advantages in effect-
ively representing uncertainties in initial analysis errors
and enabling generation of substantial ensemble mem-
bers, they exhibit limitations including constrained
growth of initial perturbation energy, insufficient en-
semble spread, and inadequate characterization of fore-
cast uncertainties. Recent innovations by Pan et al.
(2021) and Wang et al. (2023) introduced an analysis-
constrained method that effectively incorporates charac-
teristics of assimilation analysis increments. This me-
thod improved initial perturbation quality and the con-
sistency between ensemble spread and forecast error.
2.1.2  Estimation of initial perturbations with
the fastest error growth

These types of initial perturbations are based on re-
search findings in atmospheric predictability. By analyz-
ing the direction and speed of numerical prediction error
growth in phase space, perturbations are introduced
along the most unstable directions in initial conditions.
Representative methods include the SV developed based
on nonlinear dynamical finite-time instability theory
(Molteni et al., 1996; Yang et al., 2002; Liu et al., 2011)
and the BGM employed by NCEP, in which random per-
turbations are cycled through a nonlinear model and
scaled to generate the final fields (Toth and Kalnay,
1993). Both the two methods aim to capture initial errors
in atmospheric baroclinic instability regions, represent-
ing the forecast uncertainty of large-scale unstable wa-
ves. The SV, often developed in conjunction with a 4D
variational system, has clear physical significance and
can achieve favorable results. It has been successfully ap-
plied in medium-range weather ensemble forecasting by
ECMWEF, Japan, China, and others. Moreover, Zhang et
al. (2020) proposed an initial perturbation method com-
bining ensemble sensitivity analysis (ESA) and BGM to
represent the characteristics of initial analysis errors. The
distribution of perturbations, which is derived from sens-
itivity modes and rapidly growing perturbations calcu-
lated by BGM, adapts to changes in weather conditions
and provides accurate simulations of the location and in-
tensity of convective systems. The BGM method is fa-
vored by operational forecasting centers due to its effect-
iveness, simplicity, and low computational cost. Addi-
tionally, the NCEP developed the ETR (Wei et al., 2008),
a method similar to the BGM but with perturbation struc-
tures that are nearly orthogonal and may reduce the cor-
relation among ensemble members.

The SV method has achieved significant success in
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operational ensemble forecasting. However, since it re-
lies on a linear approximation of the nonlinear model, it
fails to fully capture the impact of nonlinear physical
processes, which limits further improvements in en-
semble forecast skill. Mu et al. (2003) proposed the
CNOP method, which comprehensively considers the ef-
fects of nonlinear processes and identifies the fastest-
growing initial perturbations in nonlinear models,
thereby addressing the limitations of the SV. Duan and
Huo (2016) extended the CNOP to different perturbation
phase spaces, developing an orthogonal scheme for en-
semble forecast initial perturbations. This method has
been successfully applied in the study of typhoon track
ensemble forecasting, demonstrating that the initial per-
turbations generated by orthogonal CNOP significantly
improve the typhoon track forecasting skill, especially
for abnormal tracks, compared to those generated by the
SV and the BGM methods (Zhang H. et al., 2023).

To address the rapid growth of errors caused by con-
vective instability in meso- and small-scale systems,
Chen et al. (2005) proposed a new method, known as the
Heterogeneous Physical Mode Method, for constructing
initial perturbations in ensemble forecasting that targets
convective instability and exhibits mesoscale motion
characteristics. By identifying forecast deviations from
different cumulus convective parameterization schemes,
this method identifies regions sensitive to convection, ex-
tracts perturbation variables, structures, and magnitudes,
and constructs perturbed initial conditions. Unlike tradi-
tional initial perturbation methods such as the BGM or
SV, this approach perturbs the initial values in convect-
ively unstable regions, thereby promoting rapid growth
of the unstable perturbations related to convection.

2.1.3  Estimating initial perturbations for multi-scale
system errors

Despite the continuous improvement in numerical
weather prediction resolution, the rapid growth of multi-
scale initial errors continues to significantly impact fore-
cast skill. Limited-area models face dual challenges, i.e.,
insufficient large-scale initial error information and inad-
equate characterization of small-scale errors from dy-
namical downscaling. In response to these issues, Chin-
ese scientists developed the hybrid initial condition per-
turbation method for enhanced ensemble perturbation
generation (Wang Y. et al., 2014; Zhang et al., 2015;
Zhuang et al., 2017; Ma et al., 2018). This method uses
filtering and spectral analysis techniques to extract small-
scale perturbations from regional ensemble forecasts and
large-scale perturbations from global ensemble forecasts,
and combines the two to generate the growth ICPs. The
hybrid ICPs effectively represent both large- and small-
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scale uncertainties in the analysis, aligning more closely
with the lateral boundary perturbations provided by glo-
bal EPSs, thereby significantly improving the forecast
skill of regional EPSs. Furthermore, the CMA (Ye et al.,
2020; Liu et al., 2024) and the Japan Meteorological
Agency (JMA; Ono et al.,, 2021) have conducted re-
search on multiscale SV ICP methods based on regional
and global ensemble prediction models. These studies
have generated ICPs containing multiscale initial uncer-
tainty, which more effectively reflect the multiscale vari-
ations in initial errors and improve both regional and
global ensemble prediction performance.

In general, ensemble forecasts based on ICPs formed
by analysis errors tend to show slightly higher forecast
accuracy but a lower spread, while ensemble forecasts
based on initial perturbations derived from dynamical in-
stability growth theory generally exhibit an inverse pat-
tern, i.e., a slightly higher spread but marginally lower
accuracy (Pauluis and Schumacher, 2013).

2.2 Model error sources and development of model
perturbation methods

Early ensemble forecasting studies primarily focused
on initial perturbations. However, as research advanced,
it became evident that addressing initial condition uncer-
tainty alone could lead to drawbacks such as insufficient
ensemble spread, which further results in systematically
biased forecasts (Palmer et al., 2009). Therefore, it is ne-
cessary to consider the uncertainty caused by model er-
rors or defects in ensemble forecasting. The model er-
rors primarily originate from inadequate representations
of both physical and dynamical processes in the numeri-
cal model (Mu et al., 2011). Currently, the predominant
model errors considered by ensemble forecasting sys-
tems stem from imperfect representations of subgrid-
scale parameterization processes.

2.2.1 Estimation of model uncertainty

The uncertainty of the physical process of the model is
described by a combination of different physical para-
meterization schemes within the framework of a single
model (Houtekamer et al., 1996), which is called a multi-
physics scheme. This scheme was applied to the global
EPS of Environment Canada in the early days. It has also
been commonly used in regional ensemble forecasting in
recent years (Stensrud et al., 2000; Chen et al., 2003; Zhi
et al., 2013) to improve the probabilistic forecasting skill.
Another model perturbation method is the multi-model
method (Krishnamurti et al., 1999), which can represent
the systematic bias in the forecasts of different models,
so that the ensemble members can produce a larger en-
semble spread, which greatly improves the accuracy of
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medium-term forecasts and small- and medium-scale en-
semble forecasts in limited areas (Zhang et al., 2017).
However, since the ensemble members in multi-model or
multi-physics schemes employ different models or phys-
ical processes, their physical consistency is comprom-
ised. This makes it challenging to satisfy the equal-likeli-
hood requirement for members and increases the com-
plexity of determining member weights for probability
calculations (Berner et al., 2015). Consequently, the
model perturbation method has been increasingly de-
veloped in recent years to estimate the uncertainty of the
parameterization scheme of the model physical process.

2.2.2  Estimation of physical parameterization scheme

uncertainty

Stochastic physical perturbation is now a standard
technique for assessing physical parameterization uncer-
tainty in modeling. The theoretical basis is to introduce a
random process or factor to perturb some parameter va-
lues or related terms of a model (such as tendency and
diffusion) to characterize the uncertainty of the model.
This type of perturbation scheme mainly includes me-
thods such as the stochastically perturbed physics para-
meterization tendency term (SPPT; Buizza et al., 1999;
Yuan et al., 2016), stochastic kinetic energy backscatter-
ing (SKEB; Shutts, 2005), random parameters (RP;
Bowler et al., 2008), and stochastically perturbed para-
meterization (SPP; Chen et al., 2003; Tan et al., 2013;
Jankov et al., 2017).

The SPPT scheme employs spatiotemporally continu-
ous random numbers conforming to a uniform distribu-
tion to multiplicatively perturb parameterized subgrid
physical tendencies. By applying distinct perturbation
values to different tendency terms, this method effect-
ively enhances ensemble spread and improves probabil-
istic forecast reliability in ensemble forecasting systems
(Li et al., 2008). The SPPT is currently the most widely
adopted method among global NWP centers (Charron et
al., 2010; Sanchez et al., 2016; Peng et al., 2020), yet it
also has some drawbacks. For instance, perturbation
amplitude may cause discontinuity and energy non-con-
servation in model top and near-surface fluxes, and the
long-term integration will produce systematic bias (Leut-
becher et al., 2017). Yuan et al. (2016) introduces SPPT
technology to the CMA-REPS, which significantly im-
proves the precipitation forecast of heavy rainfall in the
late medium-range forecast. Qiao et al. (2017) de-
veloped a novel parameterization scheme for stochastic
perturbation dissipation based on the uncertainty of the
model dissipation term. It follows the same procedure as
the SPPT method, but uses a recursive filter to generate
smooth perturbations. It also uses horizontal and vertical
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localization to maintain the influence of perturbation in
regions with strong wind shear, which effectively im-
proves the systematically weak vortex intensity. Similar
results have been demonstrated in perturbation studies of
microphysical processes (Qiao et al., 2018).

The SKEB scheme targets excessive momentum dis-
sipation errors in the numerical model’s dynamic frame-
work at truncated scales, compensating for dissipated en-
ergy effects on resolvable scales through stochastic per-
turbations. It has been applied in global medium-range
ensemble forecasting (Berner et al., 2009; Zhou et al.,
2017) and is being progressively implemented in regio-
nal convective ensemble forecasting (Cai et al., 2017,
Yang et al., 2024). Peng et al. (2020) found that the com-
bined application of the SKEB and the SPPT in the
GRAPES global ensemble forecast can effectively im-
prove the ensemble spread in the tropics. The SKEB
scheme can excite possible instabilities in atmospheric
motion (Berner et al., 2015), thereby producing larger en-
semble spread and capturing low-probability events.
However, due to the higher computational cost of the
SKEB compared to the SPPT and the unsatisfactory bal-
ance between spread and root mean square error
(RMSE), the usefulness of the SKEB scheme has gradu-
ally decreased. It is reported that the ECMWF has dis-
continued the operational implementation of this scheme
(Chen C. H. et al., 2021).

The RP/SPP method characterizes model uncertainty
by performing random perturbations of subjective empir-
ical and semi-empirical parameters within physical para-
meterization schemes (Bowler et al., 2008), which rep-
resents the predicted uncertainty of small-scale system
changes. Although this method improves the ensemble
forecasting, it has certain irrationalities. For instance, the
parameter values will change suddenly at a certain time
(Jankov et al., 2019). In addition, it is found that the SPP
method has a more significant effect on the parameters in
cumulus convection and planetary boundary layer sch-
emes (Xu et al., 2019). However, the RP/SPP method
yields inadequate ensemble spread for medium- and ex-
tended-range forecasts (Leutbecher et al., 2017).

Beyond these three prevalent stochastic physical per-
turbation schemes, researchers have developed various
approaches to address uncertainty sources in other mo-
del components, such as the stochastic trigger of convec-
tion (STC; Li et al., 2015), stochastic boundary-layer hu-
midity (SHUM; Tompkins and Berner, 2008), vorticity
confinement (VC; Steinhoff and Underhill, 1994), meso-
and medium-scale terrain perturbation schemes (Li et al.,
2017), and model tendency perturbation methods com-
bining model systematic bias and random errors (Han et
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al., 2023). Zhao and Torn (2022) applied an independent
stochastic perturbation parameterization scheme to a sin-
gle parametric perturbation, and the results showed that
turbulent mixed stochastic perturbation can increase the
ensemble standard deviation of typhoon intensity, while
the impact of stochastic perturbation on microphysics, ra-
diation, and cumulus tendencies is negligible. The SHUM
scheme improves the consistency between ensemble spr-
ead and forecast error in the tropical regions, and re-
duces the ensemble mean forecast error. The SHUM is
applied to the ensemble data assimilation module of the
NCEP global forecast system EnKF/3DVar. The VC me-
thod is applied to the NCEP GEPS, which increases the
subtropical ensemble spread. The model tendency per-
turbation method combining model systematic bias and
random error reduces the systematic bias of the model,
which is applied to the CMA-GEPS.

2.2.3  Estimation of nonlinear characteristics of model

error growth

Accurately characterizing the nonlinear nature of mo-
del error growth remains a critical challenge for cutting-
edge high-resolution ensemble forecasting systems.
Wang et al. (2020) implemented the CNOP perturbation
(CNOP-P) method in the GRAPES model for convec-
tion-scale ensemble forecasting. The experiments de-
monstrated enhanced ensemble spread in tropospheric
humidity and temperature predictions, along with im-
proved forecast reliability for near-surface variables and
precipitation. Xu et al. (2022a) applied a nonlinear for-
cing SV method (NFSV), also known as CNOP forcing
(CNOP-F). Duan and Zhou (2013) described the com-
bined effects of model errors from different sources by
superimposing NFSV perturbations with specific struc-
tures on top of SPPT perturbations, which better charac-
terizes the impact of model uncertainty on convection-
scale ensemble forecasting (Xu et al., 2022b). In addi-
tion, Zhang Y. C. et al. (2023) extended the NFSV to the
orthogonal subspace of inclined perturbations and de-
veloped an orthogonal NFSV-based ensemble prediction
model perturbation method. When applied to typhoon in-
tensity ensemble prediction, this method demonstrated
significantly higher forecasting skill than the SPPT and
the SKEB, particularly in providing earlier warning in-
formation for predicting typhoon rapid intensification
processes.

In summary, the multi-model and multi-physics sch-
emes have been gradually eliminated due to the average
error of members, the inequality of meteorological signi-
ficance, and the complexity of probability calculation,
while the stochastic physics perturbation method has re-
ceived more and more attention. However, whether the
representativeness and flow dependence of reasonable
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stochastic functions and their spatiotemporal correlation
scales of random noises truly reflect the uncertainty of
physical processes still need to be studied.

2.3 Post-processing and verification assessment of
ensemble forecast uncertainty information

The EPS generates a vast array of data products. In
contrast to a single deterministic forecast, ensemble fore-
casting can provide a probability distribution of possible
future atmospheric states and characteristics of forecast
uncertainty, demonstrating superior advantages in the
early warning of extreme weather events (Du and Chen,
2010; Gao et al., 2019). The critical task in the post-pro-
cessing of ensemble forecasts is to design appropriate
post-processing techniques that provide meteorologic-
ally meaningful interpretations of the distribution of en-
semble forecast products, as well as to extract similari-
ties, discrepancies, and extreme information among the
ensemble forecast members (Williams et al., 2014). The
primary techniques currently employed in ensemble fore-
cast post-processing include obtaining probabilistic fore-
cast information to describe forecast uncertainty, correct-
ing systematic model errors, and extracting extreme
weather forecast information from the tails of the en-
semble forecast probability distribution.

2.3.1 Probability forecast information based on
ensemble prediction

The ensemble mean and ensemble spread are two fun-
damental products of ensemble forecasting. The en-
semble mean represents the primary level of information
in ensemble forecast products. It filters out unpredictable
elements from the ensemble members, providing an
overall forecast trend. However, due to its inherent
smoothing effect, the ensemble mean might not com-
pletely retain extreme values in weather events. The en-
semble spread is a measure of the uncertainty in en-
semble forecasting or the amplitude of variation of en-
semble members relative to the ensemble mean. It can be
measured by the standard deviation of the ensemble
members relative to the ensemble mean forecast, or by
the average anomaly correlation coefficient (ACC) of
each member relative to the overall mean field. The
spread, to some extent, can represent the skill of en-
semble forecasting. Generally speaking, a smaller spread
indicates higher forecast confidence with potentially
higher forecast skill; however, a larger spread indicates
lower forecast confidence but does not necessarily imply
lower forecast skill.

Probabilistic forecast of weather elements is a crucial
ensemble forecast product. By calculating the forecast
probabilities for different thresholds of weather elements
such as precipitation, temperature, and wind, it repres-
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ents the occurrence likelihood of specific weather condi-
tions. For instance, probability of precipitation exceed-
ing 1, 5, 10, and 20 mm day ', or that of a specific
weather element (e.g., snow) to occur at certain stations
can be provided. Another probabilistic forecast product is
the spaghetti plot, which involves selecting a specific
characteristic contour line and plotting forecasted con-
tours from all ensemble members on the same chart.
Generally, the degree of divergence among contour lines
roughly indicates forecast confidence, and more concen-
trated contours correspond to higher confidence.

Ensemble forecast clustering products utilize cluster-
ing analysis to classify ensemble member forecasts into
distinct clusters, offering various possible outputs. Com-
mon clustering algorithms include hierarchical, non-hier-
archical, and tubing clustering approaches. Through clus-
tering classification, the number of members in each
cluster can be compared, allowing for determination of
the most probable weather scenarios. Additionally, two
commonly used visualization tools, i.e., plume chart and
spaghetti chart, apply clustering analysis principles to
classify 500-hPa geopotential height patterns, providing
forecasters with operationally actionable guidance.
2.3.2  Post-processing methods for systematic error

correction in ensemble forecasting

Common post-processing methods for systematic bias
in ensemble forecasting can be broadly categorized into
parametric and non-parametric approaches (Mylne et al.,
2022). Parametric post-processing methods generally as-
sume that the target variable follows a specific probabil-
ity distribution and conduct regression on its parameters.
Examples include ensemble model output statistics
(EMOS), Bayesian model averaging (BMA), and Ba-
yesian joint probability (BJP). Additionally, correction
methods based on different probability distributions have
been developed for various physical quantities. For in-
stance, Gaussian distribution is used for temperature and
pressure, truncated normal distribution and lognormal
distribution for wind, and Gamma (and truncated
Gamma) distribution for precipitation. Furthermore, en-
semble forecast correction based on precipitation cat-
egories has been proposed and applied to improve the
forecast skill for different levels of precipitation, particu-
larly extreme precipitation (Ji et al., 2023).

Non-parametric post-processing methods eliminate the
need for predefined probability distributions of target va-
riables, thereby providing enhanced flexibility. Common
non-parametric methods include quantile mapping (QM),
frequency matching (FM), probability matching (PM),
member by member (MBM), the optimal percentile
method, and isotonic distributional regression (IDR).
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Meanwhile, by combining effective forecast informa-
tion obtained from multiple models for multi-model en-
semble forecasting, non-equal-weight ensemble methods
based on error analysis, such as super ensemble and Kal-
man filtering, have been developed (Zhi et al., 2013; Zhu
et al., 2021). The concept of a sliding training period (Zhi
et al., 2012) has been widely applied in the correction of
forecasts for tropical cyclones, temperature, precipitation,
wind, and other variables. To reduce the positional and
structural biases in the target system forecasts, various
post-processing methods based on spatial features have
been proposed, such as neighborhood methods, model
projection methods, and object-based correction tech-
niques (Ji et al., 2020).

In recent years, machine learning techniques have
been widely adopted due to their high nonlinearity and
strong robustness. Deep learning algorithms, such as ran-
dom forests, support vector machines, convolutional
neural networks, long short-term memory neural net-
works, and U-Net neural networks, have also been ex-
tensively applied to the post-processing of EPSs, achiev-
ing remarkable results (Zhi et al., 2020; Yang et al.,
2022; Lyu et al., 2023). At the same time, by integrating
machine learning algorithms with traditional statistical
methods, hybrid machine learning and statistical ap-
proaches have been designed to further enhance the reli-
ability of ensemble forecasting. Detailed descriptions of
the aforementioned systematic error post-processing
methods can be found in the ensemble forecast guidance
manual published by the WMO (Mylne et al., 2022).
2.3.3 Extreme forecast information extraction

based on ensembles

To extract early warning information for extreme wea-
ther from ensemble forecasts, the Extreme Forecast In-
dex (EFI) developed through ECMWF ensemble fore-
cast results was established (Lalaurette, 2003). This in-
dex characterizes the continuous difference between the
cumulative probability distribution of the ensemble fore-
cast results and the model climate cumulative probability
distribution. The larger the value, the greater the devi-
ation of the forecast from the model climate. Such devi-
ations indicate a higher probability of extreme forecasts,
and consequently, an increased probability of extreme
weather occurring in reality. The NCEP has also conduc-
ted studies on extreme weather forecasting based on EFI.
Guan and Zhu (2017) pointed out that the EFI index
based on the NCEP global ensemble forecasts has cer-
tain medium-range forecasting ability for extreme precip-
itation and extreme low-temperature weather in the U.S.
during the winter of 2013/14. In addition to conventional
weather elements such as temperature, precipitation, and
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10-m wind, the EFI index can also be applied to dia-
gnostic quantities such as convective parameters (e.g.,
convective available potential energy) and total column
water vapor flux (Tsonevsky et al., 2018). The applica-
tion range of the EFI index has gradually expanded from
large-scale medium-range ensemble forecasts to convect-
ive-scale and sub-seasonal to seasonal ensemble fore-
casts (Dutra et al., 2013; Raynaud et al., 2018). Many do-
mestic scholars have also studied the EFI index (Xia and
Chen, 2012; Liu et al., 2018; Peng et al., 2024). Re-
search on extreme weather forecasting methods based on
the EFI using the CMA-GEPS has shown that the EFI
has certain recognition ability for extreme low temperat-
ures and extreme heavy precipitation in China, with good
medium-range forecasting skill. Another similar method
is the Ensemble Anomaly Forecasting by ranking en-
semble forecasts relative to observed climatology rather
than model climatology (Du et al., 2014).

2.3.4 Verification and evaluation metrics

The accuracy and reliability of ensemble forecasting
are crucial in meteorological prediction, driving the con-
tinuous development and refinement of verification and
evaluation methods for ensemble forecasts. The works of
Wilks (2011) and Jolliffe and Stephenson (2012) com-
prehensively summarize the verification methods for
meteorological forecasts, covering deterministic, probab-
ilistic, and qualitative forecasts, along with their applica-
tions. For deterministic forecasts based on ensemble
means or individual ensemble members, commonly used
verification metrics include the RMSE and spatial correl-
ation coefficients. In the realm of probabilistic forecast
verification, primary evaluation methods encompass the
Brier skill score (BSS), continuous ranked probability
skill score (CRPSS; Hersbach, 2000), reliability dia-
grams, relative operating characteristics (ROC) curve,
and potential economic value (Zhu et al., 2002).

To quantify uncertainty, ensemble spread and the
Talagrand distribution are key metrics. The spread—error
relationship, commonly referred to as the spread—skill re-
lationship, is often employed to evaluate the predictabil-
ity of EPSs. However, real-world systems often exhibit
under-dispersion in ensemble spread, particularly in
quantitative precipitation forecasting (Li, 2001; Li et al.,
2009; Su et al., 2014). Uncertainty quantification typic-
ally relies on the bootstrapping method (Hamill, 1999),
with error bars representing the confidence intervals of
the scores. Additionally, Torn and Hakim (2008) intro-
duced the ESA method to assess the sensitivity of fore-
cast outcomes to minor changes in initial conditions or
other input parameters.

Su et al. (2014) proposed an area-weighted verifica-
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tion method, applying spatial weighting to probabilistic
precipitation forecast scores. In the field of precipitation
forecasting, some researchers have integrated these spa-
tial verification methods into ensemble forecast evalu-
ation. For instance, Ji et al. (2020) explored the integra-
tion of the Method for Object-based Diagnostic Evalu-
ation (MODE) with ensemble forecasting techniques,
finding significant advantages in evaluating and improv-
ing the spatial structural characteristics of precipitation
forecasts. Chen et al. (2018) investigated the spatial rela-
tionship between ensemble spread and forecast error for
Meiyu precipitation forecasts in the Yangtze—Huaihe re-
gion using the precipitation consistency scale method, re-
vealing the impact of positional errors on forecast skill
under different precipitation thresholds. Furthermore, Du
and Deng (2020) introduced two new forecast evaluation
metrics, i.e., the measure of forecast challenge (MFC)
and the predictability horizon diagram index (PHDX).
The MFC, which may comprehensively consider fore-
cast error and uncertainty, serves as a novel metric for as-
sessing forecast difficulty. The PHDX further investig-
ates how the temporal evolution of forecasts influences
decision-making processes, aiming to better represent the
dynamic nature of ensemble forecast information.

It is important to note that the accuracy of scores in
ensemble forecast verification may be influenced by ref-
erence values. For example, the calculation of BSS by
using high-frequency grid-based climatological samples
could potentially lead to score underestimation (Hamill
and Juras, 2006). Additionally, the uncertainty and qual-
ity of verification data can significantly impact evalu-
ation outcomes, particularly in precipitation forecast veri-
fication (Yuan et al., 2005). With the ongoing advance-
ment of high-resolution ensemble forecasting and obser-
vational data, ensemble forecast verification methods are
expected to become more refined and scientifically ro-
bust in the future.

3. Chinese operational EPS and its
applications

3.1 Development history of GEPS and REPS

3.1.1 GEPS of spectral model

In the 1990s, the National Meteorological Centre
(NMC) of CMA developed the GEPS (Li et al., 1997). In
1996, a T63L16 EPS had been implemented using the
time-lagged method, consisting of 12 ensemble mem-
bers with a 10-day forecast lead time. In 1999, a
T106L19 EPS was developed by the SV method (Li and
Chen, 2002), which includes 32 ensemble members with
a 10-day forecast lead time. In 2007, based on the BGM
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method (Tian et al., 2007), a T213 EPS was established,
which includes 15 ensemble members with a 10-day
forecast lead time. The year 2014 saw the upgrade of
CMA'’s operational EPS from T213 to T639, which for
the first time incorporated SPPT to generate model per-
turbations (Tan et al., 2013).
3.1.2 REPS

Exploratory efforts toward REPS commenced in the
early 21st century. In 2005, based on the mesoscale mo-
del MMS5, a heterogeneous physical mode method was
proposed to generate initial perturbation (Chen et al.,
2005), alongside experimental studies incorporating
multi-physics configurations and stochastic physical pa-
rameter perturbations (Chen et al., 2003; Feng et al.,
2006; Wang et al., 2007). By 2006, the NMC developed
a regional mesoscale EPS over China using the Weather
Research and Forecasting (WRF) model, integrating the
BGM method and multi-physics ensemble method (Deng
et al., 2010). This system became operational EPS on 15
November 2010, operating at a horizontal resolution of
15 km with 15 ensemble members and running 4 daily
forecast cycles (Ma Q. et al., 2008).
3.1.3 GRAPES-based GEPS and REPS

The GRAPES model is a new-generation numerical
weather prediction system developed through self-innov-
ation by the CMA (Chen et al., 2008). Since 2005, re-
search and development efforts have been dedicated to
advancing ensemble forecast techniques within the GRA-
PES framework. The Chinese Academy of Meteorologi-
cal Sciences has successively implemented both the
BGM and ETKF methods to investigate GRAPES re-
gional ensemble prediction techniques and systems (Tan
and Chen, 2007; Tian and Zhuang, 2008; Ji et al., 2011),
ultimately developing its REPS (GRAPES-REPS). The
model’s version 1.0 became operational in 2014 at NMC,
utilizing ETKF for initial condition perturbations and su-
perseding the WRF REPS. This system featured a 15-km
horizontal resolution with 15 ensemble members. In
2015, the initial condition perturbation scheme was up-
graded to a multi-scale blending (MSB) method (Zhang
et al., 2015) that combined large-scale initial perturba-
tions derived from the T639 EPS by using the BGM
method with meso-scale initial perturbations obtained
through the ETKF method within the GRAPES-REPS.
This upgrade culminated in the release of version 2.0. In
September 2019, the lateral boundary perturbations for
the new GRAPES-REPS were sourced from the
GRAPES-GEPS. The parallel enhancement of initial
condition perturbation and model perturbation methods
led to the operational system’s evolution to version 3.0
(Chen and Li, 2020).
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Development of the GRAPES-GEPS began in 2008,
with initial research focused on the global ETKF method
(Ma X. L. et al., 2008). With the advancement of the
GRAPES global 4DVar data assimilation technology, the
GRAPES SV ICP technique was developed (Li and Liu,
2019). In December 2018, the GRAPES global medium-
range EPS, based on the SV ICP, became operational and
replaced the T639 EPS. This achievement represents
China’s first successful implementation of both global
and regional operational EPSs utilizing fully independ-
ent and self-controlled technologies (Chen and Li, 2020).

To characterize uncertaintiecs in the GRAPES model,
researchers have investigated multiple model perturba-
tion methods through GRAPES’s REPS and GEPS,
building upon prior studies of the NMC’s T213 and T639
global medium-range ensemble models. The methods
used include the multi-physics (MP; Feng et al., 2006),
SPPT (Yuan et al., 2016), SKEB (Peng et al., 2019), and
SPP (Xu et al., 2019). The SPPT scheme became opera-
tional in the GRAPES-REPS in 2015, followed by imple-
mentation of both the SPPT and the SKEB in the GEPS
in 2018 (Chen and Li, 2020).

Since 2018, significant methodological improvements
have been achieved in the tropical cyclone SV technique,
blended SV-EDA perturbation scheme, and sea surface
temperature perturbation scheme (Huo et al., 2020; Qi et
al., 2022). Based on the GRAPES-REPS forecast model,
extensive advancements in initial condition and model
perturbations include stochastic parameter perturbation
(Xu et al., 2019), conditional typhoon vortex relocation
(Wu et al., 2020), radar reflectivity algorithm (Chen Y.
X. et al., 2021), and model tendency perturbation com-
bined with systematic bias and random errors (Han et al.,
2023).

Since 2020, active research on convective-scale en-
semble forecasting has been conducted using the GRA-
PES-Meso 3-km model. Researchers have performed va-
rious experiments involving both model and initial condi-
tion perturbations, including multi-scale initial condition
perturbation experiments (Ma et al., 2023) and the con-
struction of model perturbations through conditional non-
linear optimal perturbations combined with stochastic
physical perturbations (Xu et al., 2022a, b). The estab-
lished 3-km regional ensemble forecast experimental sys-
tem has been applied in major events such as the Beijing
Winter Olympics and the Hangzhou Asian Games. Un-
der the WMO Research Demonstration Project for the
Hangzhou Asian Games, a fully independent 3-km con-
vective-scale ensemble prediction system was success-
fully developed and implemented in Hangzhou, provid-
ing ensemble forecast services for the broader East China
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region. This system commenced operational service on
21 May 2023, delivering comprehensive probabilistic
forecasts and multifaceted decision-support capabilities
to forecasters.

3.2 Technology of CMA EPSs

3.2.1 Global/regional integrated multi-scale SV
initial perturbation technique

The SV initial perturbations effectively capture both
the primary error information and the sensitive features
of analysis errors that grow and intensify within the ba-
sic flow. The development of the Tangent Linear Model
(TLM) and Adjoint Model (ADM) within the CMA glo-
bal 4DVar system has provided the necessary foundation
for the research and advancement of SV perturbation
techniques in the CMA-GEPS (Liu et al., 2017). The SV
initial perturbation calculation scheme for the CMA-
GEPS is composed of two parts, i.e., calculations of SVs
for the extratropical regions and for tropical cyclones, re-
spectively. The specific mathematical treatment scheme
is outlined as follows.
3.2.1.1 SV calculation scheme for extratropical regions

In the CMA-GEPS, the SV calculation can be math-
ematically formulated as maximizing the ratio of the
evolved perturbation vector norm to the initial perturba-
tion vector norm, as shown in Eq. (1):

(E2LTPTEPLE™?) x(t0) = 22, (1)

where L represents TLM in the CMA global 4DVar as-
similation system, LT indicates the corresponding adjoint
model, E is the weight matrix that measures the perturba-
tion magnitude, x denotes the SV, 4 is the corresponding
singular value, and P stands for a projection operator that
sets the SV perturbations outside the target region to
zero. From Eq. (1), it is evident that the SV structure is
influenced by three key factors.

(1) Definition of the weight matrix E. This matrix de-
termines the relative importance of different components
of the perturbation vector.

(2) Characteristics of the TLM (L) and ADM (L").
These models primarily involve the use of linearized
physical process parameterization schemes.

(3) Integration of time length for the TLM (L) for-
ward and the ADM (L") backward, referred to as the op-
timal time interval.

The CMA global SVs employ the dry total energy
norm to define the weight matrix E (Liu et al., 2013). Let
the prognostic variables of the CMA global TLM and
ADM include the horizontal wind components (i.e., u
and v), perturbation potential temperature (¢’), and per-
turbation dimensionless pressure (/7’). The correspond-
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ing perturbation quantities can be expressed as u’, V',
(@), and (1) . The total energy norm E is calculated as
follows:

e ], (P by + 52
prcospC, T
6,

In Eq. (2), the sums of the first two and last two terms
represent the perturbation kinetic energy (KE) and the
perturbation potential energy (PE) norms, respectively.
The third and fourth terms correspond to the contribu-
tions of perturbation potential temperature and perturba-
tion dimensionless pressure to the PE norm. Meanwhile,
dV = dAdedz, among which z denotes the terrain-follow-
ing coordinate, and A and ¢ represent longitude and latit-
ude in the spherical coordinate system of the model. In
addition, C, is the specific heat capacity of dry air at
constant pressure; and T, 6;, I1;, and p; denote the refer-
ence temperature, reference potential temperature, refer-
ence dimensionless pressure, and reference density,
respectively.

Based on the aforementioned CMA global SV calcula-
tion technique, three types of SVs with different scales
are defined by varying resolutions and optimal time in-
tervals. Large-scale SV (LSV) has a horizontal resolu-
tion of 2.5° and an optimal time interval of 48 h. It is
computed by using dry linearized physical processes and
is primarily used to capture uncertainty information at
the synoptic scale. Mesoscale SV (MSV), with a hori-
zontal resolution of 1.5° and an optimal time interval of
24 h, also employs dry linearized physical processes and
is designed to capture uncertainty at the meso-a scale.
Small-scale SV (SSV), which has a horizontal resolution
of 0.5° and an optimal time interval of 6 h, incorporates
moist linearized physical processes in its computation
compared to LSV and MSV, and is mainly used to cap-
ture uncertainty at the meso-f scale. The specific config-
urations of the CMA global/regional integrated multi-
scale SVs are summarized in Table 1.
3.2.1.2 Tropical cyclone SV calculation scheme

Considering the unique characteristics of tropical cy-
clones, a specialized tropical cyclone SV calculation sch-
eme has been developed for the CMA-GEPS (Huo et al.,
2020). Specifically, for tropical cyclone cases, the target
region for SV computation is defined as a 10° x 10° (lat-
itude x longitude) domain centered on the cyclone posi-
tion. A maximum of six tropical cyclone SVs can be
calculated.

As a result, the target regions for SV computation in
the CMA-GEPS consist of the extratropical regions of

X C,T; Y
(@) P+ ’%[(ﬂ Pl @
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Table 1. The settings of calculation for multi-scale SVs
LSV MSV SSv
Target region 30°-80°N; 30°-80°S 30°-80°N; 30°-80°S 20°-50°N, 105°-125°E
TLM resolution/optimization time 2.5°/48 h 1.5°/24 h 0.5°/6 h
Energy norm Dry energy Dry energy Dry energy

Subgrid topographic drag, ver-
tical diffusion
10

Linearized physical process

Number of SVs

Subgrid topographic drag, ver-
tical diffusion
10

Subgrid topographic drag, vertical dif-
fusion, large-scale condensation
10

the Northern and Southern Hemispheres and the tropical
cyclone region. This approach not only captures the de-
velopment of baroclinically unstable perturbations in the
mid-to-high latitudes of both hemispheres but also ac-
counts for the evolution of tropical cyclones when they
are present.

Based on the initial SV computed for the Northern and
Southern Hemispheres as well as tropical cyclones,
Gaussian sampling techniques are employed to construct
the initial perturbation fields for the CMA-GEPS. Addi-
tionally, a scaling amplification factor o is applied to
normalize the amplitudes of all initial perturbations, en-
suring that their magnitudes are consistent with the ac-
tual analysis error levels. Finally, by adding and subtract-
ing the initial perturbations to/from the assimilation ana-
lysis initial conditions in pairs, the perturbed initial con-
ditions for the CMA-GEPS are generated.

3.2.2  MSB initial perturbation techniques in
short-range regional ensembles

Due to the resolution limitations of GEPSs, the dy-
namical downscaling method fails to fully capture uncer-
tainties at smaller scales that can be resolved by regional
models. However, meso- and small-scale initial perturba-
tions are essential for accurately capturing uncertainties
in local severe weather. Therefore, the CMA-REPS has
developed an MSB initial perturbation technique based
on the ETKF scheme.
3.2.2.1 ETKF initial perturbation method

The ETKF method is an initial perturbation scheme
developed based on Kalman filter theory. It rapidly es-
timates analysis errors from ensemble forecast perturba-
tions and observational error variances (Long et al.,
2011), thereby effectively capturing uncertainties in
meso- and small-scale initial conditions.

In the CMA-REPS, the forecast perturbation vector X'
is transformed into the analysis perturbation vector X?
through the transformation matrix 7, as shown in Eq. (3).
Specifically, the analysis perturbations at the current time
are derived by linearly combining the forecast perturba-

tion vector using the transformation matrix 7.
X =X'T. (3)

The core of the ETKF initial perturbation method lies

in obtaining the transformation matrix 7. In the ETKF
scheme of CMA-REPS, the transformation matrix T is
defined using the method proposed by Wang and Bishop
(2003). To centralize the perturbed members relative to
the ensemble mean, we employ a spherical simplex cent-
ralization scheme. In the operational version of the CMA-
REPS, simulated observations are derived by interpolat-
ing the analysis fields from the GEPS to the observatio-
nal space (Wang et al., 2018). The variables used to com-
pute the transformation matrix 7 include meridional wind
v and zonal wind u, and the variables for calculating the
amplification factor are u, v, and specific humidity ¢g. The
system applies a 6-h cycling perturbation scheme to
provide forecast perturbation fields for the ETKF cycle.
The model runs 4 times per day at 0000, 0600, 1200, and
1800 UTC, among which the 0000 and 1200 UTC cycles
are integrated for 84-h forecasts, and the other two (i.e.,
0600 and 1800 UTC cycles) for 6-h forecasts.
3.2.2.2 MSB initial perturbation method

Practical experience has shown that the initial perturb-
ation fields in regional ensemble prediction, derived from
the dynamical downscaling of global ensemble predic-
tion, contain more large-scale perturbation information.
Since 2016, the CMA-REPS has adopted an MSB initial
perturbation technique (Zhang et al., 2015; Xia et al.,
2019). This method employs the two-dimensional dis-
crete cosine transform (2D-DCT; Denis et al., 2002) to
filter the initial perturbations from both the ETKF me-
thod in regional ensemble prediction and the dynamical
downscaling of the T639 global ensemble prediction.
Subsequently, through the 2D-DCT inverse transforma-
tion, the initial perturbation fields are reconstructed by
integrating large-scale perturbations from the global en-
semble prediction with meso- and small-scale perturba-
tions from the regional ensemble prediction, with more
multiscale initial condition uncertainties.
3.2.2.3 Conditional typhoon vortex relocation technique

in ensemble forecasting

To more reasonably describe the uncertainty in the po-
sitioning of typhoon vortex centers in ensemble forecast-
ing, Wu et al. (2020) applied the best track data of
typhoons from the CMA and the JMA during 2009 and
2018. They analyzed the uncertainties of typhoon vortex



JUNE 2025

center positioning in these best tracks and developed a
conditional typhoon vortex relocation method. Addition-
ally, they established procedures for threshold discrimin-
ation of typhoon vortex relocation for ensemble mem-
bers, as well as mathematical treatment processes for
typhoon vortex separation and vortex relocation.

By analyzing and comparing the best typhoon vortex
center locations from the CMA and the JMA during the
study period, it was found that the maximum annual av-
erage positioning error was 17.18 km (in 2009), while the
minimum was 11.98 km (in 2015). Given the 10-km ho-
rizontal resolution of the CMA-REPS, a critical threshold
of 15 km was established to determine whether condi-
tional typhoon vortex relocation should be performed for
ensemble members. Specifically, if the distance between
the typhoon vortex center in an ensemble member’s ini-
tial field and the best track exceeds 15 km, the typhoon
vortex positioning in that member’s initial condition is
deemed beyond the range of analyzed uncertainties, re-
quiring conditional vortex relocation. Otherwise, the er-
ror is considered within the range of analyzed uncertain-
ties, making relocation unnecessary. The relocation me-
thod utilizes the typhoon vortex separation technique de-
veloped by the U.S. Geophysical Fluid Dynamics Labor-
atory to isolate the typhoon vortex from the initial fields
of ensemble members requiring relocation. The separ-
ated typhoon is then shifted to the observed position
through interpolation. This scheme was implemented in
the CMA-REPS v3.0 in 2019.

3.2.3  Stochastic model perturbation technique for
subgrid physical processes

The EPS relying solely on initial perturbations suffers
from insufficient divergence among ensemble members
and inadequate reliability. In a complete system, incor-
porating model perturbation techniques is essential to ef-
fectively characterize model uncertainty and account for
model errors (Palmer et al., 2009). Therefore, CMA’s
GEPS and REPS should introduce such techniques to
represent uncertainties arising from model imperfections.
At present, the SPPT and the SKEB model perturbation
techniques are mainly used in the CMA’s forecast sys-
tem, which are briefly introduced below.
3.2.3.1 SPPT scheme

The SPPT scheme in CMA’s GEPS and REPS shares
the same fundamental design principles as ECMWE’s
implementation (Buizza et al., 1999). Specifically, dur-
ing numerical integration, the model integration term can
be decomposed into the integral term of non-parametric
(dynamic) processes, and the integral tendency term of
parametric physical processes. The model integral tend-
ency term perturbed by the SPPT scheme can then be
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expressed as:

ej(te) = fot [Alej,)+ Y6 0P, 0] dt, (4)

where ¥(A,6,1) is a three-dimensional random field with
spatiotemporal correlation features. A stretch function is
introduced to implement a range of custom perturbations
(Li et al., 2008), which is defined as:

el (5]

1—exp (,b’)

PA,p0)=p+{2-

((J/—/J), (5)

where f is a constant with a value of —1.27 and
H=(Pmax + Pmin)/2; Pmax and ¥nin represent the upper
and lower bounds of the random field ¥ (4,¢,1), respect-
ively; and y is a three-dimensional random field with
spatiotemporal correlated characteristics, defined as:

vAo0 =t Y0 S w0V, (©)

where A, ¢, and ¢ represent the longitude, latitude, and
time, respectively; and Y;,, is the spherical harmonic
function, L is the horizontal truncation scale of the ran-
dom field, / and m are the total wavenumber and latitude
wavenumber in the horizontal direction, and a;,, (¢) is the
spectral coefficient of the random field. The correlation
of the stochastic spectral coefficient a;,, (f) in the time
dimension is realized by the first-order Markov chain
stochastic process (also known as the first-order autore-
gressive stochastic process), as shown in the following
formula:

WRIW ®,

(7
where Az is the specific time interval that can correspond
to the integration step of the model in the CMA’s EPS; ¢
is the timescale of the random field decorrelation; and
Ry, (1) is a Gaussian distribution stochastic process that
obeys a variance of 1 and a mean of 0. The stochastic
pattern constructed by the above formula features time—
space scale correlation and controllable perturbation
amount. In the CMA’s GEPS and REPS, perturbations
are applied only to the net tendency terms of potential
temperature, horizontal wind components, and humidity
variables.

Considering the different integration times and fore-
cast objects of global and regional models, the parameter
settings of the SPPT scheme in the CMA’s GEPS and
REPS are different. In the CMA-REPS, the SPPT per-
turbation amplitude ranges from 0.2 to 1.8 with a mean

—At/T

am(t+At)=¢ a6+
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of 1.0. The scheme uses a decorrelation time scale of 6 h,
a maximum wavenumber of 24, and a standard deviation
o of 0.27. In the CMA-GEPS, to ensure operational sta-
bility, the stochastic function’s perturbation amplitude is
constrained to 0.5-1.5. The vertical profile of tendency
perturbations is introduced at both the near-surface layer
and atmospheric top, where physical tendencies either re-
main unperturbed or receive only minimal-amplitude
perturbations. The SPPT scheme can significantly im-
prove the ensemble spread and missing rate of temperat-
ure and wind speed forecasts, improve the probabilistic
forecasting skills of heavy precipitation, and signific-
antly increase the ensemble spread of various elements
(altitude field, temperature field, and wind speed) fore-
casts in tropical areas, which makes up for the lack of
perturbation in tropical areas by SV initial perturbation
technique (Peng et al., 2020).
3.2.3.2 SKEB scheme

The main purpose of the SKEB scheme is to represent
the stochastic process and uncertainty of subgrid-scale
energy upscaling transitions in the model (Shutts, 2005).
The SKEB scheme in the CMA-GEPS addresses excess-
ive energy dissipation by employing a random flow func-
tion forcing with specific spatiotemporal correlations and
local dynamic dissipation rates (Peng et al., 2019). The
random stream function forcing F, is defined as follows.

A
Fy= %S”(/l,go,t) \/AD (A, 9,7,1).

In Eq. (8), ¥ (4,¢,1) is a random type, and its genera-
tion method is the same as the definition of the random
type of SPPT, as shown in Eq. (5); and D (1,¢,n,1) is the
dissipation rate of local dynamic energy. At present, the
SKEB scheme in the CMA-GEPS constructs the local
dynamic energy dissipation rate based on the explicit ho-
rizontal scheme.

®)

D (A,0.n.1) = —kxuxu’, 9

where £ is a constant factor greater than 1, u is the hori-
zontal wind speed, and u’ is the change in the horizontal
wind speed before and after the application of the hori-
zontal diffusion scheme. Based on the relationship
between the stream function and the rotational compon-
ent of the horizontal wind field, the perturbation forcing
terms of the CMA-GEPS in horizontal wind field are
constructed as S, and §,. These stochastic forcing terms
are then added to the tendency terms of the model’s hori-
zontal wind field.
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In the CMA-GEPS, the minimum and maximum trun-
cation wavenumbers L;, and L,,,, of the ¥ random pat-
tern of the SKEB scheme are 10 and 80, the decorrela-
tion time scale 7 is 6 h, the mean x is 0, the standard devi-
ation ¢ is 0.27, and the maximum %,x (minimum %, )
is 0.8 (—0.8). The application of the SKEB scheme can
improve the simulation ability of the CMA-GEPS on the
atmospheric kinetic energy spectrum, and significantly
enhance the relationship between the ensemble mean er-
ror and the ensemble spread of the wind field forecast in
the tropics.

3.2.4 Systematic bias and extreme information
extraction

In addition to the aforementioned initial perturbation
and model perturbation techniques, the CMA’s GEPS
and REPS have innovatively developed a suite of en-
semble post-processing techniques and extreme weather
forecasting applications. These include an ensemble dy-
namical method for correcting bias (Chen et al., 2020),
the radar reflectivity factor for subgrid-scale precipita-
tion (Chen Y. X. et al., 2021), and the model of extreme
weather index. These techniques addressed the chal-
lenges of extracting extreme forecast signals from the
tails of probabilistic forecast distributions and correcting
systematic model biases, leading to notable improve-
ments in probability density distributions and enhanced
extreme weather prediction capabilities in CMA’s GEPS
and REPS. A brief overview of these technologies is as
follows.
3.2.4.1 Ensemble forecasting dynamic correction method

based on subtracting model systematic bias in
tendency term

Current ensemble prediction techniques primarily ad-
dress model stochastic errors. However, under pronoun-
ced model systematic biases, sole dependence on either
initial perturbation or model perturbation methods is in-
adequate to optimize the error—spread relationship in en-
semble forecasts. Following the research on the impacts
of CMA global/regional model systematic biases on en-
semble probability density distributions, an ensemble
forecasting method was developed, applying dynamic
correction through subtraction of model systematic bias
in the tendency term. This approach removes bias tend-
encies from both dynamical and physical tendency terms
during model integration, as shown in Eq. (12) (Chen et
al., 2020; Han et al., 2023).

te A
e,-(ze)=j0 [A(ej,t)+P(ej,t)— Bi(eo)| dr. (12

In the equation, e;(7) is the total tendency, A(e;,?) is
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tlAm dynamic tendency, P(e;,?) is a physical tendency, and
By (ep) is the subtracted bias. A linear bias coefficient is
derived by linear regression and systematically removed
from tendency terms at each model integration step. This
method significantly enhances both the first- (ensemble
mean) and second-order moment (ensemble spread) of
the ensemble forecast probability density distribution,
thereby improving the probabilistic prediction skill for
surface meteorological elements.
3.2.4.2 A new calculated method of radar reflectivity
factor for subgrid-scale precipitation

Since radar reflectivity can reveal the characteristics of
strong convective weather events, forecasters pay close
attention to uncertainty in model forecasts. To better
quantify radar reflectivity uncertainties, we developed
and implemented a new radar reflectivity calculation
method for subgrid-scale precipitation in the CMA-
REPS, as presented in Eq. (13). This addresses the cur-
rent limitation where simulated radar reflectivity fails to
represent precipitation from the Kain—Fritsch cumulus
parameterization scheme (Chen Y. X. et al., 2021).

b
Ztotal = Zmicro +ARcu~

(13)

In the equation, Ziy, is the new radar reflectivity,
Zmicro 18 the radar reflectivity from the cloud microphy-
sics parameterization scheme, R, is the subgrid precipit-
ation, and 4 and b are empirical parameters of the Z-R
relationship for the radar quantitative precipitation estim-
ation. The methodology operates by subtracting the
downdraft evaporation rate from the subgrid precipita-
tion rate, followed by layer-wise estimation of radar re-
flectivity using the radar-derived reflectivity—rainfall
(i.e., Z—R) relationship. This new reflectivity is then in-
tegrated with microphysics-simulated radar echoes to
generate a novel three-dimensional radar reflectivity
field. The new reflectivity fields improved diagnostic
capability for precipitation generated by the cumulus
parameterization scheme, particularly under conditions
dominated by subgrid convective processes. It can better
simulate the radar reflectivity related to subgrid precipit-
ation of a single ensemble member and then improve the
probabilistic prediction technique of radar reflectivity in
CMA-REPS.
3.2.4.3 Extreme weather prediction product

Based on the forecast, model climate, and historical
climate data of 31 ensemble members of the CMA-
GEPS, extreme weather prediction products are de-
veloped, including EFI of ground elements, 2-m temper-
ature anomaly probability forecast product, and medium
anomaly probability forecast product based on the Kal-
man filter bias correction technology.

(1) Ground elements EFI product based on climate
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probability of CMA-GEPS. With the development of de-
terministic and ensemble forecasting for each forecast-
ing element (precipitation, wind, temperature, and cloud
cover), forecasters aim to utilize EPS for generating early
warning signals of extreme events. However, it is diffi-
cult to directly compare the difference between the ob-
served meteorological elements and the forecast output
of the model. Therefore, based on the CMA-GEPS, a
CMA ensemble forecast method of extreme weather
called EFI was developed. The principle is to calculate
the difference between the cumulative model climate
probability distribution and the ensemble forecast prob-
ability distribution. The calculation of the model climate
percentile is a crucial step in calculation of the EFI, but
the CMA-GEPS has less historical data. Thus, the model
climate percentile was calculated by using a 15-day slid-
ing time window (£7 days centered on the target date)
and a spatial window comprising the target grid point and
its 9 nearest neighbors. The daily model climate sequence
was constructed from this spatiotemporal sampling, and
percentiles (1, 2, ..., 99, 100) of the forecast field were
extracted to form the model’s climate percentile distribu-
tion (Wang J. Y. et al., 2014; Peng et al., 2024).

(2) Medium anomaly probability forecast product
based on Kalman filter bias correction technology. The
medium anomaly probability forecast products based on
Kalman filter bias correction technology are developed,
including atmospheric circulation anomaly pro-
bability products of 500-hPa geopotential height (Z500),
850-hPa temperature, and 850-hPa wind. These products
help to better grasp the characteristics of extreme dis-
aster weather and improve the probability forecasting
skills of extreme disaster weather.

3.3 China’s GEPS and REPS and their comparison with
international systems

3.3.1 China’s GEPS and REPS

In response to the characteristics of initial and model
errors in CMA’s GEPS and REPS, Chinese technicians
have independently developed key technologies for en-
semble forecast, thereby overcoming the bottlenecks in
initial perturbation, model perturbation, and ensemble
forecast application technologies. They have developed
an independent and controllable GEPS with a horizontal
resolution of 50 km for 0—15-day forecasts, along with a
REPS featuring 10-km resolution and a convective-scale
EPS with 3-km resolution, both for 0-3-day forecasts.
These systems provide robust scientific and technologi-
cal support for global ensemble prediction, propelling
China’s numerical prediction operations to achieve re-
markable progress and reach an advanced level. The op-
erational implementation of the CMA’s GEPS and REPS
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marks a significant milestone in advancing China’s NWP
capabilities. Beyond daily forecasting services and ma-
jor meteorological support, the products from the CMA’s
GEPS and REPS continue to supply a wide range of fore-
cast data to the TIGGE Center. They also provide core
support for the World Meteorological Centre (WMC)
Beijing and the WMO Severe Weather Forecasting
Demonstration Programme for Southeast Asia (SWFDP-
SeA) website, further elevating China’s role in global
meteorological science. Table 2 illustrates the parameter
settings of the CMA’s GEPS, REPS, and convective-
scale ensemble forecast (CAEF) in detail.

The CMA-GEPS integrates SV initial perturbation,
model random physical perturbation, and generation
technologies for extreme medium-range probabilistic
forecast products. It features a horizontal resolution of
0.5°, a forecast range of 0-15 days, and 31 ensemble
members. Leveraging ecFlow technology (a client/server
workflow package of ECMWF that enables users to run a
large number of programs in a controlled environment),
the operational process of the CMA-GEPS has been es-
tablished, enabling daily operations at 0000 and 1200
UTC. The system provides 29 types of products, includ-
ing conventional forecasts and probabilistic forecasts for
extreme weather events over the 0—15-day period.

The CMA-REPS v3.0 integrates a suite of advanced
techniques, including the ETKF, multi-scale blended ini-
tial perturbation, SPPT, blended dynamic perturbations
of lateral boundary conditions (LBCs), Conditional
Typhoon Vortex Relocation (CTVR), and a new sub-grid
scale precipitation radar echo reflectivity algorithm. The
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system operates with 15 ensemble members and runs 4
times daily, with a forecast duration of 84 h for the 0000
and 1200 UTC cycles, and 6 h for the 0600 and 1800
UTC cycles. The system primarily supports the ETKF
forecast cycle, preparing data for ETKF calculations and
generating forecast perturbations. The system offers 49
types of ensemble products, with a focus on probabilistic
forecasts for localized severe weather and tropical
cyclones.
3.3.2  Analysis of international major numerical
prediction centers
3.3.2.1 Comparison on key techniques and systems of
ensemble prediction

Table 3 is a comprehensive comparison of major inter-
national EPSs. The main technical characteristics of the
CMA are demonstrated as follows.

(1) The SV initial perturbation technique, a core com-
ponent of the CMA-GEPS, has been innovatively en-
hanced with advanced algorithms for perturbation en-
ergy modulus, parallel computing, scaling, and linear
sampling of initial perturbations based on a Gaussian dis-
tribution in a three-dimensional structure. This technique
effectively captures the growth of large-scale baroclinic
instability perturbation energy, significantly improving
the accuracy and reliability of global ensemble forecasts.
Given its high technical complexity, the SV initial per-
turbation technique is employed by only a few leading
GEPSs, including those of ECMWF, the French Meteor-
ological Service, and the JMA. The successful imple-
mentation of this technique marks CMA’s entry into the
global forefront of meteorological forecasting, with its

Table 2. The parameter configuration for CMA’s GEPS, REPS, and CAEF

CMA-GEPS CMA-REPS CMA-CAEF
Model version CMA-GFS v3.1 CMA-MESO v4.3 CMA-MESO v5.1
Horizontal resolution 0.5° 0.1° 0.03°
Vertical level 87 50 50

Domain
Initial perturbation of control member

90°S—90°N, 180°W-180°E
Upscaled from analysis field via Downscaled from CMA-GEPS

10°-60°N, 70°-145°E 10°-60°N, 70°~145°E

Generated from analysis field

CMA-GFS 4DVAR via 3DVAR

Initial perturbation scheme SVs ETKF Multi-scale blending based on
SVs

Model perturbation scheme SPPT, SKEB SPPT SPPT

Lateral boundary perturbation scheme / From CMA-GEPS Blended dynamic lateral
boundary perturbations

Number of members 31 15 15

Forecast length 360 h (0000/1200 UTC) 84 h (0000/1200 UTC) 72 h (0600/1800 UTC)

61 (0600/1800 UTC)
Output interval 0-84 h (3 h), 84-360 h (6 h) 1h 1h

Postprocessing product

GRIB2 data, ensemble predic-
tion products for normal, ex-
treme weather and typhoon

GRIB?2 data, ensemble predic-
tion products for normal,
emergency service and
typhoon

GRIB?2 data, ensemble predic-
tion products for normal,
emergency service and
typhoon

Note: GRIB2 refers to the Gridded Binary Format Edition 2, which is a standard encoding format sponsored by the WMO for the transmission of

gridded data between the national meteorological centers.
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technical level matching that of the world’s most ad-
vanced NWP centers.

(2) The CMA-REPS incorporates several cutting-edge
techniques, including the ETKF for initial perturbations,
the MSB, and the CTVR. These advancements have sig-
nificantly improved the accuracy of probabilistic precip-
itation forecasts in China. The ETKF method is based on
the same principles and framework as the local ensemble
transform Kalman filter (LETKF), which is operation-
ally used by both the Meteorological Service of Canada
and the JMA. Meanwhile, the MSB and CTVR tech-
niques are originally developed by the CMA, showcas-
ing the agency’s innovation in REPS.

(3) The stochastic perturbation methods for physical
processes, such as the SPPT and the SKEB, utilize a
first-order autoregressive stochastic process and spheri-
cal harmonic function expansion. These methods pro-
duce random functions and key parameters that are tem-
porally and spatially correlated and normally distributed.
By introducing stochastic perturbations to the tendencies
of physical processes and the dissipation of small-scale
kinetic energy, these techniques provide a realistic char-
acterization of the stochastic error growth in sub-grid
physical process parameterizations. This approach is con-
sistent with the stochastic perturbation schemes em-
ployed by leading meteorological centers in Europe (e.g.,
ECMWF and the UK) and North America (e.g., the U.S.
and Canada).

(4) Aiming at ensemble forecast applications, we have
designed techniques for extracting extreme information,
dynamically correcting systematic biases, and develop-
ing algorithms that consider radar reflectivity for model
convective precipitation. Additionally, we have deve-
loped technologies for generating probabilistic forecast
products such as extreme weather forecast indices. These

Table 3. Technical status of international major operational EPSs
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advancements provide valuable reference information for
extreme weather forecasts.

(5) An independent and proprietary operational sys-
tem for ensemble forecast has been established in China,
encompassing global medium-range forecasts (0-15
days), regional short-range forecasts (0—72 h), and con-
vective-scale EPS. These advancements have signific-
antly propelled progress in China’s numerical weather
prediction capabilities. A comparison of ensemble fore-
cast techniques and system parameters across various in-
ternational NWP centers reveals that global ensemble
prediction resolutions typically range from 9 to 50 km,
with ensemble members varying from 18 to 51. China’s
GEPS aligns closely with these international standards,
featuring a horizontal resolution of 50 km and 31 en-
semble members. In the realm of REPS, countries with
smaller land areas, such as the UK, France, and Ger-
many, have achieved resolutions of approximately 2.5
km, supported by 10-20 ensemble members. In contrast,
countries with vast territories, like Canada, the U.S., and
China, have generally established both regional meso-
and convective-scale EPSs. China’s REPS has a hori-
zontal resolution of 10 km, while its convective-scale en-
semble forecasting system achieves an even finer resolu-
tion of 3 km. Such a dual-system approach highlights
China’s commitments to enhancing forecast accuracy
and resolution.

In summary, unique technical methods and products
with independent intellectual property rights have been
developed in China in the aspects of system parameters
and construction schemes for CMA’s GEPS and REPS.
3.3.2.2 Forecast capability comparison between CMA’s

GEPS and REPS and major international
NWP centers
Based on data provided by the JMA from the Interna-

Country ~ GEPS/horizontal resolution (number of members)/technology REPS/horizontal resolution (number of members)/technology

USA Spectral model/25 km (31)/ETKF, SPPT, SKEB WRF, NMMB/16 km (26, North America)/3 km (11, key
areas)/hybrid ensemble Kalman filter with BGM, dynamical
downscaling, multi-physics

UK Grid-point model MOGREPS-G/20 km (18)/EDA, SPPT, SKEB  Grid-point model MOGREPS-UK/2.2 km (3 perturbations, 18
lagged ensemble members)/Dynamical Downscaling

France Spectral model/7.5-37 km (35)/SVs, EDA, MP Spectral model AROME-EPS/2.5 km (16)/EDA, SPP

Germany Grid-point model GEPS/40 km (40)/LETKF, SPP Grid-point model COSMO-DE/2.2 km (20)/LETKF, SPP

Canada  Grid-point model/39 km (21)/LETKF, SPP, SKEB Limited area model HREPS/15 km (21)/dynamical downscaling,
physics perturbation

Japan Spectral model/27-40 km (27)/SVs, LETKF, SPPT Grid-point model/5 km (21)/multi-scale SVs

EU Spectral model/9 km (51)/SVs, EDA, SPPT
China Grid-point model GRAPES/50 km (31)/SVs, SPPT, SKEB

/
Grid-point model GRAPES/10 (15, China) and 3 km (15,
China)/ETKF, MSB, multi-scale SVs, SPPT

Note: MOGREPS refers to the Met Office Global and Regional Ensemble Prediction System, and “G” in MOGREPS-G stands for “global”;
NMMB indicates the Nonhydrostatic Mesoscale Model on the B-grid developed by NOAA; AROME denotes the Application of Research to
Operations at Mesoscale; and COSMO-DE is a short for the Consortium for Small-scale Modeling Deutschland (“Germany” in English) Edition

operated by the Deutscher Wetterdienst (DWD) of Germany.
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tional Global Ensemble Forecast Verification Center,
Fig. 1 presents a comparison of the continuous ranked
probability score (CRPS) for the day 6 of ensemble fore-
cast and the average RMSE for the day 10 of ensemble
forecast of the 500-hPa geopotential height field from
multiple centers over the period of 2012-2024. The veri-
fication data mainly include the GEPSs of several numer-
ical centers, such as the ECMWEF, the NCEP, the United
Kingdom Met Office (UKMO), the CMC, the Bureau of
Meteorology, Australia (BOM), the JMA, the Korea
Meteorological Administration (KMA), and the CMA. It
can be seen that since the operational implementation of
the CMA-GEPS in December 2018, its forecast skill for
medium-range forecasts has been comparable to that of
the GEPSs of Europe and the U.S.

4. Challenges and prospects in the
development of ensemble forecast

4.1 Scientific challenges: Spatiotemporal variability of

predictability in convective-scale models

The predictability of convective-scale models exhibits
significant spatiotemporal variability. First, the predict-
ability of convective-scale models is influenced by the
interactions of circulations across different spatiotempo-
ral scales. Even if the magnitude of initial errors is suffi-
ciently small, these errors can rapidly saturate and un-
dergo upscale growth, thereby affecting the predictabil-
ity of large-scale weather systems (Zhang et al., 2007).
The growth of initial errors in convective-scale models
has the characteristics of strong nonlinearity, with the er-
ror growth rate being approximately 10 times that of syn-
optic-scale models (Hohenegger and Schar, 2007). Se-
cond, convective-scale models typically employ more
sophisticated and complex parameterization schemes
such as cloud microphysics and turbulent diffusion. How-
ever, these approaches are subject to numerous assump-
tions and empirical parameters, as well as errors arising
from finite-difference methods and computational trunca-
tion, all of which contribute to the strongly nonlinear
growth of initial errors in convective-scale models (Mu
et al., 2011; Yano et al., 2018). Third, the growth of ini-
tial errors at different scales and their impact on precipit-
ation are closely related to environmental forcing condi-
tions (Johnson, 2014; Zhuang et al., 2021). The relative
importance of initial errors at different scales depends on
the quantity and type of moist convection, with more
moist convection leading to greater growth of small-scale
error perturbation energy (Nielsen, 2016). Consequently,
convective-scale ensemble forecast techniques are facing
significant challenges.
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4.2  Frontier exploration of a combination of
ensemble forecast and Al

In recent years, Al has achieved groundbreaking pro-
gress in meteorological forecast applications. The com-
putational cost of deep learning-based large-scale met-
eorological models is only 1 x 107 of that of traditional
numerical models, offering a new potential pathway for
the development of large-sample ensemble forecast.
However, this also introduces new challenges. First, the
sources of uncertainty in Al models differ from those in
traditional numerical models, and the impact of these un-
certainties on the forecast skill and performance of Al
models requires further in-depth investigation. Second,
the uncertainty characteristics of deep learning models
differ from those of traditional numerical forecast, and
how to appropriately describe the uncertainty features of
deep learning models remains an urgent issue to be ad-
dressed. Third, the physical consistency and interpretab-
ility of Al-based ensemble forecast models remain de-
bated, necessitating corresponding research and improve-
ments alongside the development of Al models. Further-
more, the advancement of Al has brought new chal-
lenges and opportunities to ensemble forecast. The
framework and concepts of ensemble forecast may also
need to undergo transformations in the future. For in-
stance, (1) ensemble forecast may revert to probabilistic
forecast, with the core objective of obtaining the PDF of
variables, which conceptually derives from seeking the
probability distribution of forecast errors. (2) The signi-
ficance of representative perturbations may decrease. As
machine learning models can rapidly generate tens of
thousands of ensemble forecasts, a broader spectrum of
forecast possibilities can be explored, which provides
better probabilistic and statistical characteristics. (3) Par-
tial replacement of dynamical models may occur, as
smaller-scale structures in the atmosphere require high-
resolution dynamical models for identification. Here, dy-
namical models essentially act as effective but time-con-
suming random perturbation generators. Whether ma-
chine learning models can learn and generate such per-
turbations is a topic worthy of further research.

4.3 Operational challenges: Inapplicability of traditional
ensemble forecast techniques

In recent years, operational ensemble forecasting de-
velopment has encountered three fundamental limita-
tions. First, global and regional operational ensemble
forecast is moving toward convective-scale resolution.
Under the convective-scale modeling framework, the
multi-scale structures of initial condition and model er-
rors, along with their nonlinear evolution and interac-
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Fig. 1. The ensemble mean (a) continuous ranked probability score (CRPS) and (b) RMSE of the 500-hPa geopotential height (Z500) forecasts

at 144 (day 6) and 240 h (day 10) from major international global EPSs,

averaged monthly from January 2012 to December 2024. Different col-

ors represent different NWP centers. RUMS refers to the regional unified model system.

tions, remain key scientific challenges in understanding
the mechanisms of forecast error growth. How to con-
struct ensemble perturbation methods is a technical bot-
tleneck in the development of convective-scale ensemble
forecast. Second, earth system models are evolving to-
ward seamless weather—climate integrated EPSs, while
traditional ensemble forecast techniques have been de-
veloped separately for temporal and spatial scales, mak-
ing them inadequate for seamless spatiotemporal en-
semble forecasting requirements. Third, ensemble fore-
cast is gradually transitioning toward earth system en-
semble forecast. Yet, traditional ensemble forecast tech-
niques primarily address the uncertainty in forecasting
derived from the error growth of dynamically unstable

atmospheric systems. The understanding of error charac-
teristics from coupled component models and coupled
data assimilation remains insufficient, requiring the de-
velopment of ensemble forecast techniques suitable for
multi-component coupled models.

5. Conclusions

In recent years, ensemble forecasting in China has
achieved remarkable development and progress, from
theoretical methods to operational applications, making
China a world leader in operational ensemble forecast-
ing. However, there is still a certain gap compared to the
performance of EPSs at the most advanced operational
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centers such as the ECMWE. Currently, ensemble fore-
casting has been intentionally developed to gradually re-
place deterministic forecasting, emerging as the primary
form and important trend in operational forecasting. The
concept of probabilistic forecasting is also gradually be-
ing popularized and accepted among researchers, fore-
casters, and the public. Below, we briefly summarize and
discuss the challenges facing the future development of
ensemble forecasting, which are also key issues that need
to be addressed in the scientific research and operational
development of ensemble forecasting in China.

(1) The ensemble members of global ensemble fore-
casting systems will advance towards convective-scale
resolution in the future. This will facilitate the sampling
of fine-scale features from mesoscale to convective scale
and the estimation of uncertainties in ensemble forecast-
ing on a global scale. ECMWF is at the forefront of this
development, targeting a global ensemble forecast at a
resolution of 5 km by 2025. Higher resolution not only
poses a significant challenge to the high-performance
computing resources of major operational centers but
also raises highly challenging scientific and engineering
questions regarding how to effectively generate multi-
scale initial ensemble perturbations and model physics
perturbations, while ensuring the physical consistency of
these perturbations.

(2) It is important to develop integrated ensemble fore-
casting for global medium-range to subseasonal-seaso-
nal (S2S) predictions. As the sources of uncertainty in
subseasonal and seasonal predictions become increas-
ingly diverse and complex, conducting ensemble fore-
casting for S28S is an international frontier issue. The cur-
rent trend among major international operational centers
is to use integrated atmosphere—land—ocean coupled mo-
dels for ensemble forecasting of short- to medium-range
and subseasonal predictions. The main frontier scientific
questions in this area are how to construct initial en-
semble perturbations for the atmosphere—ocean coupled
system and how to account for the impact of external for-
cing uncertainties on S2S ensemble forecasts.

(3) With the increasing resolution of global ensemble
forecasting, it is necessary to reconsider the develop-
mental positioning and key scientific issues of REPSs.
Regional ensemble forecast requires enhanced spatial
resolutions than global ensemble forecast, potentially ad-
vancing towards sub-kilometer resolution in the future.
Its forecasting targets may also gradually encompass
smaller urban-scale meteorological elements. Moreover,
how to more effectively consider the coordination and
nonlinear interactions of initial, lateral boundary, and
model process multi-source perturbations remains a crit-
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ical scientific issue in regional ensemble forecasting.

(4) The rise of Al technology presents unprecedented
challenges and opportunities for ensemble forecasting.
The essence of ensemble forecasting lies in statistical
sampling, while Al tools excel in constructing statistical
characteristics of variables and their nonlinear relation-
ships. How to effectively apply Al technology to en-
semble forecasting is a vast and cutting-edge scientific
and engineering issue. Future developments in this area
hold the promise of significantly advancing the level of
ensemble forecasting.
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Abstract This paper reviews the development of ensemble weather forecast and the primary techniques employed in themain
ensemble prediction systems (EPSs) designed by China and other countries. Here, the emphasis is placed on theadvancements in the
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userrequirements. Finally, a summary of conclusions and future perspectives on ensemble forecast are provided.
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W R 2Z R E S 1 A 5 4y (Bauer, et al, 2015; 302
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SV; Buizza, 1997) . 3 | 1 Z 7 % ( Breeding of
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% ( Ensemble Transform Kalman Filter, ETKF;
Wang, et al, 2003; Wei, et al, 2006) ., ££5 75 5 L
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al, 2022) . SV 403 544 ¥ERHA L (Ensemble Data
Assimilation, EDA) IR & 3 35 (1saksen, et al, 2010)
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( Stochastically Perturbed Parameterization Tende-
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B 27 A 0 B B g 1 B R RE EAE vE (BGM;
Toth, et al, 1993); SV Hil BGM Jy v #5141 18 1 41l
PR ABHEATRE XM IR 2, AR KINEARTRE
W B B TR AN B 2 P, SV O EE T R S DU 4EAE 4 R
Se Wb R R, ) BRSO B, T LARAF B 4 A
TR, # ECMWF ., HAC, b 480 F o R
SAEG T, S T E RS . Zhang 55(2020)
h TACERWIG A A iR 254 A Rt T — P 455 ESA
(Ensemble Sensitivity Analysis, £ & 821 )
1 BGM W WIME IR ) 5 vk, FHe 2 (4 43 A J& ok H )
RIS R BGM 5 i PR U K P g, T A R
AR B AR Ak I B AT U R G A RN A R RS
WA . BGM Jy ik AR A HA &% fal S A/ i it
SSAS, R 55 B 0 32 BIRG . A, NCEP i
KT HEA A ERE L (Wei, et al, 2008), H5
BGM J7 20, (H AR Bh 45 0 H2 3 1 52, ] LA/
ARG Z IR A 6 o

SV TE 55 4 & Bl h U T B KT, {3 SV
J5 3 Ko AR 2R A R BT LR T B, A BE T 40 S
et B R 2, PO T A T I Y
— R, Mu 48 (2003) £2 H 9 CNOP J5 vk 4 11 %
BT AR M R, RES R s AE MR K
SRR EEI B, SEAR SV AYJRBR . Duan %5(2016)
¥ CNOP #i JE 2R sh A= 0], & J T 1IE2E CNOP
G WP AR 3h Ik, BLAE & KU A2 1 4 & T4
WIS 25 T DI H L #8578 T IE 38 CNOP # SV
M BGM 71 7= A= (W00 4 4t 2h e % 5 o i 3 42 1=
& WUBE AR T B 35, T 2 5 U B AR Y 4 6 Tl
4575 (Zhang H, et al, 2023 ) .

FEXXHR AR E B L /N R R 22 Py
K52, BR S (2005) £ 45 T —F B X X A 1
E i B R G2 2l FR AR Y 4R 5 TR B 4
B IRES SY RS, Wi ARFER SRS
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Bk SR T S 2, SR O0) T A DX B, B R
ARG B EEE . YL iR, A 3E 9] dh Pt 3 .
XA TS DU R wE P 3h J7 2 1 BGM B SV 1Y
ANF Z A FE T, B S 0 A ER O X {E, M
Pl 5 X i iz 2 A G AT E PR Bl PR g K .
2.1.3 Mt ZRERGERZENVIGI

B & BUE TR 73 B R iR T, 2 R
TR 152 2 TR 038 g 30 52 X6 A5 2 701 41 2 15 19 5% i)
T B A B DX A S B = KRB ) IR
SR 2AF B, M08 1B R 7 A5 21 vl i6 4 3h
ME LA A oy /N ROBE R 2245 2, — 28 p E R TAE
FAR T —FOE A B S B T — IR A
B J57 ¥ (Wang, et al, 2014; Zhang, et al, 2015; FE
SRAE, 2017; THIUAREE, 2018), 1% 7 2R FHUE I A3k
SR 7 NI IR 5 Tl i SR O ROBE B 3, A4
BRAE G P 4R OR ROBEHR 30, 6 W R G AR 1S I
Y. IRG ARV IR B AT DUAR G 1A 2R 4 A
HH R RORUBE /N RUBE B AN 2 M, JF LA 5 23k
A TR R G4 B A 030 FEHE 30, DA R B 42 =
XEUR G TR R AR TR BT . WA, M ESRE R
(M3 4 20205 Liu, et al, 2024) fl H & L £ T
(Ono, et al, 2021) %= F X I il 4 Bk 45 A TR A L TT
& T Z RO A S ) s WAL 3 7 e oE, 153 T A
B0 22 NOEE RN VAR S A3 K B iR B, T
T A5, S W) I 158 2 1 22 I AR AR AR AR, 4 T
DX Bl RN 4 R A S TR AR

SRS, Al [F L 2 B 52 22 B 00 1R 48 3 B 1
1) 46 5 TOUARONE J3E % v (HL B IS Al /)N, T 6 T RS
R 3G FIR Ak TH ) 1R A0 B 1 B S TR B R e
FALFRHRAR B WEAEK (Pauluis, et al, 2013)
22 EBRARERREXMZGZELR

R0 4R A TR 5 2 B TP ERI R P 3N, &
M1 B 2 I 58 AN TR A, 4 A 10 i R B S R
W0 AN 5 PR T R 23 A7 A 15 RORE O JR A ), [ A5
TR 25 B & 4 B & W 22 (Palmer, et al, 2009) .,
I, A S EEAE AR A T b 5 SR 2R 22 BB A B
R o 8 AN B E M o B KR 22 R IR TR AL
XoF ) B ask R RN B 7 ak R RN R 7 AR A R 22 (BB
BAE,2011) . HAT, AW ARG S B R2E
TR 43 A 5T R U0 I A8 2 A o 7R B AN T A A 3
2.2.1 Al N i AR

E 5 — 455 ACHE S P 3 2 A 6] ) B 2 50 fe 7 %2
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2H A R A AL ) P R 1 AN E M (Houtekamer,
et al, 1996), iR B Z WA G E . %Ir &7
N F I R R 2 BRE A Bl R 5 A
[ X 48 5 & T i ( Stensrud, et al, 2000; [ i 4%,
2003; & B K AF, 2013), DL 4 A T B 15 0
g IR Tk EZRERAHE
(Krishnamurti, et al, 1999) . £z ik aEIER
[ A X T4 0 R G 22, 4 G LD 7 AR R 1Y
HORE, $2 8 T B R A B X3k A A RUBE R
A WU R B (SRR AE, 2017) . (B2, T2
BT R B 2 W 5 58 09 4R 5 IO R AN ] g A
A Y R, e LY e — 2 HE DL Rk
DA AR SR, IR T SR AR v Ak R AR 5
iz B GUA TR (1 52 Z4 FE E (Berner, et al, 2015) . P
I, T A R AR T B 0 R SR T A i
FEr R B kAR T 2Rk RE

2.2.2 A RSB T S BN E TR

BEHL A BRI B0 05 ¥ 0 24wl A ) B R
ST BT ERRE M EW . I LA
SR AR 2 0 2 R B DG I (W ) 3L 4 )
SIA—BEAL AR B X AT P 3l , TR AR
B A0 E R . R 3 O R EEA AL
Y 2 Yy B 11 3507 12: (SPPT; Buizza, et al, 1999;
= H A, 2016) . i HL3hRE AT ik (SKEB; Shutts,
2005) F1BEHL S £ 3 )7 2 (Random Parameters,
RP; Stochastic Perturbed Parameterization, SPP; [
TEE 2003; Bowler, et al, 2008; 18745, 2013; Jankov,
etal, 2017)%

SPPT J5 %8 /& I H #5173z 0 BE AL W) B 4K 36 O
Be, FIUES L 25 b Bt 2 91 W 2 3850 43 A i BE HIL
H3Re LUK A 1y 3L 5k 2 1 2 B AR ), I 0 A [R] Y
o 1] SR AN [ GO e S48, 48w 1 5 LA ) B
J3E IABE R AR 8CR (LA, et al, 2008) . H Al SPPT J5
58 2 [ PR B T o0 B HH B 2 1R 4 G RS =X
Pt 3h J7 ¥ ( Charron, et al, 2010; Sanchez, et al,
2016; 32 K 4%, 2020) . {H SPPT J5 & A7 1E — 2Lt
S, TN B BE AT R A X2 ORI b 2 38 1
22 Ffig i N SFE KRR 0 T AR R S e
(Leutbecher, et al, 2017), 3 A% (2016)fEH EHX
% J&) (China Meteorological Administration, CMA )
XIGEA T RGE T T A SPPTH A, Bkt T
RGO AR 5 B BOR o Qiao %5 (2017) $2 i T

Acta Meteorologica Sinica S5  2025,83(3)

— i 3 A KRR AN W 1 B B ML Sh AR S
BAAG 0] 7 1%, 1% 7 22 3840 SPPT Jy i AH ] 9 Ji 2,
LA FH 38 V1 008 08 2 o A BT B B 3, IR HTKF-Fi
T F R Ak, DL OR AR 76 5 D) A8 X B4 3 i s e, A
ACERCHE T I TE AR B AR A I 55 R O . ALY 4
A TE Y o R 09 S A b A K B (Qiao, et
al, 2018),

SKEB 77 %8 f& 5 X BU{E A58 2 51y ) HE B A7 48 i IR
FEAEAE 1) Bt 2o BE AR HRCR 2%, 38 i) P AILAE 2 VR b AR
FRCRE £ X AT 3 BE RO 52 . SKEB 7 R 7E &8k h
W45 & 4R F 45 2 5 i (Berner, et al, 2009; Zhou,
et al, 2017), QLI I B H T D00 i R 4R 5 il
(BEULIR%EE, 2017; Yang, et al, 2024), 3 K4:(2020)
KB, £ GRAPES & BREE & lil h Ik 5 M SKEB
J5 2 F SPPT J5 %8 A] A5 R0 ey AT Hb XY B9 HICRE &
SKEB J5 Zfig i & t Kz gh i ] BEAAE A FR e
(Berner, et al, 2015), Ml 51 & 5 K 1 4 & 2 8%
R 2SR F 44, (0 T SKEB 7 &334
B b SPPT J5 38 K, HL 761 25 #0% A by oy il i 22
J5 T JF AN B4R, SKEB J7 58 i A0 {5 2 Wi FE AR, H AT
ECWMF 2845 1 11205 38 (MR M S, 2021) o

RP/SPP Jrik X W M RSB i S h A
FE A 1 28 30 B 22 96 2 R AT BE ML 3l ok SR AE
A B 22 1 (Bowler, et al, 2008), 83 T /MR
JERG AR TR AT 2. IR RS T
LA WML TS, HATE—E A EE, SEE
SRR — B 2N KA KAk (Jankov, et al, 2019) .
AR, WF SR % B SPP J7 vE 8l AR = % Uik 7 28 FAT
BN FIZ TR TS ECE m R (R A F,
2019), {H | M A Y B O A 2 (Leutbecher,
etal,2017).

B 73X 3 FhE WL AR BE ML B B %L AN
2 B e XA XA T T R AN i R TR T T
AN 6 0 i e 7 28, an % i i Bl AL fik & (Stochastic
Trigger of Convection, STC; 228 5%, 2015) . i1 5
JZ 1 ¥ Bl ML 3 77 %€ (Stochastic Boundary-layer
Humidity, SHUM; Tompkins, et al, 2008) . % & 2}
W % (Vorticity Confinement, VC; Steinhoff, et
al, 1994) | "F/NRE ML L8l T %8 (R 5, 2017)
45 4B 3K R G e 25 RN B B 22 04 A58 =X ) 48 30
i (ER R 5%, 2023) 58 . Zhao %5 (2022) #4137 B
BUHE B0 2 804k 7 S8 0 1 T B A S804 30, A il 46



Mr . ERPURIERE. SRS

SR BT, T VTR G BEMLAE BT 3G & KR BE AR S
P oA 22, T SR B SRR 2 0 1) ) B AL G
SR ] DL Z AN . SHUM JF E & 17 #a
Hiy XA 5 R R 25 1 — BobE, RN TS
- 34 TR IR 25, w0 T NCEP & Bk Bl il & 4t
EnKF-3DVAR MR & ¥R R e . VC 5 i
N T NCEP &3k EEA Wik R 40, K T W 42
BB . 4568 R G0 I 22 FBE P 13 25 1 81X
00 1] B2 Bl kN TR S R G 2, W H T
CMA 2R GHIMAR G T
2.2.3 Al R 22 B K 1 AR L PRI

L o o A AR AT 05 2 1 K I IR R M AR A 2
MR A BERAE A T I 0 R AR . Wang 4
(2020) #5511 A Ze 1 e A 2 854 5l (CNOP related
to Parameters, CNOP-P) J5 ¥ i FH T GRAPES, FF
JEE X I RBE B A TR G, X X 9L )2 1 Y R
B TR A T B R B R, O HLTE S T R A
R 7K 104 5 T A S 0 AT RE Y TR B TS . Xu %
(2022a) >R H E 2 M 58 38 A7 5 10 5 J5 2 (NFSV, 7R
Hl CNOP-Forcing, CNOP-F; Duan, et al, 2013) f#i
TR [ ofe AR iR 22 (W 25 B 52 i, 4F SPPT #i3h |
BN B A R E 5K B NFSV R 3, T4 b F24iF T
AN B 2 X5 X I R BE 4R G TR 09 B2 1 (X, et al,
2022b). B4k, Zhang Y C %:(2023) E—# NFSV
o1 J& B ) B 3l 1E 22 T 25 ), K J@ T 1E3C NFSV 4
G R B O ik, N T S KR B ) 4R A T
%, 3545 7% SPPT F1 SKEB i B =5 1% 3 2 15
JEHE Ry £ KPR o 35 i ok A 1 T 48 418 T £ T
EBER

gi LTk, 28 OR 2 P B R A A A 3
W KRR AR M LS BT 5
O 7% T 32 T e Y K, BB ML) BRI 3 O vk 22 B RO
i 22 %) TR, (LA B0 Bl AL oF 25 K% BE BIL IR 7 Y 1
25 M G IRUBE Xof 4 B 3 S o v A AR R M R BR R
WA EATY SR T EER AT
23 KEEMBRAHEREDRELIERGE TS

EATMARGEAM T KEEE 5. HH—
2 M T AH L, 42 6 AR BB 6% B A R ok KA PT g
R 25 0 A S8 43 A B T AS At R R A, 4 W g R T
iz PUE B R AE, 20105 =S, 2019) 6
W E A B Ja AL BB R, X 4R A TR o A
ORGSR RS, I 4 IS A T4 A 0 8] 1Y)
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AHALOG £ L 22 57 AR o 75 2 2 4R 5 T Ak L T Ok
1) B AT 55 (Williams, et al, 2014) . 4R[S TR
Ji A R R 3 B A A0 AT R A B R AN E 1Y
BER PG R . e 1T B R G R 25 . Qo] AR
B TR A 6 2 v AR AR A g KRR A B 5 o
2.3.1  FEFEA W BR TR B

4 F ¥ (ensemble mean) FIEE A Fil 4% 2 Bl
(ensemble spread) /& FEAR K E S W™ . £H
EBRERE S T ah R —RE B, AP
Phash U8 sl 4 G B B A AT B IR 3R, 4 AR 1
e, B il TR AR, G R RE I Ak
Uiy R B TR B8 AR R A S TR AN A 1k R
£ B BB T T AR A O Y Y U B iR 0 AR
Pro B A LR S B0 5 0 R 3 0 8 7 22
(Root Mean Square, RMS) & &, 0] H 4% 1l 52 [
SRSE 18137 1 BE S AH OC % %X (Anomaly Correlation
Coefficient, ACC) V¥ {H i . BHEE — &’
JE AR A B 1, — ik, B /N, B
o H T 85 v, TR B s {H R B R K, PR A
TG — AR, T vl {5 BE A — AR

KA LR MR A5G B~ 5, 8
XK AR KA R R E R TR [F] i TR
HER, ARRIER R AZERW TR, WK T 55N
>1 mm/d. >5 mm/d. >10 mm/d. >20 mm/d, 3%
5 RS A R R E RN IR R . AR KR
T3 — MR U T A e R — SRR IR
2, HRTA R 5L P TR 9% 45 (L 2R 2 i 7 R — 5Kk K]
o MR, A5 E L 1Y S IR BE R B e T A 1)
AIE R, R A bR R R

ARG T 43 7 77 b 2 FH 2R 25 4 #r (clustering)
5 U TR AT R 240 Y, AT LUFR I [ 2 40 7
i, BB A EUERERELE FRGERE
% AR (tubing) o 8 R AR, AT LA
R L, RS A FTRE R AR R AR . it
A, B WP (plumes charts) | i 55 &l (spaghetti
chart), FH 4017 JE FLXF 500 hPa 3R i B2 4371,
a5 P SR A R A E 15 B .
232 HEAVHRARGRZEITIE GBIk

B LR ARG TR R G 1R 2 G A BT vk ]
PLAr i B AE S 5L i3S (Mylne, et al, 2022) .
ZRA JE Ak PR 5 58w BOE H AR AR e i RR E 1Y
RE S 53 A5 JF X H S HGH AT 40 A 1A, e 58X
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H 41T (Ensemble Model Output Statistics, EMOS) .
DU COF- 2 (Bayesian Model Averaging, BMA) |
U1 - H B¢ A 4% % ( Bayesian Joint Probability, BJP)
S AT B XN R A B R R T T AN IR A R
AT BT IR J5 ¥, A X AR O Y e oA L &
ORI =Tl SN i I LD O T SN o7 TN 2 O 5 Q)
T 43 A0 R T T 43415 58T i it o0 RO 4R 5 T die T
TE AL B 4R R O T R v A R K O R A0 i
KBRS (11, et al, 2023) .

Ak 804k )5 Ak 3R 07 1k To A i B bR AR A
O, AR LR R TG . H WA AE S8 T ik
A0 45 43 7 B 55 325 (Quantile Mapping, QM) | #ii %
VT fi¢ ¥ ( Frequency Matching, FM) | i 3 JC fi¢ 2
( Probability Matching, PM) . & W bt 1T 1F &%
(Member by Member, MBM) | il A 7 15 . %
43 Ai [\ 3 ¥ (Isotonic Distributional Regression,
IDR) 4%

(] Bsf, 3 3k 2 5 22 R A R AR R AT
G T, KT B TR 22 40 B Y AR
B RR SR FARERES Tk (B €45, 2013;
Zhu, et al, 2021) . 51 A Sh I 2T A9 AR (Zhi, et
al, 2012), © 8z B H T R A5 L IR BRK
WEEFHRITIEH o o 1 BEAIK B AR &R 48 Bidl 9 00 &
RS I 22, 45 10 1 22 Bl 6 T 23 [ RRAE 19 42 6 Tl
Jo b BT L, AR L B RGEE L T H AR
SYITIE ¥k (31, et al, 2020) %5,

VT AR, AL 2 BOR DLH 5 R AR v Fr s
BEVERE T 2l o BEALARAR . SRR S AL, 5 B b
Z Mg KB ENCIC M2 M 45 U-Net it 48 X 45 46
TR BE 2 2] SR AE R Wk iz N T AR A TR
JE AL B R Y, B T A RSOR (B R4, 2020,
Wt 4, 2022; Lyu, et al, 2023) . 5 [E I, BHL 58
B SRR NG MG, IR A P
) -geit gk, Dt — 0 4R i AR A TR T
R R G R 2 G AT AN A S5 R
KL AL AR G B 5 T 1 (Mylne, et al,
2022) .
233 BTG R TR (5 B S
T ARG T v AR OB s K AR R
F 5., FIH ECMWF 445 1l i 45 SR 57 1 A o P 41
¥8 % ( Extreme Forecast Index, EFI; Lalaurette,

2003) . HHEBCHRAE S 4 B S5 L1 BB 40

Acta Meteorologica Sinica %4 2025,83(3)

SR A 2R AR 3R 00 A 0 3% 2k 25 S, OB
R, 0 P A i 8 A A BT, R R i R
HE B4 AT B T s, O A g SE PR S B o R R
AUREABOR . NCEP Wk 47 17 2% T EFT Ao K <
W5, Guan 55 (2017) & i, HF NCEP 23R4
£ Wi i EFT 46 06 56 [ 2013/2014 4F 4 = 3L 1Y
W i 3 A FRRE i AT U R SR A — 5 19 v 3 T4 g
Fio BRTHREE . B, 10 m RS H HL KB E L,
EFI 45 %04 7T W T4 i 2 8 CAn 3 i A RL0E gD
# 2K IR 5 % 12 W i (Tsonevsky, et al, 2018) .
EFI 45 %5 b 9 il b e w0 1) R v 3 45 T4
AN R Z NI RURE DL B Rk 2 -2 R AR S T
# (Dutra, et al, 2013; Raynaud, et al, 2018) ,
CAH A DEFEGE T EFLREC(E FLA, 2012; X #k
55, 2018; 32 ©AE, 2024) . FI I E G R 4 R AR
4 U IF JE BT EFT By Al o R ST i 0 i F o 3
W, EFT T o [ ot A R 55 40 o 54 g K 38 BAT — 5
ARSI RE 1, A7 s 1 h S TR 1 o

2.3.4  KEITAL T

A TR B HETE S AT REEE R R Bk h 2
R, XML TG WA I 5 VA 7 1 i R4k
KB M SEFE . Wilks(2011) K Jolliffe % (2012) i)
FAEST B A T SS TR R IR AR 5 T, W T
iff 5 T TR L HE 3 T R S 1 TR ) 4 28 % v 5
il o XF T AR 2 B A AR 5 DT 0 B i P TR
H BRI 8 b 45 2 1% 2% (Root Mean Square
Error, RMSE) 175 [H] A ¢ REUAE o 76 % T4 19
A 56 5 T, A DAL J7 ¥ A 4 Brier £ 35 P41
(Brier Skill Score, BSS) . i £ Fk f % 4% 75 ¥ 43
(Continuous Ranked Probability Skill Score, CRPSS;
Hersbach, et al, 2000) . AJ §EPEHIZE | AH X AR RHE
(Relative Operating Characteristics, ROC) ] £& X
K AE 2 B A (Zhu, et al, 2002) .

T AT T T, S A B HUE AN Talagrand
G341 SR A R TR AR SN 0 8 PR R G REAR bR . R
i F “ B U -i% 27 (ensemble spread-error) A 5¢
RZAKVEAG A TR R G0 1Y AT F4R P (BUFR spread-
skill relationship), {H 52 PR 2 5t 38 #2300 KBS L,
JE 2 7 E BB OK Bk b (2230, 20015 252 55,
2009; Su, et al, 2014) . & ALA B & P, 38 R H]
bootstrapping J5 ¥ (Hamill, 1999), 3§ F 1% 2% X [A]
TRV EAS X HE . b, Torn % (2008) #2111
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£ A U 4 B ( Ensemble Sensitivity Analysis,
ESA) 751, LATPAS T4 25 S % 4 1 4% 1 sl H Ath
A S NE A B U

Su &5 (2014) 42 7 1 BRI AL A 36 7 12, X
IR FE AR 53 AT T 28 MUINA . 7 B K T 4 5
S, — A S S B 3 [ ARG 6 v BRI
PEAG A B, Ji 5 (2020) #F 5% T % Method for
Object-Based Diagnostic Evaluation( MODE) 5 4
B AR F ARG G W 715, R I FLAE DA R BH K
T 1 2 1) 25 0 e AE T i BAT .35 % . Chen 4%
(201838 1 “ Pk — Bk RUEE” Jr ik, WhoE 1 VL E M
T R 7K T 1) 4R B 1O 5 T R 22 A 25 ) G &R
7R T AN TR R K T o7 5% 2 X6 T4 e 1 1Y
M LA, AR5 (2020) 52 18 T HT A9 B DT A 45
b
MFC) F1 AJ 8 4§ 7 {8 2% 45 %4 ( Predictability Horizon
Diagram Index, PHDX) . MFC £i4 % J& T il 4t 1%
25 FUAS Tl 7 M, 2 1 o 9T 41 M J3E B9 38 46 A5 s PHDX
I — 2 28 ¢ T 3k 2 T A 4 IR ) 6 28 ) R R o
ARSI, 5 B4 T L S e TR A L Y T AR R A

e L TE A R, SRS TR A 56 T VT o0 A0 T
I REZ BN S H M . a0, 78115 BSS i,
SRS HT A AR AR AR B, T3 AT RE S AR
fii (Hamill, et al, 2006) . Ak, 45 50 K 1 A 8 &
RIS 2% Wk 2 S 0 A 45 R, R R TE R K T
AR B8 b (Yuan, et al, 2005) . B2 & 4 PR 46
B TR FOULIN B4 A W7 K T, B 45 TR A4 A 46 D7
PR TEA R — DR AL AR AL

3 HEGES BRG]

3.1 RH/XEBEEMRAZLRAIE
3.1.1 R s S ik R4

20 22 90 4R AR, F R L 0 I i ke 4 Bk
AR ARG (2N R, 1997), T 1996 4F K FH AT
[ W S T EE ST T T63L16 R REL T A S, &
AR 5L 124, WA K 10 do 1999 FF &R T
BT 4 S T B0 T106L19 23k HE S IR R 458
(ZEBEAE AR, 2002) , B4 TR AR 51 32 4>, TR BT 2L
10 do 2007 4F N T 5L F I KB L) T213 &
BRAE G Wi R4 (AR5, 2007), £ & W4 AR 5
154>, TR 10 do 2014 4E7F T213 a0 Kl F
FH R T639 H 4 HlMl R4, 1 KA T E 4L 4 Wit

i Pk % (Measure of Forecast Challenge,
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55 258 0 R T B AL 4 B Ao AR 1) 350 3h O R
AR 3 GRET 48, 2013) 6
3.1.2 XEES TR RS

HE IXEUE G PR RE R R G T 21 2
¥, 2005 4F 5 T MMS #8120 | X 36 45 & Fl 4z i
5, B BT Y S A B 1 4 3 ) 1R e B (R 45
2005), HIF R 2 Y L R | B ALY BE S B0 B A5
55 (B R 55, 2003; 4 0 R 48, 2006; T = 5,
2007) . 2006 4 B K4 03T WRFE #1501
TN Y I /B PO kel SO
2010), @7 1 A DOl ROBE 4 & Tl R 40 (b i
4:.2008), 2010 4F 11 H 15 HEE# b 55 1Lis 17, &
GoK o BEF 1S km, 15 N EATIREEAR, A Kis
T4,
3.1.3 GRAPES X/ & EREA TR RS

GRAPES # A& i H AR 7 A F 0k 88—
FREIH KA IR = (BRTEHE S, 2008), H 2005 4
I3 GRAPES A WiRkBE AW A . HEAL
Fl2E B 5 B AH 4k R 3 R B v | RS AR R UK
SUEP TR T GRAPES X4 4 Wl £ AR F1 &
Get ot (RMESE, 2007; HARLLAE, 2008; 427K B 4%,
2011), #57 T GRAPES XA T Z4: (GRAPES
Regional Ensemble Prediction System, GRAPES-
REPS) . 2014 4F R HIAE & A8 ¥ R IR 2 08 i W (H 3R
AR B E X84 A TR R 48 GRAPES-REPS
1.0 52 Bk 55 4632 17, B 40T WRF XA A& Tl
ARG, MO E R ARG ok 55k X 4R A TR &
e, MARGK Vo B 15 km, G B G 15 15
2015 FFIZ R G IWMEIR B Iy R 2 NEIR A
WAL 80 7 (Zhang, et al, 2015), Hoip KRR EEH)
HAE 15 B i T639 4 BREE & Tl R 48 il i 35 K AR
PR, Th R EYIMEAE 3115 2 i GRAPES X 5
A TR R 4038 o 56 AR He R R 2 B Oy A5 3,
GRAPES X IR 5 it 7 G2 9870 2.0 big; 2019 4F
9, bfi % 5T A3 5 ) i w0 48 B 0 1 (R KA 4%
2011) ) GRAPES 23k & Wil R 4l 55 fkiz
17, GRAPES X3 £ 45 il i 3 4t i il 340 540 3 R U3
H GRAPES 2 3K & fiilk R B ¥ 1 2 A 1
T639 4 ERAEA T, [5] 00 (4 3l 4 A Fn e X 4 sl
BRSSO 55 5T, 55 RGETHH R 3.0 Wi (B i
45,2020)

GRAPES 4 Bk £ & Fil 4l (19 & J'é iy T 2008 4F,
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HETTRE T ARG 28 R /R 28 7 2k (S Ak
4:,2008) BF5E . BfiFE GRAPES 4Bk DU 4E 75 43 [6] 1k
HARM KR, #F& T GRAPES % 5 [ S W {E# 2hH;
R (ZERRFTZE, 2019), 2018 4F 12 H I T A F 1024
B4 3h B 1 GRAPES 43k vh A 45 & Fil4l R G s
553817, AR T639 2 BREG Wk REE, briki &
BB RSE B T R A 32T s Ak A X AR A T
il 55 R 48 (WRiR4E, 2020) .

1E R AFE GRAPES #E 20 A 52 F2 1 7 i, W98 A
BOAE [ 5S4 b0 T213 B T639 4Bk v 1] 4 4 Tl
AR A 2 P A S F 5% LAt |, 3£ F GRAPES X
HAESWMARGEMERKES TR G #HIT T ZH
B TR, 2y RA A ik
(Multi-Physics, MP; {57155, 2006) | BEALAY) P i
TR AW 5] 4 30 5 35 (SPPT, % H %%, 2016) . BEHL 3 fiE
#2275 ¥k (SKEB, 2 K4, 2019) MBS 50 3h 7
1 (SPP, 8L B %%, 2019) . 2015 4E, SPPT J7 & 1E
GRAPES IX $# £ & Hl it & 4t 3K 15 e 55 1 A
2018 4F, SPPT il SKEB J7 % #£ GRAPES &8k A
Tl Z gt b Sl 55 1 (BRiEAE, 2020) .

2018 4 DA, R &L el ik T G SUNE A S 1) A
. SV-EDA R AN . iR ol 7 & CEIRE S,
2020; F{E1E5F, 2022); 5 F GRAPES-REPS, fiff5¢
N GUEEXTRE B 3 AL B I R T BE L 2 5k
B(IRBUEL A, 2019) . F5 44 5 I e 5 A6 (52 EURk
4, 2020) . ik &R T B 3% (Chen, et al,
2021) ., 25413 R G dm 25 A0 B AL 15 22 04 A5 T )
Yo zh (el T 4%, 2023) 25 ol ik TAE

2020 4F LIk, JF R T X i RO 4R A BRI AT -
F 58 A B 3 T GRAPES-Meso 3 km *f i N 5 =
IR T Z R sh Fpn ksl 56, an 2 RER)
P A (SRS, 2023) , AR MR A 48
B 45 4 B ALY B 3 A8 i B IR B (X, et al,
2022a,2022b) . 7Y 3 km KR S FUR L &
gr, fEAU IR A T AMIL W is s & L B W aE 2 45
KIG s P2 R H . A& B “ WMO #fF55 7R {53 H ——
BT iz 23 % 0 RBE B A T4 S s T F R 3 B 7
TEATN A ST T A AR A E 05 3 km 2Z AR XL
FEEGTIMAG . ZRS T 202345 H 21 HIEX
B AN S5 3B AT, R U ) S A PSR AR AL T T4 1Y
WERAE B2 A B kR
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32 HEEEMKRAZEAR
3.2.1  &ER/IXI— R 2 ROE A & ) a4
EIIES TN

Al S5 ) i (SV) WIE A ) AT A 28004 59 4 B i 22
FE FE AR AN W 3 R s A9 3 B3R 25 1E BRI
HUBFRIE . CMA 2 BR TU 4748 73 2 G0 Kk R () 4k 1
(Tangent Linear Model, TLM) F1¥ ffi#% =5 (Adjoint
model, ADM) & CMA 23R4 Wil SV L sh i A
MBI 58 R A R AL T 25 (XK A48, 2017) . CMA
EERE AWM KRR E RS SV UIMEIL TR £ 2
FH 4= BRI 1 Hb DX TR e AT - ) A T AR PR
UL, BRI ECE A BT R R AR .

(1) #At A b IX 25 S ) i 108 58

CMA 43K 47 5 ] et 2R it o] U9 45 2k e AL 4 50 1]
55 ) 4R G Bl 1) R LG AE Y SR KAk TR, X
(1) R

(E"'L"P"EPLE™"*)x(ty) = A’ x(t) (D

A, LJE CMA 2R U 4E AR 43[Rl fb 3R 48 h i U1 4k
PEA S, LT 2 X5 I i A B AR 2, E R A o 48 3 KD
W RL, x FoR A S, A XN A FE. Pt
POV, HAEH 2R HAs X Z M 4 5 ) s P 3h
BWE R0, WD) AT UL, 520w a7 5 1] & 454 1 P 2R
A3 pi: (1) a4 3 K/AMER (E) B X
() WIZAPERI (L) AR (L) RS, E25h
A B R S B T B AE AT (3) P LA
(L) 11 Aif S A REA X (L) 1] J5 09 B3 B ) B2 (e
DA 1] ] B )

CMA 4 BR AT 7 In] 5 R H] T 25 SR g 5 AL
OB (X gk B4, 2013), & CMA 4 Bk TLM Al
ADM 1Y T fig 5 —— K-V Ko & (u, v) o 0300 T
(). e sh B WIE )R sh & (] R
Frw v () (7)), BREEBL(E) MITRAR N

N A

,orcosgzoc,,Tr (@) + O cos<,z;c,,Tr ((H/)’)z)dV
0, s
(2)

Ao, 855 A7 [ T P52 R R 4 5 ) g (Kinetic
Energy, KE) A, J5 I Z FIZR /R L8137 fig (Potential
Energy, PE) B, H 255 3 TAISE 4 15 4350l s .3
£ Be B 2 A & R B T & AR 1 5T R
dV = dAdedz, 2 HIE 3B B AR A5, AR a3 R FR i X
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BRIMAR AR R TP LR L, ¢, T2 KW E R L
Mo T 6. ILFp s MFRRSHIRE . S50 .
SN IEMSH R,

BT Bk CMA 2Bk SVITE A, RA AR
3 P AR TN AN [6] g A B 8] R) B o ST 3 AR [R] REE
M SV. B 62 KRB A 5 0] & (Large-scale SV,
LSV), HAK P43 3R N 2,50, e At ia] [a] B 4 48 h,
KT 2 LMY B B T, LSV EEH
T R AT E AR B . e R
7 5 18] 2 (Meso-scale SV, MSV), H/KS-43 3K Ky
1.5, B IR 6] B ol 24 h, R T2 S Lttty B
SRRPEATIE, MSV EZH TR o R A
FEAF B o HeE s /N RUE A5 5 1) 5 (Small-scale SV,
SSV), HKF2r 3% K 0.5°, fe it 8] 8l & >~ 6 h,
SaipiF A S AR, sSSV A AR EIA T
WAL YR, FTEHTHER P RER
A EE B . CMA 4 BR/IX I — A4k 22 K 4 5 1)
AR ENR PR,

(2) Py e a7 S ml i T R

% G SE M RR IR, 7E CMA 28R A il
e R B T AR SNE SV TR R (ERIESE, 2020),
B fn SR A #Roly AOE A B, T DL ARG AOE R O
10 245 B Xk B AR XA S 1) &, e ml L
A T3 6 AV SUIE &7 7 1 i o

K, CMA 23R4 & Wi &5 5 m it it 5 |
B DX IR AT 3 4, A0 46 #AH7 A0 R L b Bk X RN #hory
AR . AR T RS dbkekh . ma KRR
I RHE AR ETL S &, i FEA Hel SERT % T
P e & e .

T LRI AR BRI 4G SV R ER
WIhh SV A S ERI 4R SV, R FH i 3 BURE 452 AR A4
i CMA 2 BRE G HRYHENR 21 . &R E 4L
TR PR -8 BT A 00 (B 2l e (8 1047 ROBE Ak, i 7
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BB 2l 0 P 8 /N 55 58 B 43 B i 22 1 M 2
B Je, 28 R A 43T 0 (8 B4 JE Al ABOR X nosi i A
iR CMA SRS TR YL sh 1A .
3.2.2 REHEMZRERGVEISIHEAR

ARG TR AT BRI, B T R LB T vk
Hil 2 DX A 2 BE 43 B 9 BN RO A A B M R
T H /N RO H9 {E 48 30 % J) b 3 SR SAS B 2 1 9 4
T EZE, CMAXBESGHMART —EET
ETKF 7iki Xk 2 RER A WIEE I HE A
3.2.2.1 B AR AR IR 2 8 BB BN Oy ik

ETKF J5 5 & 3 1R R & 08 % B IR & R 1y — Fif
WA 3 7 58, LR 32 th 45 6 W 4 3h Oy 22 Aol
D58 25 7 22 PR 1143 B i 25 IR ) 35 48, 2011),,
AFFRE T NRE REVEARTEE L.

fE CMA X3 & Widl R G0, o B 20 )
X)) A e sh (X0, I 28 4 0 14 () ok
N ARSI M e R, =l (3) Frow, B
3 3 A 48 o () S 24 i 2 5042 46 3 1) R AT 2k
PELH A, A6 2 24 I 20 0 0 AT e B

X =X'T (3)

ETKF WAL ) 7 15 (A% O 2 Ao 4R A5 A8 6
FE(T), 76 CMA X IUAE G Tl ETKF 7%, Sk H
Wang 45 (2003) (9 J7 1 A, R T 4EA
ol WA X TR A e Ak, SR BRI R
DT % . F CMA XU A FR L 55 & 48 A
Hh DU R} FR 4R S0 M 4 46 18 21 L 4
)45 31 (2 3 .45, 2018) 5 A8 B B4 (7)) B T3 7AE
SRy ey R Cv) FER ] KL (), R B P38 1 XL
(u, v) PR (¢); KA 6 WG ShiT B F %, &
KisfT 40, 50510 00, 06, 12 A1 18 i (HH:Fmf, F
[@), Hrp 00 5 12 if i 84 h Fi4, 06 5 18 i} H fik
6 h filfiz, & ETKF 73 $24i 6 h Wik sh7 .

F1 ZRET SRR RE

Table 1 The settings of calculation for multi-scale singular vectors

LSV MSV SSV
_ 30°—80°N 30°—80°N 105°—125°E
s [X 38
HRb 30°—80°S 30°—80°S 20°—50°N
IR S
VoAbt 2.5°/48 h 1.5°/24 h 0.5°/6 h
b ekt ekt ekt
\ R, YRR I S, WA,
P2y ) F A
RERIRLE F - 5 i TP KR
SV 10 10 10
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3.2.2.2  ZRERAVENS L

SR, A BRAE A TR B ) B RS 2 A X
WAEG TR YIMER S G E 2 MR RERIE
B A 20164, CMA KIES B T2 R
B R & WA H 3 H R (Multi-Scale Blending, MSB;
Zhang, et al, 2015; Xia, et al, 2019) . % J7 ¥ # H
TR EIAY 74725 e (2-Dimensional Discrete Cosine
Transform, 2D-DCT; Denis, et al, 2002) X} [X 5§ &
4 W4k ETKF 4= iAW L3 Al T639 23K 4R A il
i Bt 2 37 W RUBE W0 48 2 o 47 08 0%, P38 & 2D-
DCT 30 42 4 %) ok [ 43K 4 6 TR Ay KR BE 3t 3 Fn
XA A AR B L /N RO Bk AT A A B
2 RBEVIME AT E (5 BB E 30 .
3.2.2.3 A TURAAME & AR i E E AL EOR

BT RS A T D A B R A 5 KU E
SO D AN 2 15 S, RBURKAE (2020) SR H 2009—
2018 4F Hh R4 i Al H ARG T f KR A B A2 5
Wi, S T B KU AR TR e v s 52 7 B AN A S
FRAE, BT T & KUk e 2% 14 5 8 {3 7775 (Conditional
Typhoon Vortex Relocation, CTVR), #J## T £ &
B £ R T 0 B 6 R L KGR E
B Kb R T i 5 B A BT R

i3T5 T 2009—2018 4F 1 [ S 4 S5 Al H AK,
ST kG W E O @M 2R, K10 a b
TR AR B B KA 17.18 km (2009 4F) , f /N K
11.98 km(20154F), 454 CMA-REPS f /K 43 3¢
(10 km), LA 15 km Il A BIE, 20502 5 xHE S
T A% B HEAT 5 AU i A7 A B, B AN SR A A K
FRE I b KR E 0 5 SR A B AR B B 25 (K
T 15 km, T 732 G B 5L 00 R 3 vh 5 XU E
O 28 VR H A3 BT A B S TR, R B R L A T
A 5 XU T T S 67 AR B, 75 A R i 4R A R
B3 KGR T HH 0 S 57 152 26 78 43 7 AN ff o 3 TR P, AN g
11 4Pk & KR e B 2 A Bl FE 5 A 5 TR R
25 ] Ml R O A Bl g 5258 = R R Y 5 KU IE 43 25 H
A, X T B AT I A A KR A TR R AT B
W bR 3 5 5 KR TIE P 43 B, 5 43 85 1 15 KGR 43
i 1 R =LA B, % T 2019 4E ) H
T CMA XIREE A Fidol 55 R 5t 3.0 i,
3.2.3 UK AS B B FR BE ML DR 22 B AR sh B R

AUAE B E 4 30 1) 4 6 Tl R e A7 A 4 B
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DA R BT ARG FEPEA R B EG . 7
— R ESTIR ARG P, B RIRE W
Wi, 51 A REAE A PR AR A B 2 5 8 1A X3k 3
FARW R B RFE TR Z—(Palmer, et al, 2009)
AL, A LEFE CMA 2 BR/ X I AE A Wil R 5l
AR ShHE AR, LARAE fy T 1R 28 sl A B
R 574 T 3 B N B E ME . M ETAE CMA 42 3R/ X I
EATMAG T EZM A T SPPT Al SKEB P i
A shHE AR, o B H AR R A4
3.2.3.1  FfAILAY) 3L R 0 1) 34 B0 )7 58 (SPPT)

CMA 2 3k/K I A Wi R H) SPPT &
M EEiXi B %S ECMWE # [6] ( Buizza, et al,
1999) o BRAE (A R 3 i A& o, 458 X0RR o i oy 2 W]
oy R AE S B B (Bl gk ) R 35 RN 2
Ktk 4 P AT AR RS 6 15 35T, SPPT 5 4 3l I B
A ) 351 0] R

ej(t,) = jo [Alep)+ P(Lo.0Pe, )l dr (4
Ko, Ae,0) K8 S 300, P Cey,t) 2y ) BRA 7]
i, ¥ (A,¢,0) JEHAT 25 M S RRE A9 = 4EBE L,
Hop BT S R B0k S A B i
(Li, et al, 2008), Hi5E X K

oot

1 —expB

PA,p0)=p+{2-

W—w (5)

K, g8, HIE N -1.27, p= (Pyu+ Poin) /2,
Hop o M o i AR R AL P (0,0 1 L0 F
B R5) iyt BAT I 23 A G HRE (Y = 4 bl

L 1
¢’(/L¢J) :M+Zzal,m(t) Yl,m(/l’(ﬁ) <6)

A, A o o0 R AR R L 26 B A
8], Y., 9 BRI s, L R BEAIL (9 K - BT RUE, 7.
m 53 3 DR KT T SR 26 1 PR, e (0 D Bl
L1 R 8. BEVLI 1 R 8 @, (o A2 I 6] 4E A AH
FARPCRFAL S8 1 — B 5 7K e K B R ML i 7 (AR
— B B BHABEEHLE ) K523, 40 R R

A , Ao (1 —e207)
@, (t+ A =e™ @, (1) + WRM ()

(7
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b, AR REE MR ] BB (7 CMA 4 Tl &40
TR R R 2B ), o R B AL A 2R AH G
B ) R o Ry, (O BRI 250 1, ¥(E R 0 1Y)
e T o A B AL R 3l AR SR 1 A R AL
TR o K5 LA st i) R R 2 ) R BE Y R O 56 &R A K
Yo sh Bl Pl S5 R . fE CMA 2 BR/IX S8 4 4 T
ARG, ¥ R 7K X4 R B TR AR
St 8 I 1) A T B

2 18 ) 4 RS 2R DX A SRR A i [ | i ke
% K[A, SPPT /7 24 CMA 45k 4 4 T4 Fn X $af 4
WSS REN SR EFEER . £ CMAKX

4 A TR &R 48, SPPT 4k 3 i & BU{E M [0.2,

18], g ¥ A 1, oML R R A 6 h, Fe K
Pk 24, brifEZ (o)} 0.27, 16 CMA L3RS T
ARG, b Tk, K BE LA ek Er) Bt 3l e
J3 BBC{R 9 R oM [0.5, 1.5], 76 3T b T 2 RS2
TOUAL 5 1A 1] 418 3 3 0 £k, %o 30 b 1 )23 R R U2
TO0 B 30T 149 P BT i) AS 326 47 40 3l B8 R AT A /)N i
(PN . SPPT Jy ZEHE M . 3 el ik el 5 A XU i %
14 G 8 BB R UG 1 23, 4R v e 9 ) R R T A
1, WK X LR (R EY . BESG AR
) T A AR B B U, AN T SV MHEL B H R TE
Pl i XA SN R A R) (3264, 2020)
3.2.3.2  FEALBREAMER 3 7 %€ (SKEB)

SKEB J7 (1 %2 H 1928 F 48 20 ik 4 R

JEE i ft T RBE B 48 1) BE DL 3o A RSB 5 8 (Shuatts,

2005) . CMA £EREA/HIM R 1Y SKEB 7 £
I AT — A B 23 AH OO R 1 BE ALY L % JR) b Bl e
FE I ok A 5 Bl AL 37T PR B0 301 B9 5 U b ek
FERL Y BRI T AME (32 R 48, 2019) o BEMLIE PREL
BRI (F,) 5 SN

A ————
Fw:aTth(/l’w’t) AID(/L%TIJ) (8)

K, v, 0O NREHLAL, H =4 )53k 5 SPPT
(1 BEALAL S AR, Bk S W (5); DA, ¢,y 0
RS REREHOR . H T, CMA 2 EREA FiiRk &
i vh SKEB J % 5 F 8 2U/K OV Jr 5ok 4 i Jy b 3

D(A,¢,m,1) = —kXuxu 9

A, HERT 1 E AT, uhKFERGE, v K
Y B AT JE AKERGE AR . TR R
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B K X BTG 73 ) S R A CMA 2R AR
& B R G K I P shima mi(s, . S,), RI7E
A K U7 5 1] TR A LAS o S 327 Y48 1] 33
BEAL5RIE .

F
Su=—i 0F, (10)
a 0¢
1 9F,
Sy = acosp 01 (1

£ CMA 23R E A i R4, SKEB J7 &bl
MUY o5 5 i /N BT 0 8 L M 10 i R T 0 %
Loy M 80, KRAHSCHFA] REE (2) R 6 hy BI{EH ()
0, P2 (o) R 0.27 . B KA (W) H 0.8 Fe/ME
( win) -0.8. SKEB J5 % i i H BB % it 3% CMA
RS Tl R Gex KA Re 1% AL RE 1, W3
U R L X R TR RS PR ESEAE
R XR.
3.2.4  RGuMWZE . Hofs B

Br T R WA B 3h £ R P 4 3h H R Z 4b,
TE CMA 4 BR/IX 3k 4 A Fil 4 & Gt b a6 B 3 v st
J& T — R B0 T 5 Ak PR R A i R A T4
FHEEA, andnBi 2 4 i 22 19 56 & TR 2 I3 3T AR 7Y
(Chen, et al, 2020) . ¥ RS ] [ K 38 SO R A
F(Chen, et al, 2021) , ity K < T4 8 B A 55
X — FR A A il e TR S TR 43 A e S AR i 4
5RO R G 25 ) A, & 2% T CMA
A BR/ DX AR B T E R 8 BE 43 A R 3 DR SRR
AE T T T AR EE A 4
3.2.4.1 R R G2 E A WUk ST IE Tk

i A B T A R 32 2 R A R 2 ) Bl AL R
2, AER R RS 22 KK T, SR HPIE
Peah s e sh I i B R A R E S
BREMNXER, FEIR T CMA 2 BR/X R0 R
3¢ A 22 0T TR (AR B v A e s, R T
— PPN BR R G 25 1 SR A TR 2 J1 0T IE Tk, AR
R 25 20 B0 7 0 BRI 1R e 22 15 1)
T, W= (12) (Chen, et al, 2020; & %%, 2023) .

e](te):j:{A(e]’ t)+P(ej’ t)_ é] (eo)}dt (12)

K, e, (1) g BRI, Ae;, 1) W 3h 1 BRI, Ple,, 1)
Sy W B 391, B, (e0) K9 R 25 SRR I . 3 3k 48 1 ]
U HH R B 25 R, ST A — A L4 06 1) 391 3
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A AR BRI 22 . T R T
B4 T ME 2R 2% B 43 A 1 — B (4R B T F %)
e (B2 & Tl B iR ), s 1 b 1 22 25 A %
GEIE RS
3.2.4.2  WRIMAE R B K B 3k RS I E AR
WiRS

B 3 ] R R T DA G b sz Bt i X 9 R AR
R L RRRRAE, HCFE 3 1013 A 458 X 00 AN 1
PEZ BT W R EEEMN . 8T AR
Ik [l ) TR AN B E AR S, B X CMA XU =
400 FR 38 0] 9 AN BE B YK 1) A ) B 5 B (Kain-
Fritsch J5 28 ) Hh Ik (4% [ K {5 B G ) B, % Je T —
Tl D) s 8 7K 1) 7 3K 1 3 TH 33087 7 % (Chen, et al,
2021), IR T CMA X IES IR ARG h . ik
FYFEAR A= (13) fioR

Ztotal = Zmicro + AR]ZU (13 )

KN, Ziow B AT S B TE I GTR A F, Zioo 12
T )7 28 TR AR B 1Y 3k SO R I, Ro R THR
49 TR D s B8 K it AR OO 43 53] Ry R Tk A T K Z-
RAXTIEISH . H I IR R A% B 7K R
T VR KR, AR 4 & 35 4k I K Z-R ¢
F, Al — 2 L0k R, JF 5 Bt
TR TR K 101 30 ok B2 465 A, T 0BT I — 4 B ik Il
PRI EE T . Y R a8 e T bl AL X
T A R KE B AR AR VR, JE T
b B K R AL 2 B G T, A B A MR 400 B~ 4
A TR B 51 55 1k I A% 886 7K RE DG B Pk TR, 2 T A
HET CMA XISAE A Wi 3R 40 1 75 1k 5 5 8 7 ik
ESTEIE B
3.2.4.3 MR KA IR A

T CMA &ERE AR MR ARG 31 MES A
14 T B A A A ASHlE N P s A A A, T
R T W R AT i, L H b TR 2R A v T A
F(EFD) | 2 m i 5 o A8 4 ™ o Bk TR UK
2 YR A 25 VT TE H R (18 v S ST 3R 0 7 A

(1) 5T CMA 42 BRAE 000 A 25 104 b 1f 22 3%
EFI ;=i

PERf S 25 PR B R (FEK L KL IRE R = &) 1)
ff o P T R A G T I K, T B A B R R
£ G TR R G0 0 A ot = 10 1 00 B T (5 S
SR 42 LU A U0 1) < 52 B 3% S =X o 7 41
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Z A 22 B AR MERY, 3T CMA & BREE A
RS, W& T CMA 4 4 4l i v K IR O
P —— W RS A EFL, HR R T R A A
A R A AT AR A PR A0 A 2 22 0 Mo
oAz 48 BT E 5 b 2 G A IR 7E AR A
T, H CMA 23R4 Wik R 40 %
BHE D FE DT S TR B A BR A R, TSR
TR A E LR, EBCYE A H I & ETE 7 d
g SRR (15 d) o TFRAS S B 9 A8 A5
25 (6] B 1) W4 S 1 R i H R XA 7 9 gk A7 TH P
P, SR 5 o i B A | (1, 2, 3, 0+, 99, 100)
B TR A R R A IR B AR A 53 A
(EWFPHAE, 20145 32 K4E, 2024)

(2) FF AR IR S 8 5 et 22 37 1E F R 1 vp 8 1 S
R T ™

KRBT BT AR IR 2 U w25 1T 1E R A o 4
7 A % TR A, R HE 500 hPa i JE .
850 hPa it & 37 F1 850 hPa X137 1Y K < 3F i BE - 5
BOMERE T AR L X A Bl T A A A i
RANFFAE, & e B s K AR R 15
3.3 HELSK/RXEEETMIRAS KEFRXTEL
3.3.1  HESER/XEES TR R HE S

BEXT CMA 43R B DX sl p 40 15 22 R =0 iR
2R, R EER B A A LR T S T
R, R E B A A s B AR RES
TR B B AR B, N TERN A, R T A E W
0—15 d 423k 50 km 73 HF R 2 BRE G WL 5 &
%5, 0—3 d HE X 10 km 43 9835 XIS AR A TR A
0—3 d 9 3 km X it KB 43 B R4 & Wik 55 R
g, e E R UL H B EHEAREMT 0—15 d 4
A MR IO 55 10 B H S8, A i v OfE SRl
55 WA i 2 i 20, SR R $E A ik 21 [ B G K
. CMA 4 BR/IX IR A Tl R 48 00l 554k, Ar ek
B EERERT —E 58N EE B S KR,
PEHE Tl 55 BUE RS T B [,
CMA 2 BR/IX SR & Tl it R G0l T it b [ X 3
AR R 55 R R R R S5 R RS, CMA 2Bk 4
A TR B AR TIGGE A0 244t 22 Fh 4R B ¥
i hy B A% b (dE 50 fit WMO SWEDPSeA
I G5 b PR T R SR, R TE T TP RS
B E PR . 32 & CMA 23R/ X8Ik 55 45 4 Wil
RESHOALE .
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F£2 CMA /XIS EE TR RESENE

Table 2 Parameter configurations of CMA global and regional operational ensemble prediction system

ERREATM RS XIS A TR R 5 3 km¥ R E D HERE A TR R 5
I A CMA-GFS V3.1 CMA-MESO V4.3 CMA-MESO V5.1
VIS 57 % oram It A 0.1°/50)2 0.03°/50/2
T )2 R/ TR X 5 0.5°8TR(£3) (10°—60°N, 70°—145°E) (10°—60°N, 70°—145°E)
. i CMA-GFS 4DVARRE A HER R4 s . . .
- . 3 NS ARSIl RS
of HETUR A A At TR A 1 SRR BN R R A =2 AR IRl b R G
WHEIR S AR A5 e s ETKFWIEIL s A L RE S EIRAVIEEh
BEAXIBIEAR SPPT, SKEB SPPT SPPT
sk / CMA-GEPS & EREE & Hidlt TRA M RSS2
LG 31X R FHRA30 LB 5L 1514 FR TR+ 1440 8h A 57 ) 1514 BE TR+ 14403 51)
N 84 h(00, 12f)
TR RL 15.d(00, 12MF) 6 h(06. 185) 72 h(00. 128)
SEA 7 i L AR 0—84 hiiii4f/3 h; 84—360 h/6 h 1h lh
e A RS A GRIB2EHE . # MG TR MAMSG K GRIB2EMRE . WA KA IR . GRIB2EE . B MRS T . F#E R

8 eile) i TRV iy i

BEZRSS 7 5 RS U™

FAEG T f B RES TR 5

CMA-GEPS 2 R4 & T4t R4 L T 45 5 )
EYIEE S H AR | 4 BEHLA PR 3l AR AR i
SRR TR ™ b A AR, B KT 43 FE 3 0.5°, il
AR 0—15 d, L TR 31 4>, HT ECFLOW
AR, W# T CMA-GEPS L% R A8 17T, SCH
H 00 fl 12 Bz 47, #24E 0—15 d W LG ™
it AR R ASORE S A 29 BT

CMA XIS TR R G 3.0 MU T %474
R IR 2 IR W WIME L 3 77 (ETKF) . 2 RER A
1 B s B R L BE L B R e B s vk
(SPPT) . IR G ML H a3 FH5 A KMIES
IR Jie 7 5 437 77 15 (CTVR) FITIK W Mg R 7K 25 3k
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Table 3 Technical status of major international operational ensemble prediction systems
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Fig. 1

Ensemble mean Continuous Ranked Probability Score (CRPS, a) and RMSE (b) of 500 hPa geopotential height

forecasts at 144 h (day 6) and 240 h (day 10) from major international global ensemble prediction systems, averaged monthly
from January 2012 to December 2024 (different colors represent different NWP centers, RUMS refers to the regional unified model

system)
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