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A B S T R A C T

The Bay of Bengal storms (BoB storms) are the most catastrophic weather conditions in the region of Bay of 
Bengal and pose a significant threat to countries within and adjacent to the region, highlighting the urgent need 
for accurate forecasts to increase disaster prevention and mitigation efforts. However, sparse observations limit 
the accuracy of the BoB storm forecasts. Current numerical forecast systems adopt “target observation” strategy 
to increase additional observations and improve the forecast skill, but still face challenge of low efficiency and 
allow more model error effects on efficacy of additional observations. The study adopts a highly efficient Arti-
ficial Intelligence-driven “Pangu-Weather” model and constructs an optimization system for identifying sensitive 
areas of target observations associated with the BoB storm track forecasts based on the conditional nonlinear 
optimal perturbation (CNOP) method. The CNOP method comprehensively accounts for nonlinear processes and 
has been verified to be superior to traditional linear approximation methods, such as singular vector, adjoint 
sensitivity, and ETKF. Based upon this system, the sensitive areas for target observations were determined for 12 
forecasts of four strong BoB storms and their roles were evaluated in terms of the improvement of the storm track 
forecast level through observing system simulation experiments. The results demonstrate that preferentially 
improving the accuracy of the initial conditions in the sensitive areas, compared with doing it in randomly 
selected areas, can be more significant to upgrade the storm track forecast level; however, such upgrades only 
hold for the forecast duration of 24 h. This result provides hints for the potential of the Pangu-Weather model in 
forecasting BoB storms and has the implication that the predictability of the “Pangu-Weather” model with respect 
to the BoB storm tracks is dominantly constrained by model error effects after 24 h. It suggests that the 
improvement of model architecture is necessary for prolonging the predictability time of Pangu-Weather with 
respect to the BoB storms.

1. Introduction

Tropical cyclones (TCs) occurring over the Bay of Bengal (BoB) are 
commonly referred to as “BoB storms”. The annual frequency of BoB 
storm occurrences is relatively lower, approximately 6.8 per year (Liang 
et al., 2020), and their intensities are also generally weak; however, 
these storms often cause more severe damages than the TCs of similar 
scales over the western North Pacific, due to the unique funnel-shaped 
topography of this region and the high population density along the 
coast (Chutia et al., 2019; Li et al., 2023). For instance, the BoB storm 
“Nargis (2008)” made landfall at the mouth of the Irrawaddy River in 
Myanmar on May 2, 2008, with an maximum near surface wind speed of 

45.83 m s− 1 (equivalent to severe typhoon level), which led to over 
100,000 deaths or disappearances and was the most devastating storm 
to hit Myanmar since April 1991 (Li et al., 2023). BoB storms rarely hit 
China directly; however, they usually cause heavy rainfall and snow-
storms over southern Xizang and southwestern Yunnan (Duan and Duan, 
2015), often triggering severe secondary disasters such as landslides, 
mudslides, and flash floods in these mountainous regions. These painful 
lessons highlight that the accurate forecasts of these storms are crucial 
for effective disaster risk management, timely evacuation planning, and 
reducing loss of life and property. However, in contrast with the TCs 
over the western North Pacific, there is a severe lack of research in the 
forecasts of BoB storms, and China has begun related researches until 
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2017 (Li et al., 2023). Baki et al. (2013) demonstrated that the current 
forecast accuracy of BoB storms is significantly lower than that of TCs 
over the western North Pacific and North Atlantic, although the latter 
TCs forecasts are still in the urgent need of improvement. Specifically, 
the track forecast errors for the North Indian Ocean TCs including BoB 
storms are consistently larger than those of TCs over the western North 
Pacific and North Atlantic across all prediction time frames, with 
approximately 24–47 % at lead-time 24 h, 26–75 % at lead time 48 h, 
and 25–54 % at lead time 72 h (NHC, 2012; RSMC, 2011). Therefore, 
there is an urgent need to improve the forecast skill of BoB storms and 
reduce the disaster impacts.

High forecast levels for high-impact weather events generally 
depend on high accuracy of initial conditions, which are often achieved 
through assimilating adequate observations. However, the atmospheric 
observations over the BoB, as well as its surrounding areas, are rare 
(Baki et al., 2013; Li et al., 2023). Considering the high costs of 
observing over an extensively large area, Snyder (1996) proposed a 
concept of “target observation”, which involves strategically placing 
limited observations in some key sensitive areas to achieve or even 
surpass the forecast skill improvements resulting from widespread ob-
servations across the entire region (Rabier et al., 1996; Snyder, 1996; 
Emanuel et al., 1997; Bergot, 1999). The observation system research 
and predictability experiment (THORPEX; 2005–2014), which was 
proposed by the World Meteorological Organization, promoted exten-
sive researches and field campaigns for improving extreme weather 
events forecast skill, eventually revealing the important role of target 
observations in improving TC forecast skill (Shapiro and Thorpe, 2004; 
Aberson, 2011; Majumdar, 2016). Since 2003, the Chinese Taiwan 
Meteorological Department has started operational field campaigns of 
target observation for TCs over the western North Pacific (Wu et al., 
2007). However, no related studies on BoB storms have been so far 
reported.

Sensitive areas play an extremely important role in target observa-
tion. Many objective methods, e.g., singular vectors (SVs; Palmer et al., 
1998), adjoint sensitivity (Baker and Daley, 2000), ensemble transform 
(Bishop and Toth, 1999), and ensemble transform Kalman filter (Bishop 
et al., 2001), etc., have been utilized to identify the sensitive areas. 
However, these methods rely to varying degrees on linear approxima-
tion assumptions, which stand in clear theoretical contrast to the 
inherently nonlinear dynamic characteristics of the atmosphere-ocean 
system [see the review of Duan et al., 2023]. While this simplified 
treatment offers some advantages in computational efficiency, it inevi-
tably neglects effect of certain important nonlinear processes. This can 
lead to significant deviations from the true sensitive areas (Reynolds and 
Rosmond, 2003; Yu and Meng, 2016). To avoid the limits of the afore-
mentioned linear methods, Mu et al. (2009) proposed using the condi-
tional nonlinear optimal perturbation (CNOP; Mu et al., 2003) method, 
which fully considers nonlinear processes, to identify the target obser-
vation sensitive areas for TC forecasts. Mu et al. (2009) compared CNOP 
method with SV method and found that the sensitive areas identified by 
the CNOP for TC track forecasts generally locate in the vortex structure 
of the TCs, particularly at the juncture with the subtropical high- 
pressure zone, which clarifies the important roles that TCs and large- 
scale weather circulation systems play in the amplification of forecast 
errors in TC track forecasting, highlighting the sensitive areas deter-
mined by the CNOP are more physics-relevant. Qin and Mu (2011)
extended this comparison to include CNOP, SV, and ETKF, showing that 
CNOP achieved the largest reduction in forecast error variance of TC 
tracks. Chen et al. (2013) further confirmed that assimilating real 
observation data in the sensitive areas identified by the CNOP makes the 
TC track forecasts comparable to, sometimes better than, assimilating all 
available data. Especially, several field experiments for TC forecasts 
have been conducted in recent years, which have verified the effec-
tiveness of the target observations provided by the CNOP method in 
improving TC track forecast skill (Qin et al., 2022; Feng et al., 2022; 
Chan et al., 2023). Given these evidence to the superiority of the CNOP, 

the present study would directly use the CNOP method to identify the 
sensitive areas of target observation for BoB storm forecasts.

TCs are often characterized by their rapid developments and fast 
movements, of which implementing the target observations therefore 
demands high efficiency. In the previous research and field campaigns 
for target observations using the CNOP method, the identification of the 
sensitive areas depends on the numerical model and requires high 
computation costs and relatively longer calculation times. Hence, rela-
tively more time is usually reserved for sensitive area identification. In 
this situation, model error effects increase and the identified “sensitive 
areas” may deviate from the actual sensitive area, then degrading the 
efficacy of the target observations in improving forecast skill. In recent 
years, big data-driven artificial intelligence (AI) weather models have 
rapidly developed, demonstrating higher forecast accuracy and 
computation efficiency than numerical models (Bi et al., 2023; Chen 
et al., 2023a, 2023b; Lam et al., 2023; Pathak et al., 2023). For example, 
the “Pangu-Weather” (referred to as “PW” hereafter) model developed 
by Bi et al. (2023) finishes global 24-h weather forecasts in 1.4 s, which 
accelerates to 10,000 times as the calculation speed of traditional nu-
merical model. Moreover, Bi et al. (2023) showed that the evaluation of 
track forecasts for 88 TCs occurring over global ocean basins in 2018 
indicated that the forecast skills of the PW model surpassed those of the 
European Centre for Medium-Range Weather Forecasts (ECMWF). 
Therefore, utilizing AI models (such as the PW model) may provide an 
efficient way to identify the sensitive areas for target observations.

It will be innovative to apply the CNOP method to the PW for BoB 
storm target observations. In this study, we would investigate the un-
certainty of the PW with respect to BoB storm track forecasts from the 
perspective of target observations. Specifically, we would address three 
questions: (1) How to integrate the CNOP with the PW model to identify 
the sensitive areas for target observation associated with BoB storm 
track forecasts? (2) To what extent do the targeted observations improve 
the forecast skill for BoB storms?, and (3) what are the hints for the PW 
of the achieved results? The structure of this study is therefore as fol-
lows. Section 2 introduces the AI model and data used, followed by the 
construction of an optimization system for identifying the sensitive areas 
of target observation for BoB storm track forecasts in Section 3. Section 4 
presents the storm cases studied and the corresponding identified sen-
sitive areas, as well as an evaluation of the effectiveness. Finally, Section 
5 provides the conclusions and discussion, especially presenting the 
hints for the PW of the results.

2. The Pangu-Weather model and data

The PW model employs a three-dimensional deep neural network as 
its core, which is specifically designed for weather forecasting. The deep 
neural network extracts 3-dimensional atmospheric state information 
from the meteorological variables at both various pressure levels and 
surface, and helps the model capture the complex relationships among 
atmospheric states more accurately. In the PW models, there are five 
upper-air variables (horizontal wind, temperature, geopotential, and 
specific humidity) at thirteen pressure levels (1000, 925, 850, 700, 600, 
500, 400, 300, 250, 200, 150, 100, and 50 hPa), and four surface vari-
ables (10-m height horizontal wind, 2-m height temperature, and mean 
sea level pressure) at a global 0.25◦ latitude-longitude grid. Using this AI 
model to realize the forecasts greatly differs from using traditional nu-
merical model to forecast by step-by-step integration, it employs a hi-
erarchical temporal aggregation algorithm to avoid iterative errors and 
demonstrates a higher accuracy in longer periods of forecasts. More 
details can be referred to Bi et al. (2023).

The PW model utilized ERA5 reanalysis data from 1979 to 2017 and 
trained four models with forecast time intervals of 1 h, 3 h, 6 h, and 24 h. 
Bi et al. (2023) showed that the PW possesses higher forecast accuracy 
than the ECMWF-HRES in the track forecasts of the North Indian Ocean 
TCs including the BoB storms, where the ECMWF-HRES has been widely 
recognized as one of the premier global numerical forecasting systems. 
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Nevertheless, this higher accuracy is only reflected as a slightly lower 
forecast error of PW [see Extended Data Fig. 5. in Bi et al., 2023], and is 
still far from satisfying the demand for disaster prevention and reduc-
tion. Then can targeted observations further improve the forecast skill of 
the PW with respect to the BoB storm track?

To address this question, we use the ECMWF ERA5 reanalysis data 
(Hersbach et al., 2020) to drive the PW model. The relevant data have 
the same configuration as in the PW model’s training data (see the last 
paragraph), but cover the time period from 2019 to 2023, which differs 
from the PW’s training period from 1979 to 2017. Additionally, ac-
cording to the IBTrACS dataset (Knapp et al., 2010) and Bi et al. (2023), 
the storm center positions from ERA5 reanalysis data, recorded every 6 
h, are connected to form storm tracks, which are used as a reference to 
evaluate the effectiveness of assimilating targeted observations in 
improving storm track forecast skill.

For calculating CNOP, we construct the basis of initial perturbations 
using ensemble forecast data from the ECMWF. These data are provided 
by the THORPEX Interactive Grand Global Ensemble (TIGGE) project 
(Bougeault et al., 2010) with a horizontal resolution of 0.5◦ and include 
vertical levels at 1000, 925, 850, 700, 500, 300, 250, and 200 hPa. To 
maintain consistency with the PW model’s resolution requirements, we 
applied bilinear interpolation to convert this data to 0.25◦ horizontal 
resolution.

3. The optimization system for sensitive area of target 
observation in BoB storm forecasts

In this section, we will construct the optimization system for calcu-
lating the CNOP and give the approach to identify the sensitive area of 
target observation associated with the BoB storm track forecasts.

3.1. The CNOP method

Assume the governing equations for atmospheric motion are given 
by 
⎧
⎨

⎩

∂X
∂t

= F(X)

X|t=0 = X0

(1) 

where F represents a nonlinear operator, X is the state vector, and X0 
denotes its initial state. Suppose Mt is the propagator of Eq. (1), then the 
initial perturbation x0 superimposed on X0 can evolve from initial time t0 
to forecast time t through this propagator. At the forecast time t, the 
evolution of this initial perturbation can be expressed as in Eq. (2). 

xt = Mt(X0 + x0) − Mt(X0) (2) 

Based on the Eq. (2), the following optimization problem is defined, 

J
(
x*

0
)
= maxxT

0 C1x0≤βJ(x0) (3) 

J(x0) = [Mt(X0 + x0) − Mt(X0) ]
TC2[Mt(X0 + x0) − Mt(X0) ] (4) 

where xT
0C1x0 ≤ β represents the constraint on the initial perturbation, 

βis a positive scalar limiting the amplitude of the initial perturbation, the 
superscript “T” denotes the transpose, and C1 and C2 are norms that 
measure the magnitude of the initial perturbation and its evolution, 
respectively. By solving the Eq. (3), the CNOP-type initial perturbation 
can be obtained, which represents the initial perturbation that leads to 
the maximum forecast error at forecast time t (Mu et al., 2003).

For the targeted observation of BoB storm track forecasts in this 
study, the cost function J of CNOP is specifically expressed as, 

J(x0) = [PMt(X0 + x0) − PMt(X0) ]
TC2[PMt(X0 + x0) − PMt(X0) ] (5) 

where X0 is specified as the initial analysis field of control forecast of the 
BoB storm track and P is the projection operator. For this cost function, 

P = 1 in the region where the BoB storm occurs at forecast time, and P =
0 in other regions, thus restricting the region of interest at forecast time 
to the occurrence area of the BoB storm. The specific region of each 
storm is dynamically determined to ensure that the spatial extent of the 
storm at the forecast time is covered. Additionally, both the initial 
perturbation norm C1 and the cost function norm C2 are taken as the 
total energy (TE) norm, such that 

x0
TC1x0 =

1
D1

∫

D1

∫

p

[

u0
2́ + v0

2́ +
cp

Tr
T0

2́
]

dpdD1 (6) 

J =
1
D2

∫

D2

∫

p

[

ut
2́ + vt

2́ +
cp

Tr
Tt

2́
]

dpdD2 (7) 

where u0́, v0
ʹ,T0

ʹ are the components of x0, representing perturbations in 
zonal wind, meridional wind, and temperature, respectively; ut́ , vt

ʹ,
Tt

ʹrepresent the component of xt [see Eq. (2)] for a particular forecast 
period (in the present study, we concern about the 72-h forecast); cP =

1005.7Jkg− 1K− 1 represents the specific heat capacity at constant pres-
sure; Tr = 270 Kis the reference temperature; D1 is the initial pertur-
bation area, which, in this study, is chosen as the geographical domain 
(70.0◦N-70.0◦S, 20.0◦E-180.0◦E), while D2 is the occurrence area of the 
BoB storm; and p is the vertical coordinate, with vertical integration 
from 1000 hPa to 200 hPa. This vertical domain limitation to levels 
below 200 hPa is due to data availability constraints, as the ECMWF- 
provided initial perturbation samples used in this study are accessible 
only for atmospheric levels below 200 hPa. While upper-tropospheric 
and lower-stratospheric dynamics contribute to TC evolution, the pre-
dominant dynamical and thermodynamical processes governing TC 
development and track are concentrated in the middle and lower 
troposphere (Chan, 2005; Roy and Kovordányi, 2012), making this 
vertical domain sufficient for our investigation. Furthermore, the 
perturbation constraint β is set to be comparable to the variance of the 
initial analysis error of the variables considered, specifically β =

0.6J/kg.
With the above calculated CNOP, one can determine the sensitive 

area for target observation at the initial time t0 (i.e. the targeting time for 
increasing additional observations) for the BoB storm track forecast at 
the forecast time t (also referred to as the lead time t-t0, which is here-
after referred to as 72 h in this study). In the following section, we will 
construct the optimization system for calculating the CNOP for identi-
fying the sensitive area for target observations.

3.2. The optimization system and its solving algorithm

This study employs the 6-h (denoted as PW-6) and 24-h (denoted as 
PW-24) models of the PW to construct the propagator Mt in Eq. (5)
through a hierarchical temporal aggregation algorithm (see Fig. 1d). 
That is, when a forecast has the duration of 24 h starting from t0, one can 
use the PW-6 to forecast the state at t0 + 6 h, then again use the PW-6 but 
with the output at t0 + 6 h as its input to forecast the state at t0 + 12 h, 
with the output at t0 + 12 h as the input to forecast the state at t0 + 18 h, 
and eventually use the PW-24 with the state at t0 as its input to forecast 
the final state at t0 + 24 h. In our experiments, this kind of construction 
for the PW has been confirmed to have better performance for the BoB 
storm track forecasts, as compared with other kinds of constructions of 
PW-1, − 3, − 6, and − 24 (for simplicity, we omit the details here).

Based on the propagation operator Mt constructed by the PW, the 
gradient of the cost function J with respect to the initial perturbation x0 
in Eq. (5) can be calculated. Here we usually transform the maximum 
optimization of Eq. (3) to a minimum one as J

(
x*

0
)
= minxT

0 C1x0≤β − J(x0), 
and utilize the spectral projected gradient 2 (SPG2) algorithm (Birgin 
et al., 2000) to solve this minimization optimization problem based on 
the calculated gradients. The traditional numerical models typically use 
the adjoint method, while none is for the PW model to calculate the 
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gradient. Considering PW’s high computation efficiency, this study 
directly employs the gradient definition to calculate the gradient, then 
solves the optimization problem, and finally realizes the calculation of 
CNOP.

For each BoB storm case, we directly use the 50 initial perturbation 
samples from ECMWF ensemble forecasts [see Section 2] as the basis for 
constructing the CNOP, due to their excellent orthogonality formed by 
singular vectors. These basis perturbations are used to construct the 
initial perturbation Z0 as a linear combination, as shown in Eq. (8), 

Z0 = c1W1 + c2W2 +…+ c50W50 (8) 

where Wi represents the initial perturbation sample from ECMWF 
ensemble forecasts and ci are constant coefficients to be identified. 
Replacing x0 in Eq. (5) with Z0, the optimal combination of constant 
coefficients ci can be obtained by solving the minimum of the objective 
function of − J(x0) with respect to the coefficient ci. That is to say, we 
transform the optimization problem Eq. (3) from searching for the 
optimal spatial pattern to solving the optimal combination of constant 
coefficients ci, which, undoubtedly, greatly reduces the dimensions of 
the optimization problem and the computation cost. For this situation, 
the calculation of the gradient of the cost function J with respect to x0 is 
transformed to that of J with respect to ci, as shown in Eq. (9), 

∂J
∂ck

= lim
Δ→0

J(ck + Δ) − J(ck)

Δ
, k = 1, 2,…,50 (9) 

Therefore, using the propagator Mt constructed by the PW model, the 
gradient of the cost function ∂J

∂ck
, and the SPG2 algorithm, the CNOP 

optimization system for identifying the sensitive areas of target 

observation associated with the BoB storm forecasts can be constructed. 
This system comprises four modules (Fig. 1): the PW Model, the CNOP 
Calculation Module, the Gradient Calculation Module, and the Sensitive 
Area Identification Module. For each BoB storm case, two forecasts from 
the PW model using inputs without and with initial perturbations can be 
obtained, respectively, then the cost function J in Eq. (5), as well as its 
gradients with respect to the coefficients ci, can be calculated accord-
ingly. Using these information, the optimal combination of coefficients 
ci can be optimized by iterative process using the SPG2 algorithm and 
the CNOP can be obtained. Then the sensitive area for target observation 
associated with the BoB storm track forecasts with lead time 72 h can be 
identified by the approach of comprising the grid points with large 
values of TE calculated using the CNOP [see Eq. (6)]. This approach has 
been widely applied in identifying sensitive areas of target observation 
for western North Pacific TCs (Mu et al., 2009; Zhou and Mu, 2012; Chen 
et al., 2013; Qin et al., 2022; Feng et al., 2022).

4. CNOP-type initial perturbations and the sensitive areas for 
BoB storm track forecasts

The sensitive areas for target observations associated with four 
strong BoB storm track forecasts are identified in this section and the 
validities are examined by OSSEs. The specific follows.

4.1. The four strong BoB storm cases and their control forecasts

Four strong BoB storm cases are studied. They are the extremely 
severe cyclonic storm Mocha (2023), the very severe cyclonic storm 

Fig. 1. The construction of the propagator Mt featured by the PW (a), and the flowchart of the optimization system for identifying sensitive areas including CNOP 
calculation (b) and sensitive area identification (c), and related gradient calculation (d).
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Asani (2022), the super cyclonic storm Amphan (2020), and the 
extremely severe cyclonic storm Bulbul (2019). These four BoB storms 
brought strong winds, heavy rainfall, and storm surges to the coastal 
regions of the BoB and led to losses in property and lives. Moreover, the 
heavy precipitation induced by these BoB storms also affected the 
Qinghai-Xizang Plateau and southwestern regions of China, which 
triggered disasters such as mudslides and landslides.

For each BoB storm case, we used respectively the ERA5 data at 12 h, 
24 h, and 36 h ahead of the initialized time (i.e. the targeting time for 
increasing additional observations) of control forecast as its initial 
conditions, which, due to a small number of storm cases, increases the 
sample size of control forecasts to make results more robust. For clarity, 
these three control forecasts are labeled as Ctrl-1, Ctrl-2, and Ctrl-3, all 
of which provide 72-h forecasts. Table 1 outlines the forecast periods for 
the four BoB storm cases and the corresponding initial conditions for the 
control forecasts.

4.2. The CNOP-type initial perturbations and resulted sensitive areas

Using the optimization system detailed in Section 3.2, CNOP-type 
initial perturbations for 72-h forecasts were computed for the Ctrl-1, 
− 2, and − 3 of each BoB storm case shown in Table 1. Then, a total of 
twelve CNOP-type initial perturbations were obtained for the four storm 
cases. As introduced in Section 3.1, the CNOP-type initial perturbations 
comprise both wind and temperature components. It is shown that, at 
the lower troposphere (i.e., 850 hPa), the wind components of all CNOP- 
type initial perturbations are mostly located near the storm centers, 
exhibiting a cyclonic circulation structure (Fig. 2i, g, and l); however, 
the temperature component distribution exhibits significant case- 
dependence: the temperature perturbations for Mocha (2023) and 
Amphan (2020) show a ring-like distribution centered on the storm 
(Fig. 2i and k), whereas Bulbul (2019) has large temperature perturba-
tions only on the northeast side of the storm (Fig. 2l), and Asani (2022) 
has large temperature perturbations near or northwest of the storm 
center (Fig. 2j).

Results also show that, at the mid-troposphere (500 hPa), the wind 
components of the CNOP-type initial perturbations are similar in 
structure to those in the lower troposphere, but the cyclonic nature is 
somewhat weakened; the temperature perturbations primarily appear 
on the northeast and southwest sides of the storm center, forming a 
distinct positive and negative alternating wave train structure; it is 
additionally noted that, compared to the lower troposphere, the 
perturbation distribution in the mid-troposphere is more localized either 
for wind or temperature components (Fig. 2f, g).

In addition, it is demonstrated that, at the upper troposphere (200 
hPa), both the wind and temperature components of the CNOP-type 
initial perturbations show clear case dependence: the Mocha (2023) 
has positive temperature perturbations on the north or east side of the 
storm center (Fig. 2a), while the wind perturbations diverge outward 
from the storm center; the Asani (2022) shows a more dispersed 

temperature perturbation distribution with significantly reduced 
perturbation magnitude compared to the mid and lower troposphere, 
while wind perturbations are mainly distributed near the storm center, 
forming a cyclonic circulation structure (Fig. 2b); the Bulbul (2019) also 
has a dispersed temperature perturbation distribution, but the wind field 
converges inward in Ctrl-1 and -2 and diverges outward from the storm 
center in Ctrl-3; and the Amphan (2020) has temperature perturbations 
mainly on the northwest side of the storm and wind perturbations 
diverging outward from the storm center.

For convenience, all these above CNOP-type perturbations are out-
lined in Appendices A and B in terms of their spatial characteristics.

For the CNOP-type initial perturbations in Appendices A and B, we 
also calculated their total perturbation energy (TE) and its components 
[i.e., kinetic energy (KE) and internal energy (IE)] in the vertical dis-
tribution over the BoB region. The results show that, for the Ctrl-1, − 2, 
and − 3 of the same storm case, their CNOP-type initial perturbations 
exhibit similar characteristics of the vertical distribution of the energies; 
however, there exists case dependency in the vertical energy distribu-
tion of CNOP initial perturbations for different cases. For example, the 
Mocha (2023), the Asani (2022), and the Amphan (2020) have the 
CNOP-type perturbations with three energy peaks at 200 hPa, 500 hPa, 
and 700 hPa, whereas the Bulbul (2019) only has the CNOP-type per-
turbations with peaks at 200 hPa and 500 hPa; nonetheless, all CNOP- 
type initial perturbations have the largest total energy in the mid- 
upper troposphere (500–200 hPa), primarily manifesting as contribu-
tions from kinetic energy.

Mu et al. (2009) demonstrated that the grids with large values of 
CNOP-type initial perturbations represent high sensitivity of forecast 
uncertainty of high-impact weather events to initial errors. Hence, it is 
advised to conduct target observation in such areas with priority, which 
is of great importance to improve the initial condition and further up-
grade the forecast skill. Taking the Ctrl-1 for example, Fig. 2 shows both 
horizontal and vertical energy structures of the CNOP-type initial per-
turbations for the four BoB storm cases. It is obvious that the areas with 
large values differ a lot between temperature and wind components and 
among vertical levels (also see Appendices A and B), which is a great 
challenge to the implementation of field campaigns. Thus, how can we 
extract the sensitivity information from the CNOP-type initial pertur-
bations and identify the sensitive areas of target observation that can 
collectively reflect the sensitivity from varying state variables and their 
structures? Qin et al. (2013) proposed identifying the sensitive areas of 
target observation as the grids with large values of the vertically inte-
grated total energy [VTE, see Eq. (10)] of the CNOP-type initial per-
turbations (also see Zhou and Mu, 2011; Chen et al., 2013; Qin et al., 
2022; Yang et al., 2022, 2023). Both numerical experiments and related 
field campaigns have confirmed the effectiveness of the sensitive areas 
identified using the VTE in improving forecast skills (Chan et al., 2023; 
Feng et al., 2022). Therefore, the VTE is also adopted in this study to 
identify the sensitive areas of target observation for the BoB storm 
forecasts. 

Table 1 
BoB storm cases, control forecast initial fields, and forecast periods.

Case Forecast Period (UTC) Initial Field for Control Forecast 
(UTC)

Case Forecast Period (UTC) Initial Field for Control Forecast 
(UTC)

Forecast 
length

Mocha
1200 May 11, 2023–1200 
May 14, 2023

Ctrl-1: Meteorological field at 0000 
May 11, 2023

Amphan
1200 May 17, 2020–1200 
May 20, 2020

Ctrl-1: Meteorological field at 0000 
May 17, 2020

72 h
Ctrl-2: Meteorological field at 1200 
May 10, 2023

Ctrl-2: Meteorological field at 1200 
May 16, 2020

Ctrl-3: Meteorological field at 0000 
May 10, 2023

Ctrl-3: Meteorological field at 0000 
May 16, 2020

Asani
0000 May 8, 2022–0000 
May 11, 2022

Ctrl-1: Meteorological field at 1200 
May 7, 2022

Bulbul
0000 Nov 7, 2019–0000 Nov 
10, 2019

Ctrl-1: Meteorological field at 1200 
Nov 6, 2019

72 h
Ctrl-2: Meteorological field at 0000 
May 7, 2022

Ctrl-2: Meteorological field at 0000 
Nov 6, 2019

Ctrl-3: Meteorological field at 1200 
May 6, 2022

Ctrl-3: Meteorological field at 1200 
Nov 5, 2019
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VTE =

∫

p

[

u0
2́ + v0

2́ +
cp

Tr
T0

2́
]

dp (10) 

Fig. 3 presents the VTE of the CNOP-type initial perturbations for the 
control forecasts of the four BoB storms. Apart from those grids with a 
long distance from the BoB storm, there is a unanimous area with large 
VTE around the BoB storm centers, which extends to the border of the 
subtropical high as in the BoB storm cases of the Mocha (2023) and the 
Amphan (2020). Previous research has established that tropical cyclone 
track prediction is influenced by two primary categories of factors: 
environmental field and the cyclone’s internal structure (Chan, 2005; 
Wu and Wang, 2000). The environmental field, particularly the sub-
tropical high-pressure system, plays a dominant role in determining 
tropical cyclone movement, with cyclones typically moving along the 
periphery of the subtropical high (Chan and Gray, 1982). The boundary 
between the cyclone and subtropical high represents a critical region 

characterized by significant pressure gradients and complex wind vari-
ations. This relatively unstable zone is highly sensitive - even small 
perturbations can substantially alter the environmental steering flow, 
potentially changing the cyclone’s track direction. Simultaneously, a 
cyclone’s internal structure, including its size, intensity, and asymmetric 
features, can modify how it responds to the environmental steering 
(Fiorino and Elsberry, 1989). This alignment between high-VTE regions 
and key meteorological features is not coincidental but rather a direct 
reflection of the physical processes governing tropical cyclone move-
ment. It is obvious that the distribution of the area with large VTE values 
in the CNOP-type initial perturbations is strongly physics-relevant. For 
this area, we experimentally regarded the top 5 % grids of the large VTE 
values as the sensitive areas of target observation, which are dotted in 
blue in Fig. 3.

Fig. 2. The wind (vectors; units: m s− 1) and temperature (shaded; units: K) components of the CNOP-type initial perturbations at 200 hPa (1st row), 500 hPa (2nd 
row), and 850 hPa (3rd row) of the Ctrl-1 for the four BoB storms, and the TE (blue line), KE (red line) and IE (gray line) (4th row; units: J/kg). The black contour 
lines represent the geopotential height (unit: dagpm), and the green storm symbols in the first three rows denote the BoB storm centers at initial time. Note that the 
CNOP-type initial perturbations for Ctrl-2 and Ctrl-3 of the four BoB storms are plotted in Appendix C. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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4.3. Evaluation of the sensitive areas for target observations

Observing System Simulation Experiments (OSSEs) are utilized in 
this study to evaluate the impact of the sensitive areas of target obser-
vation identified in Section 4.2 on track forecasts. An OSSE involves 
assimilating simulated observational data into the initial conditions of 
control forecasts and makes the updated forecasts closer to the truth 
(which is the state represented by the ECMWF ERA5 reanalysis data in 
this study). Hence, the effects of the simulated observational data can be 
illustrated by comparisons between the control forecasts and the 
updated forecasts. For example, if the simulated observational data in-
side the sensitive areas is only assimilated, the differences between the 
control and updated forecasts can directly indicate the effects of addi-
tional observations inside the sensitive areas on forecast skill.

Given that the data assimilation system of the PW model is not yet 
available, we adopted a simple direct update assimilation scheme 
instead, which directly replaces the initial conditions in some specific 
areas in the control forecasts with simulated observational data. For 
each BoB storm case, the initial conditions of the control forecasts in the 
identified sensitive areas (Fig. 3) were replaced by the ERA5 reanalysis 
data (i.e. the simulated observational data) at the initial time (i.e., tar-
geting time), which includes horizontal winds and temperature fields 
from 1000 hPa up to 200 hPa; and the forecasts of PW model based on 
these initial conditions are denoted as “SEN”. Other forecasts were also 
conducted but with initial conditions of control forecasts that were 
replaced by those in other thirty randomly selected rectangular areas, 
which possess the same number of simulated observations as the sen-
sitive area. These forecasts are denoted as “RAN”. For convenience, we 
summarize the key experimental setting in Appendix D.

To evaluate the impact of targeted observations on the forecast skill 
for BoB storms, this study employed an improved TC tracking algorithm. 

This algorithm is based on the core logic of the ECMWF tropical cyclone 
tracker (Magnusson et al., 2021) and has been optimized for the char-
acteristics of the PW model. The algorithm searches for the minimum 
mean sea level pressure (MSLP) within a 445 km radius around the 
initial tropical cyclone position, then verifies the TC by checking fea-
tures including 850 hPa relative vorticity (>5 × 10− 5 and local 
maximum within 278 km radius), 850-200 hPa thickness (local 
maximum exists), and 10 m wind speed over land (>8 m s− 1). Once the 
existence of a tropical cyclone is confirmed, the tracking algorithm 
continues to search for the next position within a 445 km radius. Both 
the BoB storm centers in SEN and RAN were positioned, of which the 
track forecast errors are denoted as ESEN and ERAN, respectively. A rate 
“R”, as in Eq. (11), is adopted to measure the impacts of additional data 
in either sensitive areas or randomly selected areas on the control 
forecasts, where ECtrl denotes the track forecast errors in the control 
forecasts. A “R” greater than 0 indicates an improvement; conversely, a 
R less than 0 means a deterioration; furthermore, the larger (smaller) of 
the R positive (negative) value, the more significant of the improvement 
(deterioration). 

R =
ECtrl − ESEN or RAN

ECtrl
×100% (11) 

Fig. 4 shows the moving tracks of the 12 control forecasts for the four 
storm cases in Table 1, along with those of the corresponding SEN and 
RAN, as well as the actual track (formed by connecting the storm posi-
tions every six hours in the ERA5 reanalysis data). From Fig. 4, it seems 
that the storm tracks in the SEN are often more deviated from the actual 
tracks than those in control forecasts and RAN; but actually, the storm 
tracks in control forecasts and RAN move much slower and have much 
larger forecast error than those in the SEN especially at the initial stages 
of forecasts. To quantify the improvement more accurately, the time- 

Fig. 3. The VTE (shaded) of the CNOP-type initial perturbations of the Ctrl-1, − 2, and − 3 for the four BoB storms and corresponding 500 hPa geopotential height 
(black contour; unit: dagpm). The red storm symbols mark the BoB storm centers at initial time; the red contours denote the 588 dagpm lines, and the blue dots 
denote the identified sensitive areas of target observations. The red rectangular area represents the D2 area, i.e. the area where the storm occurs at forecast time. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dependent “R” was calculated and plotted in Fig. 5a. The results show 
that, for the forecast duration of less than 24 h, the forecast errors in the 
SEN are significantly reduced from the control forecasts at the 95 % 
confidence level, with an averaged skill improvement of 16.54 %; 
however, as the forecast duration exceeds 24 h, the reduction in forecast 
errors in the SEN gradually diminishes, and for the forecast duration 
exceeding 42 h, the forecast errors in the SEN even surpass those of the 
control forecasts, providing worse forecasts. Thus, although the most 
sensitive initial perturbations CNOP were calculated for 72-h forecasts 
for each storm case, the improvement in forecast skill provided by the 
target observation sensitive areas is only effective within a 24-h forecast 
duration.

To validate the sensitivity of the target observation sensitive areas, 
30 groups of RAN experiments were conducted for each control forecast 
of each storm case. In these experiments, 30 rectangular regions con-
taining the same number of grid points as in the sensitive area were 
randomly selected outside the sensitive area of the control forecast to 
investigate the impact of assimilating enhanced observations on the 
storm track forecast. To quantify the distance between the sensitive area 
and each randomly selected region, we identified the grid point with the 
maximum VTE value within the sensitive area (i.e., the most sensitive 
point), calculated the distance from this point to the four vertices of each 
randomly selected rectangular region, and used the shortest distance as 
the measure between the two regions. We found that the closer the 
random areas in the RANs are to the sensitive area, the larger the skill 
improvement of the updated forecast against the control forecast 
(Fig. 6). However, even so, the skill improvements in the control 

forecasts in the RANs, even within the 24-h forecast duration, are 
generally small and far fewer than the improvement in the SENs 
(Fig. 5b). It is worth noting that for the Ctrl-3 of the storm case Bulbul 
(2019), although the skill improvement in the RAN is significantly 
higher than those for other storm cases, it still shows that the closer the 
randomly selected area is to the sensitive area, the larger the skill 
improvement in the updated forecasts against the control forecasts, but 
it remains far below the skill improvement in its SENs (Fig. 6). There-
fore, although the skill improvement in storm track forecast skill pro-
vided by the sensitive areas is only effective within a 24-h forecast 
duration, the target observations obtained within these areas represent 
additional observations with the greatest potential to improve PW’s 
storm track forecasts.

These results imply that using PW to forecast the aforementioned 
four BoB storm events, the forecast results are sensitive to initial values 
within a 24-h forecast duration, suggesting that further consideration of 
PW model errors is needed to enhance PW’s forecast skill of BoB storm 
events for forecasts exceeding a 24-h duration.

4.4. Mechanism

As demonstrated in Section 4.2, the CNOP-based sensitive areas 
mainly locate around the storm center and the boundary to the sub-
tropical high that provides a steering flow of TC movement. Numerous 
studies have shown that the movements of TCs are primarily dominated 
by this large-scale steering flow (Chan and Gray, 1982; Holland, 1983; 
Chan, 2005). Building on this understanding, this section analyzes how 

Fig. 4. The forecasts of the BoB storm path in the Ctrl (green), the SEN (blue) and the RAN (gray). The red line represents the truth path. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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assimilating additional observations in these sensitive areas improves 
the representation of steering flows, and consequently enhances track 
forecast accuracy. Taking the Ctrl-1 experiment of the BoB storm case 
Bulbul (2019) as an example, we illustrate in Fig. 7 its tracks in the truth, 
control forecast and the updated forecast due to the target observations. 
Visibly, the truth path initially moves northwest, then turns north at 
around 18◦N, and finally shifts northeast at 20◦N, while the path in the 
control forecast initially veers east-southeast in the early forecast stage 
and then is significantly biased westward later on, failing to accurately 
capture the storm’s actual movement path; in contrast, the path in the 
SEN significantly reduces the deviations observed in the control fore-
cast. To analyze the meteorological mechanisms responsible for the 
improvement in the SEN, we examined the changes in the steering flow. 
The steering flow here is defined as the environmental average wind 
vector within a radius of 4–8◦ latitude from the storm center. Fig. 8a 
shows the temporal changes of the steering flow at different vertical 
heights for the Ctrl-1 and the corresponding SEN, as well as the differ-
ences between them. It is shown that the steering flows in both control 
and SEN initially point northwest and then northeast, consistent with 
the truth path changes; however, in the early forecast period (i.e., 12-18 
h), the steering flow in the SEN contains more southeast wind compo-
nents in the upper troposphere (250–200 hPa) compared to the control 
forecast, effectively adjusting the storm path westward. In the mid- to 
late forecast period (30-54 h), the SEN has more westerly components at 

400–200 hPa, leading to a more eastward storm path later on, thus 
significantly reducing the early eastward and later westward path de-
viations in the control forecast (see Fig. 7).

Previous research has also indicated that the convergence and 
divergence of horizontal winds in the upper troposphere significantly 
affect the development and movement of tropical cyclones. Enhanced 
divergence of upper-level horizontal winds promotes upward motion 
and the development of low-level low pressure, thereby steering tropical 
cyclones toward regions of convergent upward motion (Meng et al., 
2002; Liu et al., 2021). Fig. 8b presents the three-dimensional structure 
of the horizontal wind divergence differences between the Ctrl-1 and 
SEN of the Bulbul (2019) storm. As shown in Fig. 7b, assimilating sen-
sitive area observations results in a significant increase in divergence on 
the northwest side of the storm center in the upper troposphere 
(300–200 hPa), enhancing upward motion and steering the storm to-
ward the northwestern region of upper-level divergence, thus aligning it 
more closely with the actual path (Fig. 7). These results indicate that 
assimilating sensitive area observations improved the steering flow in 
the mid-upper troposphere and the horizontal wind divergence field in 
the upper troposphere, promoting the storm’s northwestward move-
ment and thereby enhancing track forecast skill.

Fig. 5. Box plots of the relative error rate R (%) in (a) SENs and (b) RANs for all control forecasts of the four BoB storms at different lead times (6–72 h). In each box 
plot, the blue/red box represents the interquartile range (25th to 75th percentiles), the red solid line indicates the median value, the red dashed line shows the mean 
value, the whiskers extend to 1.5 times the interquartile range, and the black dots represent outliers. Note that different vertical scales are used in panels (a) and (b). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Z. Zhou et al.                                                                                                                                                                                                                                    Atmospheric Research 326 (2025) 108313 

9 



5. Summary and discussion

Considering linear limitation of traditional methods such as SVs, 
adjoint sensitivity, and ETKF, etc., quite a few studies adopted the fully 
nonlinear CNOP method to numerical weather forecast models for 

identifying the sensitive area for target observations associated with the 
forecasts of TCs over Northwest Pacific. In the present study, our work 
extends the CNOP method to an AI weather model for exploring target 
observation of BoB storm forecasts, which utilizes the high-efficiency of 
AI model forecasts, and concerns about the disaster weather of BoB 
storm and then its necessity of accurate forecasts. Actually, the inte-
gration of CNOP with the AI-driven PW model represents a step toward 
computationally-efficient target observation sensitive area identifica-
tion system, potentially offering practical benefits for field experiments 
of target observation (see Li et al., 2025).

In this study, we applied the CNOP method to the AI-driven PW 
model, and developed an optimization system to identify the sensitive 
areas of target observation for the track forecasts of BoB storms. Four 
storms of Mocha (2023), Asani (2022), Amphan (2020), and Bulbul 
(2019) and a total of twelve forecasts of them were investigated. The 
CNOP-type initial perturbations of the twelve forecasts were calculated 
using the optimization system, and the sensitive areas were determined 
through identifying the areas with large values of the vertically inte-
grated energy for those CNOPs. The results showed that the target 
observation sensitive areas for the forecasts of the four BoB storms were 
primarily concentrated around the storm center and the boundary with 
the subtropical high, indicating that these sensitive areas are physically 
related and reflect the significant influence of the storm’s structure and 
environmental field on its movement.

The study validated the effectiveness of the identified target obser-
vation sensitive areas in improving storm event forecast skills through 
an OSSE. The assimilation of observations in the sensitive areas showed 
a greater improvement in storm track forecast skills compared to 
assimilating observations in randomly selected areas. Notably, as the 
randomly selected areas approached the sensitive areas, the improve-
ment in track forecasts increased, further confirming the rationality of 
the sensitive areas from another perspective. Using the Bulbul (2019) 
case as an example, the study elucidated the physical mechanism by 
which assimilating observations in the sensitive areas improved the 
steering flow and divergence field in the mid-upper troposphere, 
thereby enhancing the track forecast skill for the BoB storms.

It must be noted that the improvement in storm track forecasts by 
assimilating observations in the sensitive areas is mainly evident within 
the forecast duration of 24 h; and therefore, to further enhance the 
forecast skill, the impact of model errors must be considered. In other 
words, for the PW model, merely reducing initial errors is insufficient to 
improve the track forecast skill of BoB storms for longer lead times; the 
influence of model errors must also be addressed. Besides, our current 
study did not investigate the storm intensity forecasts. This limitation 
stems from inherent constraints of the PW model, that is, the ERA5 
reanalysis data that is used for training PW model systematically 
underestimated TC intensity (Bi et al., 2022); moreover, the relevant 
spatial resolution 0.25◦ × 0.25◦ is insufficient to resolve the small-scale 
processes crucial for TC intensity evolution. Obviously, the TC intensity 
forecasts using the PW model need to address model error effect. In 
previous study, Yao et al. (2021) identified regions that require priority 
reduction of model error impact using the Nonlinear Forcing Singular 
Vector (NFSV) method, effectively improving typhoon intensity simu-
lation skills (also see Qin et al., 2020); especially, Duan et al. (2022)
recently proposed a combined NFSV method and showed its great ability 
in resolving combined effect of initial and model errors. It is therefore 
expected that these NFSV methods can be applied to the BoB storm 
simulations and forecasts provided by the PW to address model error 
effects and effectively enhance the simulation and forecast level of track 
and intensity, especially their long-term forecasts.
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Appendix A. Distribution characteristics of CNOP initial perturbation wind and temperature components for Mocha (2023) and Asani 
(2022)

BoB 
storm 
Case

Vertical 
Level

Ctrl-1: CNOP Initial Perturbation Ctrl-2: CNOP Initial Perturbation Ctrl-3: CNOP Initial Perturbation

Temperature Wind Temperature Wind Temperature Wind

Mocha 200 hPa
Positive temperature error 
north of the storm center

Diverging 
outward from the 

storm center

Positive temperature error 
east of the storm center

Diverging 
outward from the 

storm center

Positive temperature 
error east of the storm 

center

Diverging 
outward from the 

storm center
(continued on next page)

Fig. 8. (a) The steering flows of the forecasts for the Bulbul (2019) Ctrl-1 with blue representing the control forecast, green denoting the SEN, and red signifying the 
difference between SEN and control; (b) Three-dimensional structure of horizontal wind divergence differences between the control and the SEN for Bulbul (2019) at 
forecast time 06:00, where the black storm symbol denotes the storm center position. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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(continued )

BoB 
storm 
Case 

Vertical 
Level 

Ctrl-1: CNOP Initial Perturbation Ctrl-2: CNOP Initial Perturbation Ctrl-3: CNOP Initial Perturbation

Temperature Wind Temperature Wind Temperature Wind

500 hPa Error on the northwest side 
of the storm center

Similar to lower 
levels, but 

cyclonic intensity 
is somewhat 
weakened

Error on the northeast side of 
the storm center

Similar to lower 
levels, but wind 

speed is 
somewhat 
reduced

Errors on the 
northwest and 

southeast sides of the 
storm center

Similar to lower 
levels, but wind 

speed is somewhat 
reduced

850 hPa Ring-like distribution 
around the storm center

Cyclonic 
circulation 

centered on the 
storm

Ring-like distribution around 
the storm center

Converging 
inward toward 

the storm center

Ring-like distribution 
around the storm 

center

Cyclonic 
circulation 

centered on the 
storm

Asani

200 hPa
More dispersed distribution 
with significantly reduced 

errors

Cyclonic 
circulation 

centered on the 
storm with 

northerly flow on 
the south side

More dispersed distribution 
with significantly reduced 

error magnitude

Cyclonic 
circulation 

centered on the 
storm

More dispersed 
distribution with 

significantly reduced 
error magnitude

Cyclonic 
circulation 

centered on the 
storm with 

northerly flow on 
the south side

500 hPa

Errors on the northeast and 
west sides of the storm 

center, forming a positive- 
negative alternating wave 

train structure, with 
pronounced localized error 

distribution

Similar to lower 
levels, but wind 

speed is somewhat 
reduced

Errors on the northeast and 
southwest sides of the storm 
center, forming a positive- 
negative alternating wave 

train structure, with 
pronounced localized error 

distribution

Similar to lower 
levels, but 

cyclonic nature is 
somewhat 
weakened

Errors on the northeast 
and southwest sides of 
the storm center, with 
pronounced localized 

error distribution

Similar to lower 
levels, but wind 

speed is somewhat 
reduced

850 hPa

Large temperature errors 
near and northwest of the 

storm center, more dispersed 
in other areas

Cyclonic 
circulation 

centered on the 
storm

Large temperature errors 
near the storm center, more 

dispersed in other areas

Cyclonic 
circulation 

centered on the 
storm

Large temperature 
errors near and 

northwest of the storm 
center

Westerly flow on 
the south side of 

the storm

Appendix B. Distribution characteristics of CNOP initial perturbation wind and temperature components for Amphan (2020) and Bulbul 
(2019)

BoB 
storm 
Case

Vertical 
Level

Ctrl-1: CNOP Initial Perturbation Ctrl-2: CNOP Initial Perturbation Ctrl-3: CNOP Initial Perturbation

Temperature Wind Temperature Wind Temperature Wind

Amphan

200 hPa Dispersed distribution
Converging inward 
toward the storm 

center

Error on the 
northwest side of 
the storm center

Diverging outward 
from the storm center

Dispersed 
distribution

Diverging outward 
from the storm 

center

500 hPa
Error on the northeast side of the 

storm center

Northerly flow on 
the south side of the 

storm center

Error on the east 
side of the storm 

center

Southerly flow on the 
south side and 

westerly flow on the 
east side of the storm 

center

Errors on the east 
and south sides of 
the storm center

Structure similar to 
lower levels

850 hPa
Ring-like distribution around the 

storm center

Divergent flow field 
centered on the 

storm and westerly 
flow on the south 

side

Ring-like 
distribution 

around the storm 
center

Cyclonic circulation 
centered on the storm 
and easterly flow on 

the south side

Errors near the 
storm center and 
on the south side

Cyclonic circulation 
centered on the 

storm and easterly 
flow on the south 

side

Bulbul

200 hPa
Dispersed distribution, mainly 

between 0◦-10◦N

Converging centered 
on the storm and 

easterly flow on the 
south side

Dispersed 
distribution

Converging inward 
toward the storm 

center

Error on the east 
side of the storm 

center

Diverging outward 
from the storm 

center

500 hPa

Errors on the northwest and 
southeast sides of the storm 
center, forming a positive- 

negative alternating wave train 
structure, with pronounced 
localized error distribution

Similar to lower 
levels, but wind 

speed is somewhat 
increased

Dispersed 
distribution

Similar to lower 
levels, but cyclonic 
nature is somewhat 

weakened

Errors on the north 
and northeast sides 
of the storm center

Similar to lower 
levels, but wind 

speed is somewhat 
increased

850 hPa Error on the north side of the 
storm center

Cyclonic circulation 
centered on the 

storm

Error on the 
northeast side of 
the storm center

Cyclonic circulation 
centered on the storm

Error on the 
northeast side of 
the storm center

Cyclonic circulation 
centered on the 

storm
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Appendix C. CNOP-type initial perturbations (Ctrl-2 and Ctrl-3)

Fig. C1. The wind (vectors; units: m s − 1) and temperature (shaded; units: K) components of the CNOP-type initial perturbations at 200 hPa (1st row), 500 hPa (2nd 
row), and 850 hPa (3rd row) of the Ctrl-2 for the four BoB storms, and the TE (blue line), KE (red line) and IE (gray line) (4th row; units: J kg − 1). The black contour 
lines represent the geopotential height (unit: dagpm). The green storm symbols in the first three rows denote the BoB storm centers at initial time. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. C2. The wind (vectors; units: m s − 1) and temperature (shaded; units: K) components of the CNOP-type initial perturbations at 200 hPa (1st row), 500 hPa (2nd 
row), and 850 hPa (3rd row) of the Ctrl-3 for the four BoB storms, and the TE (blue line), KE (red line) and IE (gray line) (4th row; units: J kg − 1). The black contour 
lines represent the geopotential height (unit: dagpm). The green storm symbols in the first three rows denote the BoB storm centers at initial time. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix D. Experimental setting

Category Parameter/Setting Description/Value

PW Model Configuration

Horizontal Resolution 0.25◦ × 0.25◦

Vertical Levels 13 pressure levels (1000–50 hPa)
Forecast Lead Time 72 h
Output Frequency 6 h

CNOP Method

Optimization Algorithm SPG2
Cost Function Total energy norm at 72 h forecast lead time

Optimization Domain (70.0◦N-70.0◦S, 20.0◦E-180.0◦E)
Perturbation Amplitude 0.6 J/kg
Perturbation Variables Temperature, u-wind, v-wind (1000–200 hPa)

OSSE Details

“Truth” ERA5 reanalysis
Simulated Observations ERA5 data at initial time (wind, temperature)

Initial Conditions of Control Forecast ERA5 at 12, 24, and 36 h ahead of targeting time
Assimilation Method Direct update approach
Sensitive Area Size Top 5 % VTE region (35.0◦N-15.0◦S, 70.0◦E-120◦E)

Random Area Selection Same number of simulated observations as sensitive area, within domain

Data availability

The ECMWF ERA5 data can be obtained from the Climate Data Store 
via https://cds.climate.copernicus.eu/.The ECMWF ensemble forecast 
data is available at https://apps.ecmwf.int/datasets/data/tigge/levtype=
pl/type=pf/.
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