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Abstract The increasing volume of satellite data, particularly hyperspectral infrared data, combined with
the real‐time monitoring requirements of numerical weather prediction (NWP) systems, has heightened the
demand for computational efficiency and accuracy in radiative transfer models (RTM). Machine learning (ML)
offers a promising approach, and numerous studies on ML‐based RTM have emerged recently. However,
existing ML‐based RTMs for hyperspectral infrared were not end‐to‐end. Moreover, since the label data do not
represent truth, models trained with loss functions like mean squared error (MSE) or mean absolute error (MAE)
fail to account for its uncertainty. This limitation can lead to suboptimal model parameters, as training may
assign higher weights to labels with larger errors. This study construct an end‐to‐end ML‐based RTM focused
on clear sky conditions over the ocean for the FengYun‐4B satellite (FY‐4B) Geostationary Interferometric
Infrared Sounder (GIIRS), using maximum likelihood estimation (MLE) and MSE for training, respectively.
MLE accounts for the uncertainty of labels. The results indicate both models achieve high accuracy, with mean
errors within 0.1 K (K) and standard deviation (STD) of errors within 0.04 K compared to the labels. The model
trained with MLE exhibits a mean error closer to 0 and a STD similar to the error STD of labels, suggesting
better parameter configurations to reflect the actual error distribution of the labels. Additionally, the temperature
and water vapor Jacobian computed by both models are comparable to those obtained from RTTOV,
highlighting their potential for application as observational operator in satellite data assimilation for
hyperspectral infrared sounder.

Plain Language Summary Satellite hyperspectral infrared data accounts for a significant portion of
satellite data and is increasing annually. Moreover, numerical weather prediction requires real‐time monitoring
of satellites, leading to increasingly higher demands for computational efficiency and accuracy in radiative
transfer models. This article develops a machine learning‐based radiative transfer model specifically for
hyperspectral infrared sounder. The model is trained using both maximum likelihood estimation and mean
squared error. The former considers the uncertainty of the labels and both achieve high accuracy, with MLE
exhibiting even higher accuracy and better parameter configurations. Additionally, by calculating the gradients
of brightness temperature with respect to atmospheric profiles, that is, the inputs, it is found that the accuracy is
similar to that of the traditional model RTTOV, demonstrating its potential for application as observational
operator in satellite data assimilation for hyperspectral infrared sounder.

1. Introduction
Satellite data assimilation plays a crucial role in enhancing forecasting skills of NWP systems, especially
assimilating hyperspectral infrared observations which can greatly improve the initial conditions of atmospheric
and enhance the accuracy of numerical weather predictions (Cardinali & Prates, 2009; Eresmaa et al., 2017; A.
Geer et al., 2019; A. J. Geer et al., 2019; Li, Han, & Duan, 2024; McNally et al., 2014; Yin et al., 2021). On 10
December 2016, China successfully launched the FengYun‐4A satellite (FY‐4A) into a geostationary orbit. The
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satellite carries the GIIRS, which represents a significant advancement in Earth observation systems (Yang
et al., 2017). Following this success, the FY‐4B was launched on 3 June 2021, also equipped with GIIRS, making
it the second Geostationary Hyperspectral Infrared Sounder in orbit internationally, further contributing to the
enhancement of Earth observation capabilities, and the spectral range of FY‐4B GIIRS spans from 680 to
1,130 cm− 1 (8.85 to 14.71 μm) and 1,650 to 2,250 cm− 1 (4.44 to 6.06 μm) with the same spectral interval of
0.625 cm− 1 (Figure 1a). This instrument have thousands of channels with and extremely high vertical spatial
resolution, allowing precise detection of the vertical structure of atmospheric temperature and humidity
(Figures 1a–1d) and provides large‐scale, continuous, fast, and precise data, which could capture the temporal and
spatial variability for high‐impact weather or rapidly changing weather events, significantly enhancing weather
forecasting skills (Feng et al., 2022; Han et al., 2023; Li, Han, & Duan, 2024; Niu et al., 2023; Yin et al., 2021,
2022). To efficiently and accurately assimilate the FY‐4B GIIRS data, an efficient and precise RTM, serving as an
observational operator within satellite data assimilation, is indispensable. It acts as a bridge between the
observation space and the model space. The hyperspectral infrared sounder like the FY‐4B GIIRS, with its high
spatial, spectral, and temporal resolution, demands significant computational resources for data assimilation.

To improve computational efficiency, extensive research has been conducted by scholars, which can be roughly
divided into three categories. The first category focuses on relaxing the accuracy constraints for each individual
simulation, such as two streams (Meador & Weaver, 1980), low orders of scatterings (Natraj & Spurr, 2007), or
precomputed look‐up tables (Wang et al., 2011). Thewidely used radiative transfermodels, such as theCommunity
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Figure 1. Characteristics of FY‐4B GIIRS data. Panel (a) shows the brightness temperature of various channels of FY‐4B
GIIRS. The pink shaded area represents temperature channels, the green represents window channels, the purple represents
ozone channels, the blue represents water vapor channels, the orange represents carbon monoxide channels, and the cyan
represents nitrogen dioxide channels. Panel (b) displays the weight functions (WF) for each channel, panel (c) shows the
temperature Jacobian for each channel, and panel (d) presents the water vapor Jacobian.
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Radiative Transfer Model (CRTM) (X.‐M. Liang et al., 2009), the Radiative Transfer for TOVS (RTTOV)
(Saunders et al., 1999), and the recently developed Advanced Radiative Transfer Modeling System (ARMS)
(Weng et al., 2020), all rely on the aforementioned techniques. The second category aims to minimize computa-
tional costs by reducing the number of individual radiative transfer simulations within a spectral band while
maintaining calculation accuracy, such as the correlated k distribution (CKD)method (Arking &Grossman, 1972;
Fu & Liou, 1992; Kratz, 1995; Lacis & Oinas, 1991; C. Liu et al., 2015; Shi et al., 2009), the principal component
method (X. Liu et al., 2006, 2009; C. Liu et al., 2020), and the optimal spectral sampling method (Moncet
et al., 2008). The third category leverages the rapid development ofmachine learning (ML)within the context of big
data. ML offers a promising avenue for training an RTM to capture complex relationships between atmospheric
parameters and radiative variables, thereby reducing computational resources. For instance, Chevallier et al. (1998)
used anmulti layer perceptron (MLP) to simulate longwave radiation. Le et al. (2020) introduced amodel based on
the MLP to extend a small fraction of monochromatic radiances to the entire spectral range. However, its inputs
differ from traditional RTMmodels. Instead of atmospheric variables, it uses radiation from specific wavelengths.
Su et al. (2023) introduced a fast and accurate RTM for the FY‐4BGIIRS based on principal component analysis or
MLP, but themodel is not end‐to‐end. Instead of directly predicting from atmospheric variables to radiation, it uses
the standard Schwarzschild Equation to simulate brightness temperature (BT) in intermediate steps. There are also
studies based on ML that target microwaves instead of infrared (X. Liang et al., 2022), or utilize ML to replace
components within the RTM (Stegmann et al., 2022; Ukkonen, 2022).

Although ML models for infrared instruments have been developed as mentioned above, they are either not
specifically designed for hyperspectral data from geostationary satellites or are not end‐to‐end ML models.
Additionally, the loss functions utilized in the aforementioned ML‐based models is typically either mean squared
error (MSE) or mean absolute error (MAE). This implies that their learning objective is focused solely on the
model reference labels. However, the labels (either the actual observations or the BT simulated by RTM) are
inaccurate, with errors existing between the labels and the true value. Using MSE or MAE as the loss function
does not account for the magnitude of errors of labels itself between different channels, assigning equal weights to
each channel which is unreasonable. It is conceivable that if there is a large error of label in a certain channel, we
should give that channel a smaller weight during model training in order to ensure the reliability of the model.

This paper introduces an end‐to‐end hyperspectral RTM based onML for the FY‐4BGIIRS, specifically for clear‐
sky conditions over the ocean. The model features an encoder‐decoder architecture where a Bidirectional Long
Short‐Term Memory (BiLSTM) (Zhang et al., 2015) network functions as the encoder and the MLP serves as the
decoder. The MLP takes the encoded information from the BiLSTM and transforms it to produce the final output,
which predicts BT. The model proposed in this paper is named BH‐RTM. To overcome the issue of MSE treating
all channels with equal weights without considering uncertainty in different channels, this paper incorporates a
strategy akin to data assimilation (Bouttier & Courtier, 2002). We estimate the error distribution between the
labels and the true data, and then assign different weights to different channels through the error covariance
matrix, that is, the uncertainty. This loss function is derived from the likelihood function of Maximum Likelihood
Estimation (MLE), which involves finding the optimal parameters that maximize the probability of the labels,
providing more robust and accurate parameter estimation. This paper used MSE and likelihood function of MLE
as the loss functions to train the BH‐RTM, respectively, and both had high accuracy. Furthermore, the Jacobian
computed from both models were validated and found to be comparable to those from RTTOV, indicating their
potential as alternative models for traditional RTM in data assimilation.

The organization of this paper is structured as follows: Section 2 introduces the methodology employed. Section 3
provides an overview of the data used. Section 4 presents the key findings and results, and Section 5 encompasses
a comprehensive discussion, conclusions drawn from the study, as well as future prospects and directions.

2. Method
2.1. Model

The satellite radiative transfer equation typically consists of three components (Weng & Liu, 2003). The first
component describes the radiation intensity transmitted through the atmosphere after attenuation due to ab-
sorption by the medium, following reflection from the Earth's surface. The second component involves inte-
grating the thermal emission and single scattering by the medium along the upward path. The third component
considers multiple scattering. This equation indicates that radiation is accumulated layer by layer before reaching
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the satellite probe, being attenuated or enhanced through interactions with objects within the atmospheric medium
as it propagates.

As mentioned above, most ML‐based on RTM utilizes MLP. MLP takes multi‐layer variables and single‐layer
variables as inputs and learns relationships between different atmospheric layers in the hidden layers to pre-
dict BT. However, it does not explicitly connect the layers together, which means it may can not capture the flow
of information between different layers. Even though MLP shows promising results, we may not fully understand
this phenomenon. BiLSTM is a type of recurrent neural network particularly adept at handling time‐series data. Its
layer‐by‐layer processing mechanism bears similarity to radiative transfer models. The input data, representing
atmospheric profiles at different altitude layers, are fed as time steps into BiLSTM.

The BH‐RTM designed in this paper aims to simulate the atmospheric radiative transfer process and predict BT of
FY‐4B GIIRS. The specific framework of BH‐RTM is illustrated in Figure 2a. BiLSTM, serving as encoder,
processes the multi‐layer variables through multiple hidden layers bidirectionally, considering information flow
both from the surface to the top layer (forward LSTM) and from the top layer to the surface (backward LSTM).
The final hidden state of both the forward and backward LSTMs are concatenated to form a hidden vector. The
hidden vector is then combined with the single‐layer variables to create a input, integrating atmospheric profiles
and single‐layer information to provide a comprehensive set of features for the decoder. The decoder is composed
of MLP with ReLU activation function, which helps prevent overfitting and introduces non‐linearity into BH‐
RTM. This allows BH‐RTM to capture intricate patterns and interactions within the data. This layer‐by‐layer
processing of BiLSTM and information integration design not only captures the complex relationships among

Figure 2. Panel (a) shows the model framework, where the multi‐layer variables represent the atmospheric temperature and
humidity profiles, and the single‐layer variables are listed in Table 1. Panel (b) illustrates the training process. When the
weighting flag is set to “True,” the loss function incorporates label uncertainty, treating it as a weight. When the weighting
flag is set to “False,” the loss function does not account for label uncertainty.
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the various altitude layers of the atmospheric profiles but also incorporates the single‐layer variable information.
Such a design has the potential to improve the accuracy of BH‐RTM predictions and provide physical inter-
pretability for BH‐RTM. In the BiLSTM, the hyperparameter hidden size is set to 128, and num layers is set to 5.
For detailed information on the input data of the model, please refer to Section 3.

2.2. Loss Function

This paper uses two types of loss functions to train BH‐RTM. The first is the widely used MSE:

JMSE(θ) =
1
N
(y − ŷ(θ,x))T (y − ŷ(θ,x)) (1)

where y represents the label (either the actual FY‐4B GIIRS observations or the BT of FY‐4B GIIRS simulated by
RTTOV or LBL) and ŷ(θ,x) denotes the prediction from BH‐RTM, with θ being model parameters. The labels
used in this paper are detailed in Section 3. The BH‐RTM that utilizes MSE as the loss function is subsequently
referred to as BH‐RTM‐S.

However, neither actual FY‐4B GIIRS observations nor FY‐4B GIIRS BT simulated by RTTOV or LBL
represent the true BT. Therefore, the predicted results of trained BH‐RTM are only close to the BT with errors.
Assuming we know the error distribution between labels and the true BT.

yt = y + ϵ (2)

where y is label, yt is true BT, and ϵ represents the error. We assume that error ϵ follows a Gaussian distribution
with mean μ and covariance matrix Σ, where:

ϵ ∼N(μ,Σ) (3)

Here, Σ ∈ RN ∗N with N = 1682 representing the total number of FY‐4B GIIRS channels and we assume μ = 0
where μ ∈ RN . In Section 3, we will discuss the methodology for estimating the standard deviation (STD) of this
error distribution to quantify the uncertainty of labels.

Compared to MSE, using likelihood function of MLE as loss function aims to bring the prediction ŷ(θ,x) to
estimate true BT yt. The likelihood function can be written as:

L(θ;y,x) =
1
̅̅̅̅̅̅̅̅̅̅̅
2π|Σ|

√ exp(−
(y − ŷ(θ,x))TΣ− 1 (y − ŷ(θ,x))

2
) (4)

By maximizing the likelihood function, we obtain the loss function

JMLE(θ) = (y − ŷ(θ, x))TΣ− 1 (y − ŷ(θ,x)) (5)

While both Equations 1 and 5 share similarities, MLE enables the model to not only focus on the direct difference
between predicted and labels, but also to comprehensively assess the uncertainty of the labels through assigning
different weights. This, in turn, enhances the overall reliability of the BH‐RTM. Conversely, MSE primarily
strives to align the prediction of model with the labels. The BH‐RTM that uses likelihood function as the loss
function is subsequently referred to as BH‐RTM‐L. Figure 3 shows the uncertainty Σ. Analysis found that the
STD is higher in the absorption bands of water vapor and ozone, indicating significant forecast uncertainty of
RTTOV in these regions. In contrast, the uncertainty is lower in the atmospheric window regions (green shade).
Through this weighting scheme, the BH‐RTM‐L will place greater emphasis on channels with smaller uncertainty
during training, as these channels will contribute more to the loss function. Conversely, the BH‐RTM‐L will pay
relatively less attention to channels with larger uncertainty. Considering the subsequent comparison with BH‐
RTM‐S, the Σ is normalized such that the diagonal elements sum to one during training. As for how Σ is
computed, please refer to the appendix Appendix A.
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3. Data
The data set used to train the BH‐RTM includes input features and labels. The input features are divided into two
categories: single‐layer variables and multi‐layer variables (details in Table 1). The single‐layer variables include
2 m dew point temperature, surface temperature, 10 mwind speed, surface atmospheric pressure, satellite azimuth
angle, satellite zenith angle, solar azimuth angle, and solar zenith angle. The first four variables are from ECMWF
Reanalysis v5 (ERA5) (Hersbach et al., 2020), while the last four variables are from FY‐4B GIIRS L1 data
(https://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx). The multi‐layer variables are the temperature and
specific humidity atmospheric profiles data, which have 37 layers from ERA5. Some studies (Graham et al., 2019;
Hersbach et al., 2020; Tetzner et al., 2019) have evaluated the ERA5 data set and reported that it shows good
performance in variables such as the wind field, temperature and humidity, and 2‐m temperature. It is important to
note that both single‐layer and multi‐layer variables are interpolated to match the time, latitude and longitude of
the actual FY‐4B GIIRS L1 data. This interpolated data set is used for training, validating, testing.

Figure 3. The STD, used to quantify uncertainty, of the statistics. The black line represents the square root of the diagonal
elements of the Σ matrix, the red line represents the BT, and the shaded areas are consistent with those in Figure 1a.

Table 1
The Details of Data Set

Input features Labels

Names Number Data source Names Number Data source

Air temperature 37a ERA5 BT of FY‐4B GIIRS
(Ch1‐Ch1682)

1,682 Simulation of FY‐4B GIIRS
by RTTOV

Air specific humidity 37 ERA5

Surface temperature 1 ERA5

Two meter dew point temperature 1 ERA5

10 m wind speed 1 ERA5

Surface air pressure 1 ERA5

Earth azimuth 1 L1 data of FY‐4B GIIRS observation

Earth zenith 1 L1 data of FY‐4B GIIRS observation

Solar azimuth 1 L1 data of FY‐4B GIIRS observation

Solar zenith 1 L1 data of FY‐4B GIIRS observation
a1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800,825, 850, 875, 900, 925, 950, 975,
1,000 hPa.
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The labels are FY‐4B GIIRS’ BT simulated by RTTOV version 12.3, based on the input features along with the
FY‐4B GIIRS scan geometry. Using RTTOV‐simulated labels helps estimate the calculation accuracy of the
Jacobian in BH‐RTM. Considering that RTTOV simulations are inaccurate under cloud‐sky conditions, we focus
only on BT of FY‐4BGIIRS for clear‐sky conditions. Additionally, we only focused on the ocean domain to avoid
the complexity of surface emissivity.

Considering the existing FY‐4B GIIRS data, the time range for the all data set is from 31May 2023, to 31 January
2024. The corresponding ERA5 data is hourly, but only the 1st, 7th, 14th, 21st, and 28th of each month are
considered to capture the variations within a month for FY‐4B GIIRS. The data set is adequately shuffled and
roughly separated into training, testing, and validation data sets in the ratio of 8:1:1, wherein the number of
training data samples is approximately three million. Since the training, testing, and validation data set are
shuffled and redistributed from the original data set, it is not possible to extract actual prediction results for a
specific day from the testing data set, making it difficult to effectively demonstrate the generalization results.
Therefore, 2 May 2024, a specific day outside the original data set, is selected to test the generalization ability of
BH‐RTM. Since this classification results in minimal differences between the profiles in the training and test sets,
we further selected data from 1 March to 5 March 2024, as an additional data set to validate the model's
generalization capability.

Before training, the data set undergoes preprocessing. By calculating the maximum and minimum values for each
feature and label in the training data set and applying min‐max normalization to all features and labels, con-
sistency and stability of data during the training process are ensured. This preprocessing step accelerates the
training process, improves prediction performance of model, avoids numerical computation issues, and enhances
the stability and robustness of model, providing a solid foundation for subsequent modeling and analysis. During
the training process, the batch size was set to 1,024 with model trained for 200 epochs, and the optimizer used was
stochastic gradient descent (SGD). The training process is shown in Figure 2b. When the model is trained using
the likelihood function, the weighting flag is set to ‘True’; when the model is trained using MSE, the weighting
flag is set to ‘False’.

4. Results
4.1. Model Evaluation

With consistent model configuration, training is conducted using MSE and likelihood function of MLE as the loss
functions, respectively. The convergence process is shown in Figure 4. During training, the STD (Figure 4a) of the
model predictions and the labels, as well as the loss (Figure 4b), gradually decreased, indicating that the fitting
ability of model progressively improved. This trend appeared in both the training data set and the validation data
set, suggesting no overfitting occurred during the training process and both BH‐RTM‐L and BH‐RTM‐S have
generalization ability. After 200 epochs of training, it can be observed that the loss has converged. It is noteworthy
that loss value of BH‐RTM‐L is much higher than loss value of BH‐RTM‐S (Figure 4b). This is understandable,
as for BH‐RTM‐L, when the STD is small (i.e., the weight is large) and the difference between the model pre-
diction and the label is large, the loss value increases significantly. On the other hand, for BH‐RTM‐S, each error
of channel is equally weighted, so even if the difference between the model prediction and the label is large for
some channels, it does not significantly affect the overall loss. This difference in weighting results in the
BH‐RTM‐L having a higher overall loss value, especially when dealing with channels that have large weights and
where the prediction of model significantly deviates from the labels.

When evaluating model, it is crucial to not only the immediate fit between predicted BT and labels but also the
generalization ability of model. The evaluation results on the testing data set are as follows. Both BH‐RTM‐L and
BH‐RTM‐S demonstrate good simulation capabilities (Figures 5a and 5b), with the maximum difference between
the model prediction and the label being about − 0.09 K. The bias of BH‐RTM‐L in most channels is closer to
0 compared to the BH‐RTM‐S, which is especially notable in the water vapor channels (the blue shade area of
Figure 5a). Figure 5b depicts the error STD. The STD for both models is also small, generally below 0.04 K.
Notably, the error STD of BH‐RTM‐L is more similar the actual STD (the square root of ΣRML), especially in
complex absorption channels like water vapor and ozone (the blue and purple shade area of Figure 5b), out-
performing the BH‐RTM‐S. And BH‐RTM‐L has a smaller STD in the window channels. This may be attributed
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to the larger weights assigned to the window channels during training, resulting in lower STD in these channels.
This similarity suggests that the BH‐RTM‐L is better at capturing the true uncertainty, despite having a higher
overall loss during training. In summary, while both models show similar trends in error mean and STD, the
BH‐RTM‐L provides a more accurate reflection of the true error distribution, particularly in key absorption
channels, making it potentially more reliable for practical applications. To avoid losing the uniqueness of indi-
vidual profile in statistical averages, we also conducted tests on single profiles (Figure S1 in Supporting Infor-
mation S1), which showed results similar to the averaged outcomes. Additionally, to further explore the
generalization capability of the model, we evaluated the data set from March 1 to 5 March 2024 (Figure S2 in
Supporting Information S1). These results were consistent with the aforementioned findings, remaining within an
acceptable range.

To better demonstrate the generalization ability of model, we compared the predicted BT with the BT of clear‐sky
simulated by RTTOV on 2 March 2024 (the date not included in the original data set). Figure 6 illustrates the
predicted BT and the corresponding errors for data on 2 March 2024, focusing on the channel 100 which is
middle‐layer temperature channel. Both BH‐RTM‐S and BH‐RTM‐L (Figures 6a and 6b) demonstrate a close
match with the RTTOV results (Figure 6c). It is worth nothing that the predictions of BH‐RTM‐S have a mean
error of − 0.0335 K and a STD of 0.0508 K when compared to RTTOV (Figure 6e), indicating a low and

Figure 4. Model convergence process. Panel (a) shows the STD between the predictions and the labels during training, and
panel (b) shows the loss reduction process. In the figures, the solid blue line represents the result of predicted by BH‐RTM‐S
on validation set, the dashed blue line represents the result of predicted by BH‐RTM‐L on validation set, the solid red line
represents the result of predicted by BH‐RTM‐S on training set, and the dashed red line represents the result of predicted by
BH‐RTM‐L on training set.
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concentrated error distribution. The BH‐RTM‐L (Figure 6f) shows a mean error of 0.0020 K and a STD of
0.0844 K, reflecting a better ability to reduce systematic bias. The comparison between BH‐RTM‐S and BH‐
RTM‐L predictions (Figure 6d) reveals a mean error of − 0.0355 K and a STD of 0.0769 K, demonstrating
that both models are quite similar, but the BH‐RTM‐L model tends to produce predictions with slightly higher
variability. In other channels with different wavelengths (there are not shown), most channels have similar
outcomes. The BH‐RTM‐S tends to have a systematic bias that is slightly larger than that of the BH‐RTM‐L.

Figure 5. Evaluation results of the model. Panel (a) shows the mean error between the prediction of model and the labels, with
results statistically obtained on the testing data set. The black solid line represents the mean error of BH‐RTM‐S, and the
green solid line represents the mean error of BH‐RTM‐L. Panel (b) shows the error STD between the prediction of BH‐RTM
and the labels, also statistically obtained on the testing data set. The black solid line represents the error STD between
prediction of BH‐RTM‐S and labels, and the green solid line represents the error STD prediction of between BH‐RTM‐L and
labels. In the upper left corner of panel (b), the correlation between the error STD of BH‐RTM‐S, BH‐RTM‐L and the ΣRML
(Figure 3) is shown, respectively. The shaded areas have the same meaning as in Figure 1a.
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4.2. Jacobian

The Jacobian matrix of the RTM model plays a crucial role in data assimilation. This matrix helps us understand
the impact of variables in each layer on simulated BT, aiding our comprehension of how assimilating BT can
improve initial fields. In essence, the Jacobian matrix serves as a bridge between observational data and model
state in data assimilation. By quantifying the response of the observation data to model states, it facilitates more
accurate estimation of atmospheric or Earth system states, thereby advancing meteorological forecasting.
Therefore, BH‐RTM also needs to accurately simulate the Jacobian.

The calculation of the Jacobian is performed on the testing data set. For detailed analysis, six channels are chosen:
temperature channel 100, window channel 200, ozone channel 592, water vapor channel 1,352, carbon monoxide
channel 1,466, and nitrogen dioxide channel 1,600. The BH‐RTM‐S (Figures 7a–7f) demonstrates high similarity
to RTTOV across different spectral channels. The mean and STD of the temperature and water vapor Jacobian of
BH‐RTM‐S largely align with the RTTOV, indicating that the model can effectively capture the sensitivity of BT
to atmospheric variables. For temperature Channel (Ch 100) (Figure 7a), the mean of temperature Jacobian is
consistent with the RTTOV results, with highly overlapping STD. In the middle to lower layers, the water vapor
Jacobian mean aligns well with RTTOV, but some differences are noted in the upper layers. Similar results have
also been drawn in other channels (Figures 7b–7f). It can be observed that the layers with large values of tem-
perature Jacobian in all selected channels are located in the middle layer, and there are significant uncertainty of
temperature in these layers (the gray shaded areas in the left plot of each subplot in Figure 7). This indicates that
temperature in the middle layer has a considerable impact on the final BT simulation. Additionally, the tem-
perature Jacobian calculated by the BT‐RTM‐S align relatively well with RTTOV, indirectly explaining why the
simulations produced by BT‐RTM‐S are similar to RTTOV model. For the water vapor Jacobian, although all
selected channels exhibit relatively bias in the upper layers compared to RTTOV, but the uncertainty in water
vapor content at these upper levels is actually smaller than other layers (the gray shaded areas in the right plot of

Figure 6. Clear‐sky BT of channel 100 on 2 March 2024. Panel (a) shows BT simulated by BH‐RTM‐S, panel (b) shows BT
simulated by BH‐RTM‐L and panel (c) shows BT simulated by RTTOV. Panel (d) shows BT of BH‐RTM‐S minus
BH‐RTM‐L, panel (e) shows BT of BH‐RTM‐S minus RTTOV and panel (f) shows BT of BH‐RTM‐L minus RTTOV.
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each subplot in Figure 7). This suggests that this layer has a lesser impact on the final simulated brightness
temperatures.

To more clearly illustrate the characteristics of the operator for hyperspectral instruments, the temperature and
water vapor Jacobians for all 1,682 channels in GIIRS are shown. Figures 8a and 8d are calculated using RTTOV,
Figures 8b and 8e are simulated by BH‐RTM‐S, and Figures 8c and 8f show the differences between the two. For
the water vapor Jacobian (Figure 8c), the error is mainly observed in the upper atmosphere of water vapor
channels, with values ranging from − 0.04 to 0.08 K/ ln(kg/ kg). For the temperature Jacobian (Figure 8f), the
error is primarily around 200 hPa, with values between − 0.003 and 0.003K/K. Compared to the magnitude of the
Jacobians themselves, the error remains within about 5%.

The BH‐RTM‐L (Figures 9a–9f) shows larger difference with RTTOV compared to the difference between BH‐
RTM‐S and RTTOV. A similar conclusion is found across all channels (Figure 10). However, the water vapor
Jacobian (Figure 10c) is more pronounced at higher levels, while the temperature Jacobian error (Figure 10f) is
more evident at middle and lower levels. Although the water vapor Jacobian error is relatively large compared to
its magnitude, it remains within about 10%. The possible reason is that the goal of BH‐RTM‐L is to estimate the
true BT, rather than labels (RTTOV), and optimize model parameters by maximizing the probability of labels.
This method has advantages in dealing with complex error structures, but it also introduces some complexity and
uncertainty, especially in the case of ideal assumptions for the error distribution, which may lead to lower
similarity to labels (RTTOV) in Jacobian calculations. Overall, both BH‐RTM‐S and BH‐RTM‐L capture the

Figure 7. Temperature Jacobian and water vapor Jacobian calculated by BH‐RTM‐S. Each subplot, Panels (a)–(f), contains
two panels: the left panel shows the temperature Jacobian, while the right panel displays the water vapor Jacobian. The solid
gray line represents the average temperature or water vapor profile, derived from the testing data set, and the gray shading
indicates the standard deviation (STD) of temperature or water vapor, also calculated from the testing data set. The blue solid
line represents the average temperature or water vapor Jacobian calculated by BH‐RTM‐S, with the blue shading showing the
corresponding STD. The red solid line and red dashed line represent the average and STD of the temperature and water vapor
Jacobian calculated by RTTOV, respectively. Panel (a) through (f) correspond to Channel 100, 200, 592, 1,352, 1,466, and
1,600, respectively.

JGR: Machine Learning and Computation 10.1029/2024JH000449

LI ET AL. 11 of 19

 29935210, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000449 by W
ei H

an - Institution O
f A

tm
ospheric Physics , W

iley O
nline L

ibrary on [19/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sensitivity of simulated BT to atmospheric variables. The accuracy of the model still needs to be validated on
individual profile to demonstrate the practical utility of the model. We select a profile from 1 March 2024, and
compute the Jacobian (Figure 11). Here, we present the results for the temperature channels 81 and 110, the
window channels 200, and the water vapor channels 1,104 and 1,352. As seen in the results, for the temperature
Jacobian, the two ML models' Jacobian calculations at mid‐levels are close to RTTOV, while there are slight
fluctuations at higher and lower levels. For the water vapor Jacobian, both models provide relatively accurate
simulations at mid to upper levels, though slight fluctuations are still observed at the lower levels. It shows that the
temperature channels, water vapor channels and window channels are able to capture the sensitivity of brightness
temperature to the atmosphere at some extent, providing a promising approach for ML‐based assimilation of
satellite observations.

4.3. Physical Mechanism

As mentioned above, each time step of the BiLSTM corresponds to a vertical layer in the profile. By capturing
complex relationships in both upward and downward directions, it predicts BT. This approach is similar to RTM.

We use the BH‐RTM‐S for interpretability analysis. For the BiLSTM model, the forward and backward LSTM
each output a hidden state sequence (hereafter referred to as LSTMF and LSTMB), representing the information
flow from the surface to the top layer and from the top layer to the surface, respectively. For each layer, there
exists a hidden vector Hn,n = 1,2, … ,37. As shown in Figure 12, to study how the model captures the re-
lationships between layers, the hidden vectors Hn,n = 1,2, … ,37 are saved. Then each hidden vector Hn is
decoded to obtain the final output. For each channel, we can obtain a vector with a length of 37, where the last
value represents the BT of this channel.

We have selected 6 channels, namely channels 22, 96, 127, 726, 1,109, and 1,402, which correspond to high,
middle, and low‐layer temperature channels, as well as high, middle, and low‐layer water vapor channels,
respectively. As shown in Figures 13a–13f, the 37‐layer output of each channel has a good correspondence with
the forward and reverse weighting function (WF), which represents the radiative contribution of the atmosphere at

Figure 8. Temperature Jacobian (d)–(f) and water vapor Jacobian (a)–(c) of 1,682 channels calculated by BH‐RTM‐S. Panels
(a) and (d) are calculated by RTTOV. Panels (b) and (e) are calculated by BH‐RTM‐S. Panels (c) and (f) are difference
between RTTOV and BH‐RTM‐S. The profile data set used in the calculation is from the testing data set.
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Figure 9. Same as Figure 7, but the Jacobian calculated by BH‐RTM‐L.

Figure 10. Same as Figure 8, but the Jacobian calculated by BH‐RTM‐L.
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Figure 11. Temperature Jacobian (a)–(e) and water vapor Jacobian (f)–(j) of one profile. Panels (a) and (f) correspond to
channel 81, panels (b) and (g) to channel 110, panels (c) and (h) to channel 200, panels (d) and (i) to channel 1,104, and panels
(e) and (j) to channel 1,352.

Figure 12. Model Framework about the layer‐by‐layer output of the model. The “M” in the figure represents the number of
layers of the variable. In this context, M = 37.
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different altitudes to satellite instruments. And the red dot, which indicates the outcome of the dot product
calculation between the weight that is obtained by adding the forward and backward WF and normalizing and the
layer‐by‐layer output (black line), is closely aligned with the purple dot, representing the BT simulated by
RTTOV. The good correspondence between WF and output and close proximity between purple dot and red dot
demonstrate that the model has the ability to capture and integrate important information from different levels,
assigning higher weights to layers with larger WF, thereby enabling accurate BT prediction. The results of BH‐
RTM‐L are similar.

Figure 13. The layer‐by‐layer outputs of the model. The black line represents the output results at each layer of the model,
with the transverse and longitudinal coordinates corresponding to the bottom and left sides of the figure, respectively. The
solid red line indicates the forward weight function (WF), which follows the sequence from lower to higher layers, while the
dashed orange line represents the backward weight function. The transverse and longitudinal coordinates for both the red and
orange lines correspond to the top and right sides of the figure, respectively. The black filled circles correspond to the
simulated brightness temperature (BT) results from the RTTOVmodel for the corresponding channels, which are statistically
obtained from the test set. The black square dots represents the result of the dot product between the weights (which are
obtained by adding the forward and backward weight functions and normalizing them) and the layer‐by‐layer outputs
(represented by the black line). The values of black filled circles and black square dots correspond to values on the left axis.
Panels (a)–(c) represent temperature channels for the high, middle, and low layers, respectively, while panels (d)–(f)
represent water vapor channels for the high, middle, and low layers.

JGR: Machine Learning and Computation 10.1029/2024JH000449

LI ET AL. 15 of 19

 29935210, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000449 by W
ei H

an - Institution O
f A

tm
ospheric Physics , W

iley O
nline L

ibrary on [19/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.4. Computation Efficiency

The computational efficiency of the model is very important for its applica-
tion to data assimilation. We measure computation time using two methods:
processing all profiles in a single calculation and processing each profile
individually, as both modes are applied in current practices. The GPU used is
an NVIDIAH100 GPU, while CPU (Inter(R) Xeon(R) Platinum 8369B CPU)
computations are performed using a single thread. We test profile data sets of
various sizes. Due to CPUmemory limitations, RTTOV encountered memory
overflow when processing too many profiles simultaneously for FY‐4B
GIIRS. Therefore, a data set of 1,000 profiles was used for comparison
(For detailed information, please refer to Table 2). The results show that for
RTTOV, calculating one profile at a time is slightly faster. Conversely, for the
ML model, processing all profiles in one calculation proved to be more

efficient. When computing the Jacobian for 1,000 profiles on the CPU for ML model, the computation time was
significantly extended. This is attributed to two factors: First of all, the ML model is relatively large since it uses
low‐dimensional inputs (82) to simulate outputs for 1,682 channels, inherently increasing the model's size.
Second, the large number of channels necessitates sequential computation of the Jacobian, which consumes
considerable time. This aligns with the findings of Liu et al. (Q. Liu & Liang, 2023), which indicate that the
computation time for the Jacobian is directly proportional to the number of channels. Using GPU computation, the
efficiency improved substantially. Under the first mode (all profiles in one calculations), the forward computation
efficiency is enhanced by two orders of magnitude compared to RTTOV, while the Jacobian computation effi-
ciency improved by one order of magnitude. Under the second mode (each calculation for one profile), the GPU
still outperformed RTTOV. As the size of data set increased to 20,000, the GPU's forward computation efficiency
becomes even more evident, while the decrease in Jacobian computation efficiency is proportional to the increase
in data set size.

5. Conclusion and Discussion
The RTM model calculation for the hyperspectral instrument the FY‐4B GIIRS consumes a lot of computing
resources. Previous ML work for infrared instruments has been done to attempt addressing above problem, but it
is either not end‐to‐end or not for hyperspectral and it does not account for the uncertainty of labels. This article
constructed an end‐to‐end ML model for the FY‐4B GIIRS, which uses encoder‐decoder architecture. The
encoder uses BiLSTM, and the decoder uses MLP. Two models are trained, BH‐RTM‐L and BH‐RTM‐S, using
the likelihood function of MLE and MSE as their respective loss function. BH‐RTM‐S specifically targets
minimizing the discrepancy between predicted values and the RTTOV labels, while the goal of BH‐RTM‐L is to
estimate the true BT given the error probability distribution, which assigns different weights for different
channels.

The results of model evaluation showed that both models demonstrated good accuracy, with the absolute value of
the maximum difference between the two models and the label not exceeding 0.1 K, and the STD not exceeding
0.04 K. Furthermore, BH‐RTM‐L had a closer mean error to 0 in most bands, while the error uncertainty of BH‐
RTM‐L was more similar to the true error uncertainty. This indicated that the predicted results of BH‐RTM‐L
were more reliable. And similar results could be obtained by selecting a day 2 March 2024 that was not
included in the original data set. In addition, the accuracy of Jacobian was evaluated. The temperature Jacobian
and water vapor Jacobian calculated by the BH‐RTM‐S in various bands were in good agreement with the
RTTOV, while the Jacobian calculated by BH‐RTM‐L showed a slight deviation from the RTTOV calculations.
Overall, the Jacobian calculated by both models was comparable to the results calculated by RTTOV, highlighting
the potential of these models for satellite data assimilation. The high accuracy of these models could be attributed,
in part, to its BiLSTM architecture, which could bidirectionally capture the information between different at-
mospheric layers. The layer‐by‐layer output demonstrated that the model effectively captured the contribution of
each layer to the final brightness temperature, providing a degree of interpretability.

The Infrared Atmospheric Sounder Interferometer ‐ New Generation (IASI‐NG) will be embarked on the second
generation European Meteorological Polar‐orbiting Satellite (MetOp‐SG), which continues and improves the
IASI mission in the next decades in the field of operational meteorology, climate monitoring, and characterization

Table 2
Computation Time (in Seconds) for Forward and Jacobian Calculations
Across 1,682 FY‐4B GIIRS Channels

Forward Jacobian

Profile seta Per profileb Profile set Per profile

RTTOV (CPU‐1000)c 16.21 12.11 190.14 131.99

ML model (CPU‐1000) 3.09 40.71 5,134 3,714

ML model (GPU‐1000) 0.14 1.27 13.95 95.17

ML model (GPU‐20000) 0.38 24.75 246 2,100
aAll profiles in one calculation. bEach calculation for one profile. cUsing
CPU computation, the data set consists of 1,000 profiles.
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of atmospheric composition. IASI‐NG has a satellite channel number of 16,921 and a spectral sampling of 0.125
cm− 1. Hyperspectral data will bring huge burden to data storage and computing resources, but the operator
proposed in this paper has the potential to overcome this problem to some extent (Bermudo et al., 2022). The
calculation efficiency of BH‐RTM is about 0.38 s for 20,000 samples, and the time for calculating Jacobian of
1,682 channels is about 4 min for 20,000 samples. All of the above calculations are performed on an NVIDIA
H100 GPU, which has high computational efficiency and does not require a large amount of computational re-
sources. It is expected to provide a new approach for improving the operational efficiency of satellite data
assimilation.

Although the accuracy and computational efficiency of BH‐RTM demonstrate its potential, several issues remain.
The most important is that BH‐RTM is targeted at clear‐sky over ocean, which can lead to the inability to observe
on land. If it is applied to satellite data assimilation as observational operator in the future, it will miss a large
number of observations. Additionally, assumptions in the statistics of true errors, which the errors are unbiased
and the error covariance matrix is diagonal, may introduce inaccuracies. Future work should consider more
complex error distributions. Despite these limitations, BH‐RTM is successfully simulated FY‐4B GIIRS data and
can accurately characterize the Jacobian matrix, which has the potential to be applied to other satellite instruments
in the future. Currently, artificial intelligence (AI) meteorological models are developing rapidly, and some
studies have begun to consider building assimilation systems for AI models (Li, Han, Li, et al., 2024; Xiao
et al., 2023; Xu et al., 2024). This research can provide radiation transfer operators for AI models, allowing them
to assimilate FY‐4B GIIRS data, thereby providing strong support for AI to perform cyclic assimilation fore-
casting independently of traditional NWP, further promoting the application of AI in the field of meteorology.

Appendix A: Estimation of Error Distribution
To estimate the error distribution between the labels (RTTOV) and the true BT, first, we collect the error mean
μRML and covariance matrix ΣRML between RTTOV and the LBLmodel. Given the small error, it is approximately
μRML = 0 here. We assume that the error ϵRML follow Gaussian distribution with a mean of 0 and a diagonal
covariance ΣRML, that is,

ϵRML = yR − yL ∼N(0, ΣRML) (A1)

Then we mention two more assumptions:

1. The random variables representing the error ϵR between RTTOV and the true BT, and the error ϵL between
LBL and the true BT, are assumed to be mutually independent. Both are assumed to follow a Gaussian dis-
tribution with a mean of 0 and a diagonal covariance, which assumes that the errors across different channels of
FY‐4B GIIRS are mutually independent, that is,

ϵR = yt − yR ∼N(0, ΣR) (A2)

ϵL = yt − yL ∼N(0, ΣL) (A3)

where yR is the BT simulated by RTTOV and yL is the BT simulated by LBL.
2. Assuming that the LBL model is more accurate compared to RTTOV, it implies that the STD of the error

between LBL and the true BT is smaller than that between RTTOV and the true BT, meaning that the diagonal
of ΣR are much more than the diagonal of ΣL.

Based on the these assumptions, we consider the error distribution between RTTOV and LBL to be the same as
that between RTTOV and the true BT, that is, ΣRML ≈ ΣR, indicating that the former uncertainty approximates the
latter. Later on, we believe that ΣR is equal to ΣRML.
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Data Availability Statement
The ERA5 reanalysis data is available at https://www.ecmwf.int/en/forecasts/dataset/ecmwf‐reanalysis‐v5
(Hersbach et al., 2020). FY‐4B GIIRS L1 data is available at https://satellite.nsmc.org.cn/PortalSite/Data/Sat-
ellite.aspx.
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