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A B S T R A C T

Using the geophysical fluid dynamics laboratory climate model version 2p1 (GFDL CM2p1), 
perfect model predictability experiments have been conducted to identify the sensitive area in the 
tropical Indian Ocean for advancing beyond the summer predictability barrier (SPB) of positive 
Indian Ocean Dipole (IOD) events. In these experiments, the model is assumed to be perfect, and 
prediction errors are only caused by initial errors. Initially, the impact of initial error patterns on 
prediction uncertainties was assessed by comparing dipole pattern initial errors with three sets of 
spatially correlated noises. The results revealed that dipole pattern initial errors tend to result in 
larger prediction errors and higher error growth rates in summer, leading to a significant SPB 
phenomenon. Notably, the large values of these dipole pattern initial errors are concentrated in 
specific areas. By eliminating initial errors within these areas, the prediction errors in summer are 
largely reduced, underscoring the sensitivity of prediction uncertainties in summer to initial er-
rors in these areas. Moreover, the prediction errors in summer exhibit a higher sensitivity to 
initial errors within the subsurface large value area compared to those within the surface large 
value area. Consequently, the subsurface large value area in the tropical Indian Ocean is the 
sensitive area for advancing beyond the SPB, aligning with the corresponding location for 
advancing beyond the WPB. Eliminating initial errors within this area leads to a rapid decrease in 
prediction uncertainties, with a more pronounced reduction in winter than in summer. Through 
intensive observations in this sensitive area, significant reductions in prediction errors in both 
summer and winter can be achieved, thereby greatly improve the forecast skill of IOD events.

1. Introduction

The Indian Ocean Dipole (IOD) is an important coupled ocean-atmosphere phenomenon in the tropical Indian Ocean, characterized 
by an east-west seesaw pattern of sea surface temperature anomalies (SSTAs), accompanied by anomalous wind fields in the equatorial 
region (Saji et al., 1999; Webster et al., 1999). This dipole-type oscillation is evident in both the surface and subsurface sea temperature 
anomalies (Feng and Meyers, 2003; Guo et al., 2015; Li et al., 2003). Seasonal phase-locking is an important characteristic of IOD 
events. Previous studies have pointed out that IOD events often reverse their sign in winter, rapidly develop in summer, peak in 
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autumn, and then quickly weaken and disappear in the following winter (Behera et al., 2006; Cai et al., 2005; Li et al., 2003; Saji et al., 
1999; Wajsowicz, 2004; Webster et al., 1999). During positive IOD events, severe droughts often occur in the eastern Indian Ocean, 
Indonesia, and Australia, while there is excess rainfall in the western Indian Ocean and East Africa (Li et al., 2021; Wang and Cai, 
2020). Furthermore, IOD events also impact weather and climate in other regions globally through the propagation of planetary waves 
(Duan et al., 2020; Yuan et al., 2008). Studies have shown that positive IOD events often lead to a weakening of the East Asian summer 
monsoon, strengthening of the South China Sea summer monsoon, increased precipitation in most parts of China, and extremely hot 
and dry conditions in southern regions during summer; the climate impacts of negative IOD events are generally the opposite (Qiu 
et al., 2014; Xiao et al., 2020; Yang et al., 2010). With global warming, the frequency of anomalies in the tropical Indian Ocean and IOD 
events is increasing, with a higher occurrence of strong IOD events (Cai et al., 2020; Huang et al., 2019; Hui and Zheng, 2018).

Based on the successful experiences of predictability research on the El Niño Southern Oscillation (ENSO), many scholars have 
conducted predictability studies on IOD events using numerical models (Du et al., 2020; Lu et al., 2018; Luo et al., 2007; Shi et al., 
2012; Yuan et al., 2017; Zhu et al., 2015). Wajsowicz (2005) conducted ensemble retrospective experiments to evaluate the forecast 
skill of National Centers for Environmental Prediction Coupled Forecast System (NCEP CFS) in predicting the SSTAs in the eastern and 
western poles of IOD events. The study revealed that the forecast system is capable of predicting the SSTAs in the eastern pole up to 3–4 
months in advance and in the western pole up to 6–7 months in advance. Shi et al. (2012) evaluated the forecast skills of four different 
prediction systems for the Indian Ocean SST. They found that the models can predict the IOD events about one season in advance, and 
for strong IOD events, this lead time can extend to two seasons. Luo et al. (2007) conducted an ensemble retrospective experiment on 
IOD events over the past 20 years using the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F) 
model, which showed that the model could only predict IOD events 3–4 months in advance, and the forecast skill rapidly decreased 
when bestriding winter, leading to a winter predictability barrier (WPB) phenomenon. Therefore, most numerical models can only 
predict IOD events with a lead time of about one season (Luo et al., 2007; Shi et al., 2012; Zhu et al., 2015).

The possible reasons for the low forecast skill of IOD events mainly include the following aspects. Firstly, IOD events are influenced 
by complex physical processes, such as the strong Indian/Asian monsoon, interaction between IOD and ENSO, random intraseasonal 
oscillations in the atmosphere and ocean. Secondly, most numerical models currently cannot accurately describe the basic charac-
teristics of IOD events, leading to model errors. Furthermore, although an Indian Ocean Observing System (IndOOS) has been 
established in the tropical Indian Ocean, observational data is sparse. Assimilating these observational data into models will introduce 
initial errors in the initial analysis fields. Feng et al. (2017) and Feng & Duan (2019) pointed out that initial sea temperature errors in 
the tropical Indian Ocean result in both the WPB and summer predictability barrier (SPB) phenomena. Liu et al. (2018) further 
analyzed the influence of initial sea temperature errors in the tropical Pacific Ocean on IOD predictability and revealed that a dipole 
mode-structured initial sea temperature errors most likely lead to the occurrence of the SPB phenomenon. The predictability barriers 
refer to a phenomenon that forecast skills rapidly decline when bestriding a specific season, regardless of the starting month (Luo et al., 
2007). The existence of the WPB and SPB severely limits the forecast skill of IOD events.

As mentioned earlier, the current observational network in tropical oceans, especially in the tropical Indian Ocean, is sparse. There 
is a need to increase observations to enhance the accuracy of initial fields, which will reduce initial errors and improve the forecast skill 
of IOD events. However, conducting extensive observations comes with a substantial economic cost. Therefore, if similar effects can be 
achieved through observations in a smaller area, it can improve forecast skills while lowering economic costs. Consequently, the 
concept of targeted observations has gained widespread attention and application. Targeted observations aim to maximize the forecast 
skill of a specific region (verification area) at a future time (verification time) by increasing observations in a sensitive area at a specific 
time (target observation time) before the verification time using certain methods. The key to targeted observation approach is 
identifying the sensitive area for additional observations. Internationally, there are two categories of methods for exploring sensitive 
areas: adjoint-based methods, which involve calculating the adjoints of the forward tangent propagator of models, such as singular 
vectors (SVs; Palmer et al., 1998) and conditional nonlinear optimal perturbation (CNOP; Mu and Duan, 2003), ensemble-based 
methods such as the ensemble Kalman filter (Hamill and Snyder, 2002) and the ensemble transform Kalman filter (Bishop et al., 
2001). Many research findings on targeted observations have been applied in field experiments, confirming their effectiveness in 
improving forecast skills (Qin et al., 2022; Szunyogh et al., 2000).

Research on the sensitive area of IOD targeted observation is limited. Feng et al. (2017) used ensemble methods to explore 
observing locations (i.e., sensitive areas) in the tropical Indian Ocean for advancing beyond the WPB phenomenon of IOD events. They 
suggested that by increasing observations in the sensitive area and improving initial field accuracy, it can reduce prediction errors in 
winter, weaken or even eliminate the WPB phenomenon, and finally improve the forecast skill of IOD events. In this study, we will 
continue to focus on the impact of initial sea temperature errors in the tropical Indian Ocean on IOD predictions, with a focus on the 
SPB phenomenon. After exploring observing locations (i.e., sensitive areas) for advancing beyond the SPB, we further comparing their 
respective impacts on the IOD predictability with the sensitive areas associated with the WPB phenomenon in Feng et al. (2017).

The subsequent sections of the paper are structured as follows: Section 2 details the model and experimental strategy. Section 3
delves into the impact of initial error patterns on prediction uncertainties in summer. Section 4 investigates the sensitive areas for 
advancing beyond the SPB of IOD events. Finally, Section 5 concludes with a summary and discussion.

2. Model and experimental strategy

2.1. Model

The geophysical fluid dynamics laboratory climate model version 2p1 (GFDL CM2p1) is used in this study, which includes ocean, 
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atmosphere, land, and sea ice components. The ocean component is the Modular Ocean Model version 4 (MOM4p1; Griffies, 2009) 
released in December 2009, replacing the MOM4.0 used in the CM2.1 version. The equations and methods of MOM4p1 are based on 
the hydrostatic and nonBoussinesq equations of the ocean along with a selection of subgrid scale (SGS) parameterizations. The ocean 
component is a numerical representation of the ocean’s hydrostatic primitive equations. The horizontal resolution is 1◦× 1◦ in most 
areas, and the meridional resolution is 1/3◦ in the equatorial region. Totally, there are 50 vertical layers, with a resolution of 10 m in 
the upper 225 m. The atmosphere component, AM2p12b (GFDL Global Atmospheric Model Development Team, 2004), has a hori-
zontal resolution of 2◦ (latitude) × 2.5◦ (longitude) and 24 vertical layers. It employs a K-profile planetary boundary layer scheme, 
relaxed Arakawa-Schubert convection, and a parameterization of the vertical momentum transport by cumulus convection. The ocean 
and atmosphere components are coupled with the Land Dynamics model version 2.1 (LM2.1; Milly and Shmakin, 2002) and the GFDL 
Sea Ice Simulator (SIS; Delworth et al., 2006). The components of the coupled model exchange fluxes every two hours through the 
Flexible Modeling System (FMS, http://www.gfdl.noaa.gov/fms) and fluxes are conserved within machine precision.

Feng et al. (2014a) compared the simulation capabilities of 14 coupled models within the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) with observational data. They found that only four models, including the GFDL CM2p1 coupled model, could capture 
the climatological conditions and fundamental characteristics of IOD events. Therefore, the GFDL CM2p1 coupled model can be a 
platform for studying the IOD and its related predictability. For more detailed information about the model, please refer to articles, 
such as Delworth et al. (2006), Stouffer et al. (2006), and Wittenberg et al. (2006).

2.2. Experimental strategy

We used the forcing (aerosols, land cover, ozone, solar radiation, and radiative gases, etc.) in 1990 to run the model. The initial 
conditions for the ocean, atmosphere, land and sea ice are consistent with those established by Delworth et al. (2006). The model is run 
without flux adjustment for 150 years and produces a realistic simulation of the global climate. After a 50 year spin-up period, only the 
last 100 years are analyzed to reduce the influence of the initial adjustment process. According to the definition of a positive IOD event, 
10 positive IOD events are randomly selected as the “true state” (i.e., reference states) (Fig. 1) to be predicted. Most positive IOD events 
reverse their dipole model index (DMI) signs in the preceding winter, peak in September and October, and reverse the signs again in the 
following winter, which is consistent with observational conclusions (Wajsowicz, 2004), indicating that the model has captured the 
characteristics of seasonal phase locking for positive IOD events.

Perfect model predictability experiments are conducted in this study, in which the model is assumed to be perfect, and prediction 
errors are only caused by initial errors. As the ocean actively forces the atmosphere in the tropical Indian Ocean, only the sea tem-
perature of the ocean component is perturbed. However, initial errors are not superimposed onto all levels of sea temperature, as such 
perturbations could lead to the incompatibility between the initial fields and the model. This incompatibility may result in significant 
initial shock, which may conceal the impact of initial errors on the prediction uncertainties of IOD events, particularly in the first few 
months. As the average thermocline depth in the equatorial Indian Ocean in the GFDL CM2p1 model is 110–130 m (Song et al., 2007), 
sea temperature anomalies at 95-m depth can to some extent reflect variation in the thermocline depth; additionally, SST is an 
important variable closely related to the ocean and atmosphere. It is inferred that superimposing initial sea temperature errors on these 
two layers of ocean can effectively reflect the impact of initial sea temperature errors on the IOD predictability. Therefore, for con-
venience, we only superimposed initial errors on the sea surface temperature and 95-meter depth temperature fields in the reference 
state IOD events, and analyzed the impact of initial sea temperature errors on prediction uncertainties of IOD events. Due to the small 
perturbations in sea temperatures, no significant initial shock occurs during the integrations, even with the use of rigid boundaries.

Considering that the dominant period of IOD events in the model is 4 years (Feng and Duan, 2014), there is usually one positive and 
one negative IOD event within 4 years. Consequently, the patterns of sea temperature anomalies within 4-year period are plentiful. We 
selected a set of SSTAs and 95-meter depth temperature anomalies every other month within 4 years preceding each reference state 
IOD event to make the initial error patterns as plentiful as possible. After scaling each set of temperature anomalies to the same 
magnitude, we obtained 24 pairs of initial errors for each positive IOD event. By superimposing these initial errors onto the initial 
temperature fields of reference state IOD events, we integrated the model from six different months: July (-1), October (-1), January 
(0), April (0), July (0), and October (0) ("-1" represents the year preceding the IOD event, "0" represents the IOD year). Taking July (-1) 

Fig. 1. Evolution of DMI for 10 reference state IOD events (“-1” indicates the year preceding the IOD year; “0” represents the IOD year; “1” denotes 
the year after the IOD year).
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as an example, for each positive IOD event, we superimposed each pair of initial errors onto the initial fields of sea surface temperature 
and 95-meter depth temperature on July 1st of the year preceding the IOD event. These updated temperature fields are taken as the 
initial temperature fields on July 1st, while the other initial conditions on July 1st remain unchanged. The model was then integrated 
starting from July 1st, based on the initial conditions described above. To analyze the development of prediction errors during the 
summer of IOD years, the model is integrated for 15 months starting from July (-1), and for 12 months starting from other months, 
respectively. Thus, for each start month, we totally conducted 240 predictions (10 IOD events multiplied by 24 initial errors). To 
compare with previous work in Feng et al. (2017), we only present the results for start months 7 (-1) and 7 (0) in this paper; results for 
other start months are similar.

To impartially compare the impact of different initial sea temperature errors on prediction uncertainties of positive IOD events, 
each pair of initial errors are scaled to the same magnitude as follows. The initial SSTAs and 95-meter depth temperature anomalies are 
denoted as Q1 and Q2, respectively. Q1ijand Q2ijrepresent the values of Q1and Q2at grid points (i, j) in the Indian Ocean region over 
45◦E-115◦E, 10◦S-10◦N. Q1 and Q2are scaled to the same magnitude byQ́ 1 = Q1/δ1and Q́ 2 = Q2/δ2, where δ1 and δ2 are positive 
values to make sure the same magnitude between Q1 and Q2, and Q́ 1 and Q́ 2 represent the final initial errors superimposed on the 

reference state IOD event. The magnitudes of initial errors are represented by ‖Q́ 1‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i,j(Q́ 1ij)

2
√

and ‖Q́ 2‖ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i,j(Q́ 2ij)

2
√

, set as 
2.4◦C in this study. Therefore, the initial errors in the tropical Indian Ocean are smaller than the standard deviation of analysis errors of 
SSTAs (i.e., 0.2 ◦C; Kaplan et al., 1998), which indicates that the initial errors in our study may appear in the analysis errors, and the set 
of initial error magnitude is reasonable.

By superimposing 24 pairs of initial errors on the reference state of each positive IOD event and integrating the model from different 
start months, 24 predictions are obtained for each positive IOD event from one start month. The prediction errors are defined as the 
absolute values of the difference in the DMI between the predicted IOD event and the corresponding reference state IOD event. DMI 
represents the difference in SSTAs between the western pole (50◦E-70◦E, 10◦S-10◦N) and the eastern pole (90◦E-110◦E, 10◦S-0◦). The 
time series of DMI have been normalized by their standard deviations. Each year is divided into four seasons, with January-March as 
the boreal winter, April-June as the boreal spring, and so on. The growth rate κ of prediction errors in each month is calculated by

κ = P2 − P1
Δt (1) where P1 and P2 represents the prediction errors at time t1 and t2, and Δt = t2 − t1, which is set as one month. The 

growth rate κ of prediction errors in each season is computed as the sum of κ during one season; a positive κ indicates an increase in 
prediction errors during a season, and a negative value indicates a decrease in prediction errors. A larger positive value of κ indicates a 

Fig. 2. Time-dependent evolution of prediction errors caused by initial errors that are most likely to cause a significant SPB phenomenon (colored 
curves) and the ensemble mean of seasonal growth rate (histograms) of the SPB related initial errors for (a) start month July (-1), and (b) start month 
July (0). Each color line denotes an individual prediction.
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faster growth of prediction errors. For each pair of initial errors superimposed on the initial state of positive IOD event, the values of κ 
are obtained for the four seasons, with the maximum positive slope denoted as κmax, and the second largest positive slope denoted as 
κs− max. If κmax > 0.375 (the top 10 % in slope ranking), and κmax − κs− max > 0.06, we consider the development of prediction errors in 
the season corresponding to κmax as significant compared to other seasons. A SPB phenomenon refers to the prediction errors with the 
fastest growth rate κmax in summer. Initial errors satisfying the above criteria with κmax corresponding to the summer season are 
selected (i.e., SPB-related initial errors), and their dominant characteristics are further analyzed.

3. Effect of initial error patterns on the prediction uncertainties in summer

According to the criteria in Section 2, initial errors that are most likely to cause a significant SPB phenomenon are selected. Fig. 2
shows the evolution of prediction errors caused by these initial errors for different start months. Notably, the prediction errors grow 
more rapidly in summer compared to other seasons, resulting in large prediction errors in summer, thereby significantly limiting the 
forecast skill of IOD events. Fig. 3 illustrates the evolution of SSTAs and sea surface wind anomalies over the tropical Indian Ocean for 
an IOD event starting from July (-1), with and without SPB-related initial errors superimposed. Fig. 3a indicates that a positive IOD 
event occurs in the tropical Indian Ocean, characterized by a significant west-east dipole pattern in September (0), accompanied by 
southeasterly wind anomalies at the eastern pole. When SPB-related initial errors are superimposed on the positive IOD event, negative 
SSTAs emerge in the western Indian Ocean during the mature phase of IOD. As a result, the dipole pattern during the mature phase of 
IOD event is destroyed, and the magnitude of the DMI significantly decreases. Consequently, these SPB-related initial errors induced 
large prediction errors, especially in summer, leading to a significant SPB phenomenon. Fig. 3c shows the differences between the 
patterns with and without the initial errors superimposed, depicting the evolution of these errors. Apparently, a significant west-east 
dipole pattern occurs in the tropical Indian Ocean from May (0) to September (0), characterized by negative values in the western 
Indian Ocean and positive values in the eastern Indian Ocean, along with northwest wind anomalies at the eastern pole, which 
resemble the development of negative IOD events. This evolution of SPB-related initial errors causes large prediction errors in summer 

Fig. 3. Evolutions of SSTAs (units: ◦C) and sea surface wind anomalies (units: m s− 1) over the tropical Indian Ocean for an IOD event starting from 
July (-1), (a) without initial errors superimposed, (b) with SPB-related initial errors superimposed, and (c) the difference in patterns between (b) 
and (a).
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by inducing patterns that oppose the reference state IOD event.
To delve deeper into the SPB phenomenon, a Combined Empirical Orthogonal Function (CEOF) analysis is conducted for each start 

month on both the surface and subsurface components of the initial errors that are most likely to cause a significant SPB phenomenon. 
The spatial distributions of CEOF1 for different start months are illustrated in Fig. 4, with explanatory variances of 32.3 % for the start 
month July (-1) and 31.2 % for the start month July (0), respectively. The surface and subsurface components of CEOF1 prominently 
present an east-west dipole mode, with the subsurface temperature anomalies exhibiting greater magnitude than the surface tem-
perature anomalies. Notably, the subsurface component of CEOF1 is similar to the temperature anomaly pattern observed during the 
mature phase of a positive IOD event, characterized by large value centers in the southern sector of the western pole and the equatorial 
eastern Indian Ocean. Meanwhile, the surface component of CEOF1 exhibits various spatial patterns for different start months. In the 
case of the start month July (-1), the large value area is located in the southeastern Indian Ocean, where SSTAs typically first emerge 
and intensify during the development of IOD events. For the start month July (0), the large value area extends across the central 
southern Indian Ocean, where the Ekman ridge is located and is closely related to the development of SSTAs in the western pole of IOD. 
These initial errors exhibit spatial patterns resembling those most likely to cause a significant WPB as documented by Feng et al. 
(2017). It is important to note that, in addition to the spatial patterns of initial errors, the occurrence of predictability barriers is also 
closely related to other factors, such as IOD events themselves, climate state, and influences from the Pacific Ocean (Feng et al., 2014b; 
Liu et al., 2018). In this study, we focus exclusively on the initial errors that lead to a significant SPB.

Are initial errors with an east-west dipole pattern more likely to cause a significant SPB than those with other spatial patterns? To 
address this issue, we superimposed initial errors with a dipole pattern and spatially correlated noises on the initial fields of reference 
state IOD events. Subsequently, we analyzed the development of these initial errors to understand their impact on prediction un-
certainties. Specifically, we select 10 sets of initial errors that are most likely to cause a significant SPB from the 240 sets of initial errors 
for each start month. These initial errors have the highest absolute correlation coefficients with the leading mode of the corresponding 
CEOF (i.e., CEOF1), suggesting a close resemblance to the spatial pattern of CEOF1. Consequently, these initial errors are identified as 
the dipole pattern initial errors. In comparison, three sets of spatially correlated noises with equal magnitude as the dipole pattern 
initial errors are generated following the method outlined in Feng et al. (2017). The spatial patterns of these spatially correlated noises 
are shown in Fig. 5, which are totally different from the dipole pattern initial errors. Then we superimpose three sets of spatially 
correlated noises on the initial fields of 10 reference state IOD events. After 15 months of integration for the start month July (-1) and 
12 months for the start month July (0), respectively, a total of 30 predictions are generated for each start month. The evolution of 
prediction errors after superimposing these initial errors with various spatial patterns onto the reference state IOD events are analyzed.

The analysis in Fig. 6 focuses on the prediction errors in summer caused by dipole pattern initial errors and three sets of spatially 
correlated noises for each start month. It is evident that, in most cases, the prediction errors in summer caused by dipole pattern initial 
errors are larger than those caused by spatially correlated noises for all the start months, which is especially evident in their composite. 
This underscores the significant impact of initial errors with a dipole pattern on the prediction uncertainties in summer compared to 
the spatially correlated noises. Additionally, the seasonal growth rates of prediction errors caused by these dipole pattern initial errors 
and spatially correlated noises for each start month (as shown in Table 1) are further analyzed. The table illustrates that, irrespective of 
the start month, the seasonal growth rates of prediction errors caused by dipole pattern initial errors display distinct seasonality, with 
fastest error growth occurring during summer, indicating the presence of the SPB phenomena. In contrast, the seasonal growth rates of 
prediction errors caused by the spatially correlated noises do not exhibit the seasonality as distinct as the dipole pattern initial errors, 
especially for the start month July (-1). Although the prediction errors caused by some spatially correlated noises have the largest 

Fig. 4. The surface (a) and subsurface (b) temperature errors of CEOF1 for initial errors that are most likely to cause a significant SPB phenomenon 
for start month July (-1); (c) and (d) are as above, but for start month July (0); the black boxes labeled A, B, C, and D represent the regions where the 
large values of CEOF1 are located (units: ◦C).
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growth rates in summer, the growth rates in summer is not as large as those caused by the dipole pattern initial errors. That is, the 
prediction errors caused by the dipole pattern initial errors exhibit notably faster growth in summer compared to other seasons, leading 
to a significant SPB phenomenon. Conversely, spatially correlated noises may induce a weaker SPB phenomenon or potentially no SPB 
phenomenon at all.

These findings highlight that initial errors characterized by a dipole pattern mode result in larger prediction errors in summer 
compared to spatially correlated noises. Moreover, these dipole pattern initial errors cause the most rapid growth of prediction errors 
in summer compared to other seasons, ultimately resulting in the occurrence of a significant SPB phenomenon. The occurrence of the 
significant SPB is closed linked to the specific spatial structure of initial sea temperature errors in the tropical Indian Ocean. By 

Fig. 5. The surface (a, c, e) and subsurface (b, d, f) components of three sets of spatially correlated noises (units: ◦C).

Fig. 6. The prediction errors in summer that caused by dipole pattern initial errors and three sets of spatially correlated noises for (a) the start 
month July (− 1), and (b) the start month July (0) (color plots). The bars illustrate the average prediction errors for each type of initial errors 
in summer.
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effectively filtering out these dipole pattern initial errors through intensive observations, we can probably reduce prediction errors in 
summer and potentially mitigating or even eliminating the SPB phenomenon, ultimately improving the forecast skill for positive IOD 
events. However, carrying out intensive observations in the vast Indian Ocean comes with a substantial economic cost. Therefore, 
targeted observation strategy is probably a useful approach as stated in the introduction, in which the sensitive areas for additional 
observations need to be identified. As previously noted, the large values of these dipole pattern initial errors are localized within a few 
areas and exhibit local characteristics, implying that the initial errors in these regions contribute significantly to prediction un-
certainties. These areas may represent sensitive areas for targeted observations in positive IOD predictions, which will be further 
identified in the following analysis.

Table 1 
The composite seasonal growth rates of prediction errors caused by dipole pattern initial errors and three sets of spatially correlated noises for start 
months July (− 1) and July (0).

From July (-1)

Compositeκ OND JFM AMJ JAS
Dipole pattern errors − 0.227 0.240 0.260 0.878
Correlated noise 1 0.124 − 0.148 0.353 0.164
Correlated noise 2 0.110 0.046 0.280 0.242
Correlated noise 3 0.063 − 0.071 0.202 0.122
From July (0)
Compositeκ JAS OND JFM AMJ
Dipole pattern errors 0.481 − 0.001 0.005 − 0.231
Correlated noise 1 0.216 0.017 − 0.019 0.063
Correlated noise 2 0.254 − 0.114 0.166 − 0.031
Correlated noise 3 0.195 0.047 0.181 0.087

Fig. 7. The prediction errors in summer for each case in different experiments; the y-axis represents the prediction errors in Exp-L (a and c), and in 
Exp-S (b and d); while the x-axis shows those in Exp-all. Graphs a and b illustrate the results for the start month July (− 1), whereas graphs c and 
d correspond to the start month July (0).
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4. Identification of sensitive areas in the tropical Indian ocean for advancing beyond the SPB

In this section, by conducting sensitivity experiments, we identified the sensitive areas of targeted observations for positive IOD 
events. For the start month July (-1), the large values of dipole pattern initial errors are mainly located at 10◦S-0◦, 90◦E-110◦E (i.e., A of 
Fig. 4a) in the surface component, and at 5◦S-5◦N, 85◦E-105◦E (i.e., B of Fig. 4b) in the subsurface component. For the start month July 
(0), the large values of dipole pattern initial errors are mainly located at 10◦S-0◦, 60◦E-80◦E (i.e., C of Fig. 4c) in the surface 
component, and at 5◦S-5◦N, 85◦E-105◦E (i.e., D of Fig. 4d) in the subsurface component. A, B, C, and D are of the same size. The initial 
errors that are most likely to cause a significant SPB phenomenon are chosen to conduct the sensitivity experiments, and labeled as “the 
whole initial errors”. The corresponding predictions, with these whole initial errors superimposed, cause significant SPB phenomena 
and are denoted as Exp-all. For the start month July (-1), for each pair of whole initial errors, we simultaneously eliminate the initial 
errors at A from the surface component and at B from the subsurface component. Then the remaining initial errors are superimposed on 
the same initial fields as the whole initial errors in Exp-all and the model is run for 15 months. Similarly, for the start month July (0), 
initial errors at C from the surface component and at D from the subsurface component are eliminated. Subsequently, the remaining 
initial errors are superimposed on the respective initial fields and the model is integrated for 12 months. This set of experiments is 
referred to as Exp-S. In contrast, for the start month July (-1) (July (0)), we only superimpose the initial errors within the large value 
areas A (C) and B (D) to the same initial fields as the whole initial errors, and the rest of the whole initial errors are eliminated. Then we 
integrate the model for 15 (12) months and obtain the predictions. This set of experiments is called Exp-L. The only difference among 
these three types of experiments lies in the different initial errors superimposed on the initial fields.

An analysis of prediction errors in summer in Exp-all, Exp-S, and Exp-L is shown in Fig. 7. The points located beneath the diagonal 
line suggest that the prediction errors in summer in Exp-all are larger than those in Exp-S and Exp-L. Notably, the majority of points are 
located beneath the diagonal line in both start months, signifying that for most cases, prediction errors in summer in Exp-all are larger 
than those in Exp-S or Exp-L. Consequently, partially eliminating initial errors from the whole initial errors (i.e., the Exp-S or the Exp-L) 
significantly reduces prediction errors in summer, thereby improving the forecast skill of positive IOD events spanning summer. It is 
noted that, in some cases, Exp-S or Exp-L cause larger prediction errors than Exp-all. This can be attributed to the opposite effects of 
initial errors within large value areas and those outside these areas on the signs of prediction errors. Initial errors outside the large 
value areas may partially cancel the effects of initial errors within these areas on predictions by some amount. In this condition, 
keeping the full initial errors probably reduces predictions errors. Similar phenomena are also observed in Yu et al. (2012), which 

Fig. 8. The cost effectiveness of eliminating initial errors within one unit area for each individual case in Exp-S and Exp-L for (a) the start month 
July (− 1); and (b) the start month July (0); the numbers above the graphs are the average cost effectiveness in different experiments.
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identified the sensitive areas of ENSO using the Zebiak-Cane model. Of course, this is just one possible explanation for the occurrence of 
worse forecast skill, it might also be due to the imbalance among different variables after elimination of initial errors in Exp-S and 
Exp-L.

Given that the area from which the initial errors in Exp-S are eliminated, is merely one-sixth of that in Exp-L, to impartially compare 
the effects of eliminating initial errors within one unit area in different experiments on prediction uncertainties, we defined the cost 
effectiveness C as C = Impact/N = ((E1 − E0)/E0)/N, where Impact denotes the effect of eliminating initial errors in different ex-
periments on prediction errors in summer compared to Exp-all, E0 and E1 signify the prediction errors in summer in Exp-all and Exp-S 
(or Exp-L), and N denotes the area size from which initial errors are eliminated. N is set as 6 in Exp-L and 1 in Exp-S, for simplicity. A 
negative or positive value of C indicates a reduction or increase in prediction errors during summer, leading to an improvement or 
decline in forecast skill spanning summer by eliminating the initial errors per unit area. A larger absolute value of negative C signifies a 
greater improvement in forecast skill. Fig. 8 illustrates the effects of eliminating initial errors per unit area in different experiments for 
different start months. The results reveal that, for most cases, C is negative in both Exp-S and Exp-L, indicating that eliminating initial 
errors per unit area in these experiments can effectively decrease prediction errors in summer and improve the forecast skills of IOD 
events spanning summer. On average, the absolute value of C is higher in Exp-S than in Exp-L, demonstrating that eliminating initial 
errors within one unit area in Exp-S leads to a greater reduction in prediction errors and greater improvement of the forecast skills 
compared to Exp-L. This is further illustrated by their average values: the average cost effectiveness is − 15.94 % and − 16.14 % in Exp- 
S, while it is − 1.55 % and − 2.94 % in Exp-L, for two start months, respectively. This indicates that by solely eliminating initial errors in 
one-seventh of the tropical Indian Ocean in Exp-S, the prediction errors in summer can be significantly reduced by approximately 
16 %, whereas in Exp-L, the reduction is only about 2 %. As previous mentioned, the large value areas (i.e., A, B, C, and D) are closely 
associated with the development of IOD events, initial errors in these areas (i.e., Exp-L) probably develop rapidly under the Bjerknes 
feedback, resulting in large prediction errors. Conversely, when eliminating initial errors in these large value areas (i.e., Exp-S), the 
prediction errors are largely reduced.

The evolution of SSTAs over the tropical Indian Ocean for an IOD event starting from July (-1) in different experiments are pre-
sented in Fig. 9. Fig. 9a depicts the SSTA evolution of the reference positive IOD event. However, the positive IOD event is predicted as 
a negative IOD event in Exp-all, resulting in large prediction errors in summer and indicating the occurrence of SPB. Although Exp-L 
exhibits reduced prediction errors in summer compared to Exp-all, it still fails to accurately predict the positive IOD event. Conversely, 
Exp-S shows the development of a positive IOD event that closely resembles the reference IOD, resulting in smaller prediction errors in 
summer. In summary, the prediction errors in summer in Exp-S and Exp-L are smaller than those in Exp-all, especially in the case of 
Exp-S. This indicates that the prediction uncertainties in summer are particularly sensitive to initial errors at A and B (C and D) for start 
month July (-1) (July (0)).

As illustrated in Fig. 4, it is evident that initial errors in the subsurface large value areas of CEOF1 are greater than those in the 
surface large value areas. Prediction uncertainties in summer are particularly sensitive to initial errors within these large value areas. 
This raises the question of whether prediction errors in summer are more sensitive to initial errors in the subsurface large value areas 

Fig. 9. Evolutions of SSTAs (units: ◦C) over the tropical Indian Ocean for an IOD event starting from July (-1) for (a) the reference state IOD event, 
(b) Exp-all, (c) Exp-L, and (d) Exp-S.
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compared to those in the surface large value areas. To investigate this further, we conducted another sets of experiments. For the start 
month July (-1), we eliminated initial errors within surface large value area A and subsurface large value area B from the whole initial 
errors, respectively. For the start month July (0), we eliminated initial errors within large value areas C and D from the whole initial 
errors, respectively. The remaining initial errors were then superimposed on the same initial fields as the whole initial errors in Exp-all 
and integrated for 15 or 12 months for different start months. The experiments that eliminating initial errors in the surface large value 
areas were denoted as Exp-surf, while those targeting the subsurface large value areas were labeled as Exp-sub. As the sizes of the areas 
from which the initial errors are eliminated in Exp-surf and Exp-sub are the same, we merely compare the impact of eliminating initial 
errors on the prediction uncertainties in summer, defined as Impact = (E1 − E0)/E0, where E0 and E1 signify the prediction errors in 
summer in Exp-all and Exp-surf (or Exp-sub). Negative Impact indicates a decrease in prediction errors during summer compared to the 
Exp-all, while positive Impact indicate an increase. In Fig. 10, most cases show negative values of Impact in Exp-surf and Exp-sub for 
both start months, indicating that by merely eliminating the initial errors in either the surface or subsurface large value area signif-
icantly reduces prediction errors in summer when compared to Exp-all. Notably, eliminating solely the initial errors in the subsurface 
large value area results in higher absolute values of Impact than those regarding the surface large value areas for both start months. 
Specifically, the composite values are − 19.60 % (-17.22 %) in Exp-sub and − 13.78 % (-11.57 %) in Exp-surf for the start month July 
(-1) (July (0)). It is worth noting that, the area where initial errors are eliminated in Exp-sub is only half the size of that in Exp-S. 
Despite this, the improvements in Exp-sub are larger than those in Exp-S. That is, by solely eliminating initial errors in one four-
teenth of the tropical Indian Ocean in Exp-sub, the prediction errors in summer can be significantly reduced by more than 17 %. This 
suggests that solely eliminating initial errors in the subsurface large value area can largely decrease prediction errors in summer, and 
greatly improve the forecast skill. Thus, the prediction errors in summer are more sensitive to initial errors in the subsurface large value 
areas, and this area (i.e., 5◦S-5◦N, 85◦E-105◦E, at 95-meter depth) is the sensitive area of targeted observations for advancing beyond 
the SPB for positive IOD events. These results underscore the importance of conducting intensive observations in the subsurface large 
value area. By assimilating additional observations in this area to improve the accuracy of initial fields, prediction errors in summer are 
largely reduced, leading to an improvement in the IOD forecast skill. Specifically, the sensitive areas for advancing beyond the SPB and 
the WPB coincide within the same region (Feng et al., 2017). Thus, conducting intensive observations in this area not only reduce 
prediction errors in summer but also in winter, ultimately improving the forecast skill of IOD events.

As illustrated above, sensitive areas of targeted observations for advancing beyond the WPB and SPB for positive IOD events are 
located within a specific area (specifically, 5◦S-5◦N, 85◦E-105◦E, at a depth of 95 m) in the tropical Indian Ocean. Notably, prediction 
errors in both summer and winter are sensitive to initial errors within this area. Consequently, if intensive observations are conducted 

Fig. 10. The impacts of eliminating initial errors for each individual case on the prediction errors in summer in Exp-surf and Exp-sub for (a) the start 
month July (-1); and (b) the start month July (0); the numbers above the graphs represent the average impacts in different experiments.
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in this area, which season—winter or summer—would show a more significant reduction in prediction errors? To delve deeper into this 
question, we compared the impacts of eliminating initial errors in the sensitive area (i.e., Exp-sub) on prediction errors in summer and 
winter. The impacts in winter are referred to the results in Feng et al. (2017). The impacts is − 50.14 % (-59.96 %) in winter and 
− 19.60 % (-17.22 %) in summer for the start month July (-1) (July (0)). Remarkably, for both start months, the absolute values of 
impacts are larger in winter compared to summer. When initial errors in the sensitive area are eliminated, prediction errors decrease 
rapidly, with a greater reduction in winter than summer. Therefore, conducting intensive observations in this sensitive area, a more 
substantial reduction in prediction errors during winter, as opposed to summer, can be achieved, significantly improving the forecast 
skill of IOD events.

5. Summary and conclusions

This article utilizes the GFDL CM2p1 model to conduct perfect model predictability experiments, identifying the sensitive area of 
targeted observations in the tropical Indian Ocean for advancing beyond the SPB of positive IOD predictions. In these perfect model 
predictability experiments, the model is assumed to be perfect, and prediction errors are solely caused by initial errors.

The study initially delves into exploring the impact of initial error patterns on prediction uncertainties by comparing dipole pattern 
initial errors with three sets of spatially correlated noises. The findings reveal that dipole pattern initial errors, as opposed to spatially 
correlated noises, result in larger prediction errors in summer, characterized by a pronounced seasonality dependence with the fastest 
error growth in summer. In contrast, prediction errors stemming from spatially correlated noises demonstrate a lower growth rate in 
summer, potentially leading to weaker or no SPB.

Furthermore, the large values of these dipole pattern initial errors tend to be concentrated within specific areas. To assess the 
impact of initial errors within these large value areas on prediction uncertainties in summer, a series of sensitivity experiments were 
conducted. By partially eliminating initial sea temperature errors in the tropical Indian Ocean (i.e., Exp-S and Exp-L), and super-
imposing the remaining initial errors on the initial analysis fields of the corresponding IOD events, the prediction errors in summer are 
largely reduced. Particularly noteworthy was the significant decrease in prediction errors during summer when eliminating initial 
errors in both the surface and subsurface large value areas simultaneously (i.e., Exp-S), highlighting the sensitivity of prediction 
uncertainties in summer to initial errors within these specific regions. The outcomes suggest that by eliminating initial sea temperature 
errors in these large value areas, a notable reduction in prediction errors during summer can be achieved, potentially weakening or 
even eliminating the SPB phenomenon and improving the forecast skill of IOD events.

We further conducted another set of experiments to explore the impact of initial sea temperature errors in the surface and sub-
surface large value areas on prediction uncertainties of IOD events in summer. Eliminating initial errors in the surface (i.e., Exp-surf) 
and subsurface (i.e., Exp-sub) large value areas individually resulted in a decrease in prediction errors during summer, with a more 
pronounced reduction observed when eliminating initial errors in the subsurface large value area. This highlights the sensitivity of 
prediction uncertainties in summer to initial errors in the subsurface large value area. Therefore, the subsurface large value area of 
dipole pattern initial errors can be considered as a sensitive area of targeted observations for positive IOD event prediction. Notably, 
this sensitive area aligns with the region identified by Feng et al. (2017) for advancing beyond the WPB. Eliminating initial errors in 
this sensitive area led to a greater reduction in prediction errors during winter compared to summer, regardless of the start months.

Mu et al. (2017) reported that the mechanism of the evolution of the IOD signal could explain the error growth, and that Bjerknes 
positive feedback is responsible for error growth. Therefore, it is supposed that the reason for the strongest IOD signal occurring in the 
equatorial subsurface region of the eastern Indian Ocean (i.e., the sensitive area) may also explain why error growth is particularly 
pronounced in this area. The initial errors located in the equatorial subsurface eastern Indian Ocean acts as a trigger of Bjerknes 
positive feedback. It will lead to deepening (or shallowing) of the thermocline, which subsequently affects the thermocline–SST 
feedback. The altered SST further affects the sea surface wind field, inducing downwelling (or upwelling) Kelvin waves that, in turn, 
deepen (or shallow) the thermocline in the equatorial eastern Indian Ocean. Consequently, the positive (or negative) initial errors 
within this sensitive area are amplified and error growth is particularly pronounced in this area. Hence, carrying out intensive ob-
servations in this specific region and assimilating additional data to improve the accuracy of initial analysis fields can effectively 
weaken or eliminate the predictability barriers, ultimately improving the forecast skill of IOD events. Luo et al. (2007) pointed out that 
they failed to predict the strong cold signal in the eastern pole of the 1997 IOD using the Scale Interaction Experiment Frontier 
(SINTEX-F) model, which is mainly due to initial errors in the subsurface Indian Ocean. Wajsowicz (2005) emphasized that the lack of 
proper initialization of subsurface ocean observations significantly limits the forecast skill of the eastern pole. These studies have 
highlighted the importance of increasing observations in the subsurface ocean and improving the accuracy of initial fields, which is 
consistent with our conclusions.

This study suggests that increasing observations in the sensitive area in the tropical Indian Ocean lead to a greater reduction in 
prediction errors during winter than summer, leading to a more substantial improvement in forecast skill during the winter season. 
Previous researches by Liu et al. (2018) and Feng and Duan (2018) have shown that initial sea temperature errors with specific spatial 
patterns in the tropical Pacific Ocean can lead to a significant SPB phenomenon. This suggests that aside from initial errors in the 
tropical Indian Ocean, the prediction uncertainties in summer are also sensitive to initial errors in the tropical Pacific Ocean. Sensitive 
areas in the tropical Pacific Ocean for advancing beyond the SPB phenomenon probably exist. If this sensitive area in the tropical 
Pacific Ocean for positive IOD event predictions is further identified and then intensive observations are conducted in that area, it may 
further reduce prediction errors in summer and greatly improve the forecast skill of IOD events. Moreover, we focused solely on the 
impact of initial sea temperature errors in the tropical Indian Ocean on IOD predictability. Given that the IOD is a coupled 
ocean-atmosphere event, uncertainties in the initial conditions of other variables also play a significant role in IOD predictability. 
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Hence, in our forthcoming research endeavors, we aim to delve deeper into the effects of coupled initial errors on IOD predictability.
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