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ABSTRACT

In this  article,  our  nonlinear  theory  and technology for  reducing the  uncertainties  of  high-impact  ocean‒atmosphere
event  predictions,  with  the  conditional  nonlinear  optimal  perturbation  (CNOP) method as  its  core,  are  reviewed,  and  the
“spring predictability barrier” problem for El Nino‒Southern Oscillation events and targeted observation issues for tropical
cyclone forecasts are taken as two representative examples. Nonlinear theory reveals that initial errors of particular spatial
structures, environmental conditions, and nonlinear processes contribute to significant prediction errors, whereas nonlinear
technology provides a pioneering approach for reducing observational and forecast errors via targeted observations through
the application of the CNOP method. Follow-up research further validates the scientific rigor of the theory in revealing the
nonlinear mechanism of significant prediction errors, and relevant practical field campaigns for targeted observations verify
the  effectiveness  of  the  technology  in  reducing  prediction  uncertainties.  The  CNOP  method  has  achieved  international
recognition;  furthermore,  its  applications further  extend to ensemble forecasts  for  weather and climate and further  enrich
the nonlinear technology for reducing prediction uncertainties. It is expected that this nonlinear theory and technology will
play a considerably important role in reducing prediction uncertainties for high-impact weather and climate events.
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Article Highlights:
•  A novel nonlinear theory and technology have been introduced aiming at reducing uncertainty in predicting high-impact
ocean-atmosphere events.

•  The scientific rigor and effectiveness of this theory and technology have been verified through field campaign of targeted
observations.

•  Future research holds promise for integrating CNOP with artificial intelligence.
 

  
 

1.    Introduction

Studies  of  weather  and  climate  predictability  are  the
basis and key to numerical weather forecasts and climate pre-
dictions  (Thompson,  1957; Buizza  and  Palmer,  1995; Mu
et al., 2004; Duan et al., 2023a). These studies not only com-
pose  the  forefront  of  international  scientific  endeavors  in
this research field but also meet major demands such as disas-
ter prevention and reduction. The main focus of predictability

studies  is  to  delve  into  the  sources  and  mechanisms  that
lead  to  prediction  uncertainties  and  explore  methods  and
approaches to reduce uncertainties in weather and climate pre-
dictions (Mu et al., 2004).

Observational errors are the basic factors causing fore-
cast  errors  in  both  weather  forecasts  and  climate  predic-
tions.  Ever  since  the  pioneering  discovery  of  atmospheric
chaos by Lorenz (1963), nonlinearity has been widely recog-
nized to play a crucial role in the rapid amplification of initial
(observational) errors, leading to significant forecast uncer-
tainties (Toth and Kalnay, 1997; Mu et al., 2003; Ding and
Li, 2007; Duan and Huo, 2016). However, owing to the lack
of effective methods for addressing nonlinear challenges, lin-
ear  methods  such  as  the  normal  mode  (Lord  Rayleigh,
1879) and singular vector (SV; Lorenz, 1965) methods have
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been employed since the 1990s to investigate the dynamics
of  initial  error  growth  (Farrell,  1990; Molteni  and  Palmer,
1993; Palmer  et al.,  1998).  Notably,  the  SV  method,  as  a
key  technique  in  atmospheric  predictability  studies,  has
been  practically  used  in  operational  forecasting.  Well-
known institutions such as the European Centre for Medium-
Range Weather Forecasts have incorporated the SV method
into operational weather ensemble forecasts (Mureau et al.,
1993; Buizza  and  Palmer,  1995; Molteni  et al.,  1996;  see
the  link https://confluence.ecmwf.int/display/FUG/).  The
World Meteorological Organization conducted targeted obser-
vation experiments  via the SV method for  tropical  cyclone
(TC)  forecasting  within  the  international  Atmospheric  Sci-
ence Program “Observing System Research and Predictabil-
ity  Experiment” from  2005  to  2014  (THORPEX; WHO,
2011).  This  collective  effort  has  produced  a  linear  theory
and  techniques,  with  the  SV method  as  its  core,  aiming  to
effectively reduce forecast errors.

The inherent limitations of linear theory hinder its ability
to reveal the nonlinear mechanisms underlying substantial pre-
diction  errors  in  high-impact  ocean–atmosphere  events;
thus,  corresponding  linear  techniques  that  reduce  observa-
tional errors through targeted observations and mitigate pre-
diction uncertainties via ensemble forecasts face the challenge
of  significantly  increasing  the  efficacy  of  prediction  error
reduction [see the review by Duan et al. (2023a)].

In view of the limitations of SV-based linear theory and
techniques, Mu et al. (2003) fully considered nonlinear physi-
cal processes and proposed the conditional nonlinear optimal
perturbation (CNOP) method, which generalizes the optimal
perturbation  method  from  the  linear  to  nonlinear  regime.
The CNOP represents the initial error that satisfies a certain
physical  constraint  and  causes  the  largest  prediction  error.
Considering  the  effects  of  model  parameters  on  prediction
uncertainties, Mu et al. (2010)  further  upgraded  the  CNOP
to disclose the optimal combination of initial and parametric
errors  that  produces  the  largest  prediction  error  [also  see
Duan and Zhang (2010)]. The applications of CNOPs subse-
quently  extended  to  investigations  of  the  predictability  of
the El Niño‒Southern Oscillation (ENSO) and targeted obser-
vations for  TC forecasting (Mu et al.,  2007b, 2007c, 2009;
Duan and Wei, 2013), thereby establishing a new theory to
address  significant  forecast  errors  arising  from  nonlineari-
ties, environmental conditions, and initial errors of specific
spatial patterns. Moreover, a novel method to identify sensi-
tive  areas  for  targeted  observations,  which  is  based  on
CNOP spatial patterns and environmental conditions, was pro-
posed (Mu et al., 2009, 2015b). This method has been vali-
dated in practical field campaigns for targeted observations
associated  with  TC  forecasts  and  ocean  state  predictions,
and  a  new technology  has  since  been  established  that  uses
CNOP for targeted observation strategies to reduce observa-
tional and forecast errors. This collective effort has surpassed
the SV-based linear theory and technique and established a
new theory and technology, with the CNOP as its core, that
fully  considers  nonlinear  effects  and  provides  a  scientific

foundation and a technical approach to improve the prediction
accuracy of high-impact ocean‒atmosphere events.

This article reviews this nonlinear theory and technology
and examines its international recognition. In the following
section,  the  CNOP  method  and  its  calculation  are  introdu-
ced; simultaneously, the recognition level of the CNOP is pro-
vided.  In section 3,  the nonlinear theory is  interpreted,  and
associated comments are reviewed; then, in section 4, the non-
linear  technology,  together  with  relevant  field  campaigns,
for  reducing observational  errors  and forecast  uncertainties
is elucidated. Additional research on the CNOP method and
its applications is also introduced to support nonlinear theory
and  technology  in  section  5;  finally,  a  summary  and
prospects are provided in section 6.
 

2.    The method: conditional nonlinear optimal
perturbation

The SV method has played an important role in atmo-
spheric predictability studies, offering valuable insights into
weather  forecasting  and  climate  prediction  (Buizza  and
Palmer,  1995; Molteni  et al.,  1996; Moore  and  Kleeman,
1997; Palmer  et al.,  1998).  However, Mu (2000)  revealed
that SV is the optimal perturbation only when initial errors
are  sufficiently  small  and/or  the  forecast  time  period  is
short, which is an unrealistic scenario for real-world predic-
tions;  moreover,  in  practical  forecasting,  it  remains  a  chal-
lenge  to  determine  whether  initial  errors  are  sufficiently
small  and/or  if  the  forecast  time  is  short  enough.  In  addi-
tion,  the  SV is  obtained  by  calculating  the  maximum ratio
of linear development of the initial perturbation to the initial
perturbation and has to represent the direction of initial pertur-
bation  growth,  ultimately  being  unable  to  capture  the  full
impact  of  finite-amplitude  errors  on  the  prediction  results
(Mu et al., 2003; Harle et al., 2006). Therefore, the SV is lim-
ited  to  characterizing  the  initial  error  that  has  the  largest
effect  on  the  prediction  results  under  linear  assumptions.
These  limitations  require  methodological  breakthroughs
within the nonlinear regime.
 

2.1.    Conditional nonlinear optimal perturbation

Mu et al. (2002) designed a nonlinear optimization prob-
lem aimed at revealing the largest prediction error by using
observational error information as a physical constraint for ini-
tial errors and defining the maximum nonlinear development
of the initial errors as the objective function. On the basis of
this  nonlinear  optimization  problem, Mu  et al. (2003)  pro-
posed the CNOP method for exploring optimally growing ini-
tial  errors  in  the  nonlinear  regime  by  considering  the  con-
straints of the SV method mentioned above. Practically, the
predictions  are  influenced  by  both  initial  errors  and  model
errors,  as  well  as  their  interactions.  In  terms  of  this  point,
Mu  et al. (2010)  further  extended  the  CNOP  method  to
cover  optimal  combinations of  initial  and model  parameter
perturbations [also see Duan and Zhang (2010)]. This exten-
sion  increased  the  ability  of  the  CNOP  method  to  explore
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not only the effects of the initial error but also the effects of
the  model  parameter  errors,  including  their  nonlinear  cou-
pling effects. The upgraded CNOP method includes two spe-
cial cases: CNOP-I and CNOP-P. The former is the CNOP
under  the  perfect  model  scenario  in Mu  et al. (2003),  and
the  latter  is  for  the  optimal  parametric  perturbation  under
the  perfect  initial  condition  assumption.  The  upgraded
CNOP method can identify the relative importance of initial
errors  and  model  parameter  errors  and  has  subsequently
been  applied  to  predictability  studies  of  ENSO  (Duan  and
Zhang,  2010; Yu  et al.,  2012).  They  showed  that  initial
errors  with  particular  spatial  patterns  are  more  likely  than
model parametric errors to result in larger forecast errors of
ENSO events. This finding provides a theoretical foundation
for decreasing initial errors and improving ENSO prediction
accuracy (see section 3).

Many  studies  have  confirmed  that  the  CNOP  method
fully incorporates the effects of nonlinearity and transcends
the  linear  constraints  inherent  in  the  SV  method  via
dynamic analysis and/or numerical experiments in predictabil-
ity studies of ENSO, TC, and other high-impact ocean‒atmo-
sphere events [see the reviews by Duan and Mu (2009) and
Duan  et al.  (2023a, 2023b)].  Moreover,  Magnusson  et al.
(2008) suggested that the CNOP method finds the most unsta-
ble perturbations by maximizing the perturbation via the non-
linear model instead of the tangent linear model adopted by
the  SV. Winkler  et al.  (2020)  reported  that  the  SV method
misses  important  nonlinear  developments  and  that  the
CNOP method overcomes this limitation. Harle et al. (2006)
suggested  that,  compared  with  the  SV  method,  the  CNOP
method finds initial perturbations that will most likely lead
to a certain future state. Obviously, CNOP represents the opti-
mal perturbation when nonlinear processes in the model are
fully considered.

Terwisscha  van  Scheltinga  and  Dijkstra (2008)  noted
that  the  CNOP  of  a  steady  state  determines  the  dominant
time-dependent nonlinear behavior of finite amplitude pertur-
bations, and such behavior bridges the gap between the behav-
ior below the energy stability boundary and the linear stability
boundary;  they  also  noted  that,  compared  with  nonnormal
modes,  the  CNOP  displays  how  much  nonlinearity  affects
the  evolution  of  finite  amplitude  perturbations,  and  for  the
case  of  linearly  stable  multiple  equilibrium,  the  CNOP
method provides a way to compute finite amplitude stability
boundaries  of  each  equilibrium.  From this  perspective,  the
CNOP  method  is  also  more  advanced  than  linear  methods
such as SV in terms of its ability to assess the importance of
nonlinearity and related additional contributions to the under-
standing  of  weather  and  climate  stability  and  related  pre-
dictability.

Because of the progressiveness of the CNOP method in
predictability studies, Terwisscha van Scheltinga and Dijkstra
(2008)  used  the  CNOP  method  to  reveal  the  predictability
of the oceanic double gyre. Rivière et al.  (2009) adopted it
to explore the error growth dynamics of the atmospheric mois-
ture process. Wang et al. (2020a) extended it to operational

forecast models for convective-scale ensemble forecasts. In
a  review  of  the  key  progress  in  meteorological  studies  in
China  provided  by Shen  et al.  (2020),  the  authors  reported
that the CNOP method has been applied to a broad range of
predictability research at various timescales, targeted observa-
tions, and ensemble forecasts. 

2.2.    Computation  of  the  conditional  nonlinear  optimal
perturbation

Numerical computation of CNOPs is a challenge in the
context of predictability study applications. Mu et al. (2003)
addressed this challenge by providing theoretical derivations
of  the  adjoint  algorithm  for  computing  CNOP;  subse-
quently, a CNOP optimization scheme for high-dimensional
numerical  models  was  formed  by  integrating  the  advanced
optimal algorithm, e.g., the spectral projected gradient algo-
rithm (SPG2; Birgin et al.,  2000),  with a high-performance
computing cluster. The CNOP optimization system was estab-
lished  for  well-known  models  such  as  the  Zebiak–Cane
model for ENSO (104 dimensions; Mu et al., 2007b) and the
Mesoscale  Model  5  (MM5,  105 dimensions; Mu  et al.,
2007a, 2009). For clarity, we plot in Fig. 1 a diagram outlining
the  CNOP computation  process.  In  subsequent  studies,  the
CNOP  optimization  system  was  further  constructed  for
more realistic models, such as the Weather Research and Fore-
casting  model  (WRF;  105 dimensions)  for  the  atmosphere
and Regional Ocean Modeling System (ROMS; 107 dimen-
sions)  for  the  ocean  [see  the  review  by  Wang  et al.
(2020b)].  This  algorithmic  foundation  has  paved  the  way
for  applying  the  CNOP  method  to  predictability  studies
related  to  high-impact  weather  and  climate  events.  Birgin
et al. (2014) recognized that the CNOP method is a real appli-
cation of the SPG2 algorithm.

In addition to the above adjoint gradient algorithm, sev-
eral  studies  have  explored  adjoint-free  gradient  algorithms
for calculating CNOP. Wang and Tan (2010) developed an
ensemble-based  adjoint-free  gradient  algorithm  in  atmo-
spheric predictability research. Shi and Sun (2023) performed
it  via  a  sampling method in  the  field  of  mathematics. Tian
and  Feng (2017)  presented  a  nonlinear  least-squares-based
algorithm  to  calculate  CNOP  in  studies  of  atmospheric
dynamics. Moreover, some studies have investigated gradi-
ent-free  algorithms  to  solve  CNOPs. Oosterwijk  et al.
(2017)  proposed  using  principal  component  analysis  for
dimension reduction and then performing optimization to cal-
culate CNOP for studying oceanic circulation predictability.
Zhang et al. (2019) developed a modified direct search algo-
rithm based on a kernel density estimator to solve CNOP in
the field of software. Peng and Sun (2014) introduced projec-
tion skill to the differential evolution algorithm for calculating
CNOP  to  study  land  surface  predictability.  In  addition,
many  intelligent  algorithms  have  been  introduced  to  solve
CNOPs  (Mu  et al.,  2019; Zhang  et al.,  2018; Yuan  et al.,
2022, 2023; Mu et al., 2015a). In any case, the new algorithms
contribute  to  successful  applications  of  the  CNOP  method
in complex problems in various research fields and enhance
the extensiveness of CNOP applications.
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As reviewed above, the CNOP method was first proposed
for exploring optimally growing initial perturbations in nonlin-
ear  models;  subsequently,  it  was  further  generalized  to
reveal the optimal combined mode of initial and model para-
metric perturbations. Notably, in the field of fluid mechan-
ics, a similar optimal perturbation method, which is applicable
only for unraveling the optimal initial perturbation, i.e., non-
linear  optimal  perturbation  (NLOP; Pringle  and  Kerswell,
2010),  was  also  proposed  seven  years  after  that  of  the
CNOP method. To date, the NLOP method has been applied
to  research  fields  such  as  the  stability  of  fluid  mechanics,
acoustics,  and magnetics [see the review by Kerswell et al.
(2014)]. In particular, Kerswell et al. (2014) recognized that
the  NLOP method is  a  type  of  CNOP method.  The CNOP
methodology is highly important for exploring the stability
and  predictability  of  various  field  dynamics  and,  since  it
was  first  proposed,  has  triggered  interdisciplinary  research
and achieved great international attention. 

3.    A  nonlinear  theory  for  prediction  error
growth  dynamics  achieved  via  the  CNOP
method

High-impact  ocean–atmosphere  events  severely  influ-
ence the human living environment. Their onset, development
and demise are generally related to the interactions between
the  ocean  and  atmosphere  and  the  corresponding  dynamic
and  thermodynamic  processes.  The  types  of  events  often
have  different  spatial  and  temporal  scales.  For  example,
ENSO  events,  which  occur  in  the  tropical  Pacific  and
present interannual variability, and TC events, which are pow-
erful and profound tropical weather systems, are low-pressure
vortexes that occur over tropical or subtropical oceans. The
CNOP method has been applied to predictability studies of

these two types of high-impact weather and climate events,
and  a  nonlinear  theory  for  error  growth  in  high-impact
ocean–atmosphere  event  predictions  has  been  established
(Fig. 2). This section introduces this theory and reviews its
role  in  understanding  the  predictability  of  high-impact
ocean–atmosphere events. 

3.1.    Nonlinear  mechanism  of  the “spring  predictability
barrier” for ENSO events

The “spring predictability barrier” (SPB) phenomenon,
which refers to a rapid decline in prediction accuracy during
boreal  spring  when  ENSO  events  are  predicted  (Webster
and Yang, 1992; Duan and Wei, 2013), aggressively limits
the ENSO prediction level. Owing to its complex and elusive
nature, the SPB has persistently troubled both the atmospheric
and oceanic scientific communities for a long time [see the
review by Duan and Mu (2018)]. The study of the SPB is a
highly challenging frontier in the study of ENSO predictabil-
ity.

Clarifying the primary sources of prediction errors asso-
ciated with the SPB and unraveling the mechanisms behind
the growth of these errors hold significant scientific and prac-
tical  value for improving ENSO prediction accuracy (Tang
et al.,  2018).  In SPB research,  many studies have relied on
the SV method to explore error growth dynamics related to
the SPB (e.g., Thompson, 1957; Moore and Kleeman, 1996;
Xue et al., 1997; Samelson and Tziperman, 2001), in which
they described the SPB as exhibiting the maximum amplifi-
cation  of  seasonal-prediction  initial  errors  occurring  in  the
boreal  spring.  However,  for  this  scenario,  the  influence  of
nonlinear  physical  processes  on  the  SPB was  ignored,  and
the nonlinear mechanisms underlying SPB occurrence were
not revealed. In view of this oversight, Mu et al. (2007c), uti-
lizing  the  CNOP  method,  first  provided  a  new  description
of the SPB; specifically, they regarded a significant SPB as
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Fig. 1. Diagram showing the CNOP computation process.
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the phenomenon in which ENSO prediction has a large pre-
diction  error,  and  in  particular,  prominent  error  growth
occurs during the boreal spring when the prediction is made
before  and  throughout  the  spring  [also  see Duan  and  Wei
(2013)].  This  new  description  comprehensively  considers
the impact of all nonlinear physical processes on the SPB.

On the basis of the above new description of the SPB,
Mu  et al. (2007b)  and  subsequent  relevant  studies  (Duan
et al., 2009; Yu et al., 2009) employed the CNOP method to
explore the SPB occurrence mechanism, and they additionally
emphasized  the  important  role  of  CNOP  error  patterns  in
the occurrence of the significant SPB, whereas previous stud-
ies  focused  mostly  on  the  relationship  between  ENSO
events  and/or  the  climatological  seasonal  cycle  and  SPB,
although  they  sometimes  used  the  SV method  (Moore  and
Kleeman,  1996; Chen  et al.,  1997; van  Oldenborgh  et al.,
1999; Samelson  and  Tziperman,  2001).  Specifically,  they
revealed the importance of the initial errors of specific spatial
patterns, as opposed to the initial errors with a randomly dis-
tributed  spatial  pattern  and  not  aligned  with  the  linear
growth  direction  of  initial  errors  characterized  by  the  SV
method, in leading to significant prediction errors of ENSO
events (Mu et al., 2007b; Duan et al., 2009). They also eluci-

dated the crucial impact of nonlinear temperature advection
in the tropical  Pacific  on significant  SPBs.  On the basis  of
these  findings,  a  nonlinear  mechanism for  SPB occurrence
was therefore proposed: the combined effect of CNOP-type
errors, climatological seasonal cycles and ENSO events, as
well as the influence of nonlinear temperature advection in
the tropical Pacific, lead to the most significant manifestation
of the SPB phenomenon (Mu et al.,  2007c; Duan and Wei,
2013).  To date,  a detailed depiction of the SPB occurrence
mechanism  has  been  provided  in  the  regime  of  nonlinear
dynamics for ENSO events.

Kramer and Dijkstra (2013) approved the above nonlin-
ear  mechanism  of  the  SPB  and  noted  that  the  mechanism
additionally emphasizes the role of the initial error pattern,
particularly its interaction with the annual cycle and ENSO
cycle, when they reviewed the impact of the climatological
seasonal cycle or ENSO phases on the SPB explored in previ-
ous  studies. Levine  and  McPhaden (2015)  compared  the
above nonlinear mechanism of the SPB with their stochastic
mechanism and suggested that the two mechanisms are com-
plementary: one explores the importance of the initial error
pattern,  whereas  the  other  examines  the  role  of  stochastic
external forcing. The highlight of the nonlinear mechanism

 

 

Fig. 2. Sketch map of the nonlinear theory for significant error growth of high-
impact ocean–atmosphere events.
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for  the  SPB was the  effect  of  a  special  initial  error  pattern
on  the  SPB,  which  indicates  that  the  SPB  can  be  greatly
reduced by optimizing the ENSO observation network accord-
ing to the CNOP error pattern or performing ensemble fore-
casts  considering  initial  uncertainties  estimated  by  the
CNOP method. Huang et al. (2019) reported that the discov-
ery of the specific spatial structure of the initial error provides
a  new  idea  for  improving  the  ENSO  prediction  technique.
Clearly, the nonlinear mechanism of the SPB for ENSO has
acquired international recognition. 

3.2.    Nonlinear  mechanism  of  the  optimally  growing
initial error of TC track forecasting

TCs are among the most catastrophic weather conditions
and  pose  a  significant  threat  to  China,  highlighting  the
urgent need for accurate forecasts to increase disaster preven-
tion  and  mitigation  efforts.  TCs  originate  from  the  ocean.
The  challenge  lies  in  obtaining  sufficient  and  high-quality
atmospheric observations over the ocean, ultimately limiting
the  improvement  of  TC  forecasting  accuracy.  To  address
this, a new observation strategy, known as “targeted observa-
tion”,  has emerged,  which focuses on conducting intensive
observations within key sensitive areas to optimize resource
utilization (Snyder, 1996). The key issue of the targeted obser-
vation  is  to  determine  the  sensitive  area  for  preferentially
increasing additional observations (Mu, 2013). Many studies
have adopted linear methods such as SV to find the most sen-
sitive initial error and then, from this error, to identify the sen-
sitive areas for targeted observations associated with TC fore-
casts  (Buizza  and  Montani,  1999; Wu  et al.,  2007).  How-
ever,  owing to the complexity, nonlinearity,  and multiscale
nature of TC genesis and development, the SV method may
cause  deviation  in  the  resulting  sensitive  areas  from actual
areas, ultimately decreasing the efficacy of targeted observa-
tions  in  improving  the  forecast  level  of  TCs  (Mu  et al.,
2009; Yu and Meng, 2016).

In view of the limitations of SV, Mu et al. (2009) compre-
hensively  addressed  the  impact  of  nonlinear  physical  pro-
cesses on error growth for TC forecasting. They calculated
the CNOP errors and revealed the spatial distribution charac-
teristics  of  initial  errors  that  lead  to  maximum  forecast
errors of TC tracks [also see Qin et al. (2013)]. Specifically,
the  CNOP errors  were  concentrated  in  the  vortex  structure
of the TCs, particularly at the juncture with the subtropical
high-pressure zone,  which clarifies  the important  roles that
TCs and large-scale weather circulation systems play in the
amplification  of  forecast  errors  in  TC  forecasting.  CNOP
errors  for  TC  track  forecasting  were  found  to  cause  much
larger forecast errors than corresponding SV errors did; fur-
thermore,  nonlinear  advection  processes  dominated  the
enhancement of nonlinearities on error growth. On the basis
of these findings, a nonlinear mechanism for error growth in
TC  track  forecasting  is  outlined  as  follows:  the  combined
effect of CNOP-type errors,  large-scale weather circulation
systems and TCs, and nonlinear advection processes results
in the maximum forecast error of TC tracks. With advance-
ments  in  the  Advanced  Research  version  of  the  WRF

model, this nonlinear mechanism for error growth in TC fore-
casting  was  further  indicated  by  the  CNOP  errors  of  TC
track  forecasting  made  by  the  WRF  model  (Chen  et al.,
2013).

From  a  more  general  perspective,  the  nonlinear  error
growth mechanism for TC track forecasting emphasizes that
initial errors of specific spatial patterns, together with environ-
mental fields and nonlinear processes, contribute to signifi-
cant forecast errors. In fact, the CNOP errors and their interac-
tions  with  the  climatological  seasonal  cycle  and  ENSO
cycle, which are highlighted in the nonlinear mechanism of
the  SPB  for  ENSO  events,  also  elucidate  the  combined
effects of three analogous factors. On the basis of this unified
mechanism  for  ENSO  predictions  and  TC  forecasting,  a
novel nonlinear theory is naturally established, in which ini-
tial  errors in specific spatial patterns,  environmental condi-
tions, and nonlinear processes collectively result in significant
prediction errors in high-impact ocean–atmosphere event pre-
dictions (see Fig. 2).

In this nonlinear theory, specific spatial patterns of initial
errors are critical conditions for significant prediction errors
of  high-impact  ocean–atmosphere  events. Vidard  et al.
(2015) suggested that CNOP-like errors can guide improve-
ments in monitoring networks and allow one to select better
targeted observations, and Chen et al. (2018) indicated that
CNOP-like errors can help refine tropical Pacific observation
systems. From the perspective provided by these studies, non-
linear theory clearly lays a scientific foundation for using tar-
geted observations to filter out CNOP errors, thereby improv-
ing the prediction ability of high-impact ocean–atmosphere
events.
 

4.    A  nonlinear  technology  of  targeted
observation utilizing the CNOP method

Traditional observations emphasize understanding phe-
nomena and revealing facts, whereas THORPEX has shifted
its  focus  to  forecasting  demands,  highlighting  the  pivotal
role of targeted observation (see section 3) in improving TC
track forecasting ability (WHO, 2011). This observation strat-
egy  has  evolved  into  an  operational  tool  in  meteorological
departments, producing valuable data. Both THORPEX and
Chinese Taiwan’s meteorological departments have adopted
linear  methods  to  determine the  sensitive  areas  that  should
preferentially  intensify  observations,  where  they  assumed
that the fastest growth behaviors of initial errors are approxi-
mately  imitated  by  the  linear  dynamics  provided  by  SV,
ETKF (ensemble transform Kalman filter), or adjoint-based
sensitivity (Palmer et al., 1998; Bishop and Toth, 1999; Wu
et al., 2007). This limitation affects the operational effective-
ness of targeted observations, especially forecasts of anoma-
lies  with  strong  nonlinear  effects,  such  as  track  anomalies,
and the rapid intensification process of TCs.

The nonlinear theory outlined above emphasizes the in-
dispensable role of CNOP errors with particular spatial pat-
terns in causing the largest forecast error. Inspired by this non-
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linear theory, Mu et al. (2009) comprehensively considered
nonlinear effects and proposed a novel method to identify sen-
sitive areas of targeted observation on the basis of the spatial
pattern and geographical location of CNOP errors [also see
Mu  et al.  (2015b)].  Through  the  implementation  of  this
method,  the  sensitive  areas  for  quite  a  few  TC cases  were
identified  for  targeted  observations  (Mu  et al.,  2009; Chen
et al., 2013; Qin et al., 2013); furthermore, the results demon-
strated  that  the  sensitive  areas  identified  by  the  CNOP
method exhibit greater physical relevance than those deter-
mined by the SV method, thereby more effectively improving
the  accuracy  of  TC  track  forecasts.  It  is  obvious  that  the
CNOP method  is  more  applicable  than  the  SV method  for
identifying sensitive areas for targeted observations associ-
ated with TC track forecasting.

The  CNOP method  has  been  applied  in  practical  field
campaigns for TC forecasts to identify the scanning area of
the Fengyun-4A satellite (FY-4A) and the locations of drop-
sondes. From 2020 to 2022, five field campaigns were imple-
mented  by  using  FY-4A  and/or  dropsondes  (Feng  et al.,
2022; Chan et al., 2023; Qin et al., 2023). Five TCs, including
Higos  (202007),  Maysak  (202009),  Chan-Hom  (202014),
Conson  (2022113)  and  Chanthu  (202114),  were  observed
by  FY-4A  from  the  China  Meteorological  Administration
(CMA), and the achieved targeted observations reduced the
TC track errors by approximately 100 km, which were aver-
aged for three-day forecasts (Feng et al.,  2022). Simultane-
ously, the former three TCs were also observed via dropson-
des from the Hong Kong Observatory, and corresponding tar-
geted  observations  revealed  their  superiority  over  all  the
other dropsondes in improving the forecast level of the TC
track  and  intensity  (Qin  et al.,  2023).  In  particular,  for  TC
Mulan (202207) from 8 to 10 August  2022 over  the South
China Sea,  the first-ever  ground–space–sky field campaign
with enhanced observations included GIIRS (Geostationary
Interferometric  Infrared  Sounder)  microwave  soundings,
round-trip radiosondes and aircraft-launched dropsondes con-
ducted through FY-4B; the targeted observation data in the
sensitive areas identified by the CNOP method were assimi-
lated in real time into the operational numerical prediction sys-
tem of the CMA; and the observational and forecast results
were  presented  in  the  weather  discussion  of  the  CMA,
which demonstrated that assimilating the additional data col-
lected in this way had a positive impact on TC forecasts for
both  track  and  intensity,  especially  when  the  maximum
wind speed was reduced by 11% and the ability to forecast
heavy  rain  in  southern  China  was  improved  (Chan  et al.,
2023).

The CNOP method was also applied to determine the sen-
sitive area of an oceanic field campaign conducted in the sum-
mer of 2019 for the prediction of vertical thermal structure
in continental shelf seas of the Yellow Sea (Hu et al., 2021;
Liu  et al.,  2021).  The  targeted  observations  helped  refine
the structure of the initial vertical thermal structure, eventu-
ally improving the predictions of the vertical thermal structure
at  a  lead  time  of  7  days  and  reducing  the  forecast  errors

from 2.02°C to 0.88°C (Liu et al., 2021).
The  above  practical  observation  experiments  revealed

that  the  targeted  observations  that  were  obtained  on  the
basis  of  the  spatial  pattern  and  geographical  location  of
CNOP-type  errors  indeed  greatly  reduced  observational
errors and mitigated forecast errors. This process provides a
novel nonlinear technique that uses targeted observations fea-
turing  CNOP  errors  to  significantly  reduce  observational
and  prediction  errors  for  high-impact  ocean–atmosphere
events (Fig. 3).
 

5.    Follow-up  research  further  validates  and
enriches nonlinear theory and technology

The applications of CNOP to the SPB for ENSO events
and the targeted observations for TC forecasting involve non-
linear theory and technology aimed at reducing observational
errors and mitigating forecast errors. The theory and technol-
ogy highlight the crucial role of the CNOP error in causing
significant forecast error and provide a method to identify sen-
sitive  areas  for  targeted  observations  required  for  reducing
prediction  uncertainties.  This  theory  and  technology,  with
the  CNOP  method  as  its  core,  have  further  been  validated
and  enriched  by  extensive  follow-up  research.  In  this  sec-
tion, we review these advances.
 

5.1.    Further  validation  of  the  nonlinear  theory  and
technology

The CNOP method has recently been adopted to produce
optimally  growing  initial  errors  for  predictions  of  oceanic
flows  in  the  Kuroshio  extension  (Geng  et al.,  2020; Wang
et al.,  2020c), sea surface height at midlatitudes with a key
focus  on  the  role  of  mesoscale  eddies  (Jiang  et al.,  2022,
2023,  and 2024),  and  ocean  states  in  the  South  China  Sea
(Li  et al.,  2014; Liu  et al.,  2023a),  as  well  as  forecasts  of
high-impact weather events such as heavy rainfall  (Yu and
Meng,  2016, 2022; Ke et al.,  2022, 2023; Zhang and Tian,
2022), southwest vortices (Chen et al., 2021), Ural blocking
events  (Ma  et al.,  2022; Gao  et al.,  2023),  extreme  cold
events  in  East  Asia  (Dai  et al.,  2021; Han  et al.,  2023; Li
et al., 2023), Madden–Julian Oscillation (MJO) events (Wei
et al.,  2019, 2020),  and  heavy  air  pollution  events  (Yang
et al., 2022, 2023). All these optimally growing initial errors
confirmed  the  crucial  role  of  the  initial  errors  featured  by
the CNOPs in yielding large prediction errors, again illustrat-
ing the scientific rigor of the above nonlinear theory; further-
more,  the  spatial  structures  and  geographical  locations  of
the errors indicated the sensitive areas for targeted observa-
tions associated with corresponding high-impact event predic-
tions. Studies have shown that implementing targeted observa-
tions in these sensitive areas has the potential to significantly
improve forecast levels according to observation system simu-
lation experiments and/or relevant physical interpretations.

Notably, the CNOP method has been applied to design
observation paths for underwater mobile platforms and has
been  shown  to  be  highly  effective  at  sampling  sensitive
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areas identified by the CNOP method to improve prediction
accuracy (Zhao et al., 2023). In addition, the sensitive areas
determined  by  the  CNOP  method  have  been  extended  to
design  an  observing  array  over  the  tropical  Pacific  Ocean
with the aim of optimizing the original TAO (Tropical Atmo-
sphere Ocean Array) and further increasing the ENSO fore-
casting ability (Duan et al., 2018) and to lay out a cost-effec-
tive  ground meteorological  observation-station network for
increasing air quality forecasting, resulting in great improve-
ments in the PM2.5 concentration forecast ability in the Beijing
‒Tianjing‒Hebei region (Yang et al., 2022, 2023).

Obviously,  in  follow-up  research,  either  for  high-
impact  atmospheric  events  or  high-impact  oceanic  events,
even high-impact ocean‒atmospheric coupling events, nonlin-
ear theory shows its scientific rigor in interpreting why sub-
stantial prediction errors occur, whereas its relevant nonlinear
technology further illustrates its potential for greatly reducing

prediction  errors.  Thus,  nonlinear  theory  and  technology
were further validated, and they are expected to play impor-
tant roles in reducing observational errors and mitigating pre-
diction  errors  for  operational  predictions  of  high-impact
ocean–atmosphere events.
 

5.2.    Further  enrichment  of  nonlinear  theory  and
technology

The CNOP method originally included special cases of
CNOP-I  for  exploring  optimally  growing  initial  errors  and
CNOP-P for revealing optimal model parametric errors and
even  covered  the  optimal  combination  of  initial  errors  and
parametric errors that cause the largest prediction errors (see
section  2).  Now,  it  has  been  further  extended  to  CNOP-B
for  revealing  the  boundary  uncertainties  that  have  the
largest effect on forecasts (Wang and Mu, 2015) and CNOP-
F [i.e., the nonlinear forcing singular vector (NFSV) proposed
in Duan and Zhou (2013)] for exploring the external forcing
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Fig. 3. Sketch diagram of the targeted observation strategy featuring CNOP error.
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errors  and  the  combined  effect  of  various  model  errors.
Thus, a family of CNOP methods has been identified, includ-
ing CNOP-I, CNOP-P, CNOP-F, and CNOP-B (Fig. 4). All
these  CNOP  methods  highlight  the  significant  effects  of
errors  featuring  special  spatial  patterns  or  composite  struc-
tures on prediction uncertainties (Wang et al., 2020b) and fur-
ther enrich the connotation of nonlinear theory.

In addition to nonlinear technology for targeted observa-
tions, CNOP methods have recently been further applied to
studies  of  ensemble  forecasts.  Specifically,  the  O-CNOPs
method, which is based on CNOP-I, was proposed to produce
ensemble  perturbations  for  estimating  initial  uncertainties,
with applications to numerical models ranging from the con-
ceptual Lorenz-96 model to the realistic MM5 model and fur-
ther to the Advanced Research version of the WRF model.
These  methods  have been demonstrated to  have the  ability
to represent the initial error effect and promote the ensemble
forecasting ability  (Duan and Huo,  2016; Huo et al.,  2019;
Huo and Duan, 2019). Compared with operationally utilized
SVs  and  BVs  (bred  vectors),  especially  for  TC track  fore-
casts,  the  O-CNOPs  method  provides  ensemble  members
with greater spreads, but they tend to be located on the two
sides  of  real  TC  tracks  and  show  much  better  agreement
between  ensemble  spreads  and  ensemble  mean  forecast
errors  (Duan  et al.,  2023a, 2023b).  Furthermore,  the  O-
CNOPs method has been shown to be favorable for reproduc-
ing unusual TC tracks in forecasts (Zhang et al., 2023a). For
the  TC  intensity  forecasts,  the  O-NFSVs  (also  known  as
“orthogonal  CNOP-F”)  developed  from  the  CNOP-F
method were used to depict the effect of model errors, and it
was demonstrated that the ensemble members generated by
the  orthogonal  CNOP-F  have  the  ability  to  represent  the
model uncertainties affecting TC intensification and to pro-
vide much higher ensemble forecasting skills than the opera-
tionally  employed  SPPT  (Stochastically  Perturbed
Parametrization  Tendency)  and  SKEB  (Stochastic  Kinetic
Energy Back-scattering) schemes (Zhang et al., 2023b). For
convection-scale  weather  systems,  CNOP-P  and  CNOP-F
methods have been applied to extract more sensitive compo-
nents or exert more unstable perturbations on SPPT ensem-
bles, consequently increasing the ensemble forecasting ability
to a higher level (Wang et al.,  2020a; Xu et al.,  2022). The
CNOP-P has also been adopted to yield ensemble members
associated with model parametric perturbations for heatwave
event  forecasts  and  achieved  satisfying  skill  (Zhang  et al.,
2024, 2025).

Therefore, the CNOP method is becoming a new technol-
ogy  for  ensemble  forecasting.  In  fact,  in  the  early  stage
when the CNOP method was proposed, international scholars
had already regarded the CNOP method as a new ensemble
forecast  technology  (Harle  et  al.,  2006; Magnusson  et  al.,
2008);  also, Mu  and  Jiang (2008)  introduced  the  CNOP
method to SV ensemble forecasting by replacing the leading
SV with the CNOP [also refer to Jiang and Mu (2009)] and
attempted to improve the related ensemble prediction skill;
in  recent  years,  with  more  successful  applications  of  the
CNOP method in ensemble forecasts, especially in realistic
ensemble  forecasts  for  ENSO  events  (see https://soed.sio.
org.cn/emsodm.html and http://cmdp.ncc-cma.net/pred/
cn_cmme.php?Elem=CMME-ENSO),  the  CNOP  method
has been considered an important ensemble forecast method
and  included  in  the “Handbook  of  Hydrometeorological
Ensemble  Forecasting” published by Springer  (Duan et al.,
2019). Therefore, the CNOP method, as a new ensemble fore-
cast  method,  provides  a  new  nonlinear  technology  that
reduces  prediction  uncertainties  for  high-impact  weather
and climate events.

For convenience, we summarize in Table 1 the applica-
tions  of  the  CNOP  family  in  follow-up  research  on  high-
impact  ocean–atmosphere  event  predictability.  Obviously,
the applications have extended the CNOP to investigate vari-
ous scale predictability. 

6.    Summary and prospects

Linear  theory  and  techniques,  with  the  SV  method  as
its  core,  hinder  their  ability  to  reveal  the  nonlinear  mecha-
nisms  responsible  for  substantial  prediction  errors  in  high-
impact  ocean–atmosphere  events  and  face  great  challenges
in  mitigating  observational  errors  and  prediction  errors  for
realistic prediction systems. A nonlinear theory and technol-
ogy, with the CNOP method as its core, was then proposed
to  understand  the  mechanisms  of  significant  prediction
errors and then to greatly decrease prediction errors for high-
impact ocean‒atmosphere events.

In  this  paper,  nonlinear  theory  and  technology  are
reviewed. To overcome the deficiencies of the SV method,
the  CNOP  method  was  first  proposed  to  fully  incorporate
the influence of nonlinearity; furthermore, it  systematically
explores the combined effects of both initial and model param-
eter  errors.  Focusing  on  nonlinearity,  high-impact  ocean‒
atmosphere  events,  and  targeted  observations,  the  CNOP
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Fig. 4. Evolutionary map for the CNOP family.
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method has led to in-depth investigations of the ENSO SPB
mechanism  and  targeted  observations  for  TC  forecasting.
This endeavor has led to the establishment of our nonlinear
theory and technology for significantly reducing prediction
errors. This nonlinear theory emphasizes that substantial pre-
diction errors arise from nonlinearities, environmental condi-
tions,  and  spatial  patterns  of  initial  errors,  which  have
gained high recognition from the international atmosphere–
ocean community. Nonlinear technology provides a pioneer-
ing approach for identifying sensitive areas in targeted obser-
vations on the basis of the spatial  pattern and geographical
location of CNOP and provides a new way to reduce observa-
tional and forecast  errors via targeted observations through
the application of the CNOP method.

Research on high-impact ocean–atmosphere events has
further validated this nonlinear theory and technology. In par-
ticular, the scientific rigor and effectiveness of this new theory
and  technology  have  been  verified  through  its  successful
application  in  field  campaigns  involving  targeted  observa-
tions of TCs and Yellow Sea states conducted by meteorologi-
cal  departments  and  universities.  The  CNOP  method  has
been internationally recognized and applied in numerous stud-
ies  focusing  on  ensemble  forecasts  to  estimate  prediction
uncertainties, even in realistic ensemble forecasts. The appli-
cations to ensemble forecasts enrich the above nonlinear tech-
nology.

With the development of  society and the advancement
of  science  and  technology,  increasing  requirements  have
been placed on numerical weather forecasts and climate pre-
dictions  for  disaster  prevention  and  reduction.  These
include  developments  from  traditional  weather-scale  fore-

casts to multi-scale seamless forecasting and from the inde-
pendent development of observation networks or numerical
models  to  the  coordinated  development  of  observations,
data assimilation and numerical models. These requirements
present  new  challenges  for  predictability  research  in  fore-
casts/predictions of high-impact weather and climate events.
Further studies should focus on developing an efficient and
intelligent multi-scale CNOP algorithm for higher-resolution
earth system models and applying it to increasingly emerging
seamless forecasts and related practical observation experi-
ments  and  realistic  ensemble  forecasts  in  the  future.  It  is
also  expected  that  the  CNOP  method  can  be  applied  to
address  prediction  issues  of  longer  timescale  variabilities,
such as decadal trends and climate shift.

In addition, artificial intelligence (AI) models based on
meteorological big data have emerged. These AI models per-
form well in forecasting specific weather and climate phenom-
ena;  however,  the  data  may  not  be  sufficient  or  may
inevitably contain errors; therefore, AI models cannot accu-
rately  describe  the  motions  of  the  atmosphere  and  ocean.
These  errors  provide  new  chances  for  CNOP  applications.
Recently,  pioneering works have been made on AI models
for CNOP applications, as benefiting from self-contained opti-
mization  modules  and  related  high-efficiency  calculations
of  AI  models. Qin et al. (2024)  developed a  monthly  scale
AI  model  for  ENSO  forecasting  and,  using  the  CNOP
method, revealed an initial  perturbation that has significant
effects on ENSO forecasts, while Zu et al. (2025) established
a daily scale AI model for forecasts of sea surface temperature
in the South China Sea, and identified the time-varying sensi-
tive  areas  for  targeted  observation  by  CNOP.  The  CNOP

 

Table 1. Applications of CNOP in follow-up research on high-impact ocean–atmosphere event predictability.

Contents Key references

Targeted
observation

Heavy rainfall forecasts (weather, ~100 h) Yu and Meng (2016, 2022)
Southwest Vortex forecasts (weather, ~100 d) Chen et al. (2021)

Atmospheric environment forecasts (weather, ~100 d) Yang et al. (2022, 2023)
Extended-range forecasts (weather-to-subseasonal,

~101 d)
Wang et al. (2014)

Extreme cold events (S2S, ~101 d) Dai et al. (2021); Han et al. (2023)
Ural blocking forecasts (S2S, ~101 d) Ma et al. (2022); Gao et al. (2023)

MJO forecasts (S2S, ~101 d) Wei et al. (2019, 2020)
ENSO forecasts (seasonal-to-annual, ~102 d) Duan et al. (2018)
Ocean state predictions (subseasonal, ~101 d) Li et al. (2014); Liu et al. (2023a)

Kuroshio extension predictions (seasonal, ~102 d) Geng et al. (2020); Wang et al. (2020c)
Ocean mesoscale eddy predictions (weather, ~100 d) Jiang et al. (2022, 2024)

Underwater observation optimization design (weather,
~100 d)

Zhao et al. (2023)

Ensemble
forecasting

Convection-scale weather system forecasts (weather,
~100 h)

Wang et al. (2020a); Xu et al. (2022)

TC forecasts (weather, ~100 d) Zhang et al. (2023a); Zhang et al. (2023b)
Heatwave forecasts (S2S, ~101 d) Zhang et al. (2024); Zhang et al. (2025)

Realistic ENSO forecasts (seasonal-to-annual, ~102 d) https://soed.sio.org.cn/emsodm.html;
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-

ENSO
Duan et al. (2022); Liu et al. (2023b)

10 HIGH-IMPACT OCEAN-ATMOSPHERE EVENT PREDICTABILITY

 

  

https://soed.sio.org.cn/emsodm.html
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO
http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO


applications were also extended to currently widely used AI
models.  Li  et al.  (2025)a applied  the  CNOP  method  to  the
Fuxi  model  for  determining  the  sensitive  areas  of  targeted
observations associated with forecasts of TCs in the North-
west  Pacific,  while  Zhou  et al.  (2025)b adopted  the  CNOP
to  investigate  the  predictable  time  of  the  Pangu-Weather
model with respect to Bay of Bengal storm tracks from the
perspective of targeted observations. All these studies imply
that  the  combination  of  the  CNOP  method  and  AI  models
can further advance nonlinear theory and technology for atmo-
spheric and oceanic predictability, vigorously promoting the
paradigm  shift  in  the  synergistic  cognition–observation–
model cycle (Mu et al., 2025).
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