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Abstract
Accurate meteorological forecasts from the surface to troposphere layers are cru-
cial for dust storm predictions, as even small uncertainties in meteorological
conditions can influence the transportation of dust particles, thereby signifi-
cantly affecting dust storm forecasts. Typically, a greater quantity and higher
quality of meteorological observations result in more accurate meteorological
outcomes. However, meteorological stations, especially the stations which mon-
itor tropospheric meteorological variables, are sparsely distributed and may not
be sufficient for high-quality meteorological forecasts. To address this shortfall,
this study investigates the sensitive areas for target observation to enhance mete-
orological forecasts for dust storm events that struck the Beijing–Tianjin–Hebei
(BTH) area from 2021 to 2023, using the Conditional Nonlinear Optimal Pertur-
bation (CNOP) method, which fully considers the impact of nonlinearity. For
comparison, the First Singular Vector (FSV) method, which is widely used in
operational target observation field campaigns, is also employed to identify the
sensitive areas. Results show that although the sensitive areas identified by the
two methods are both distributed in the northwest direction of the BTH region,
the FSV-based sensitive areas are much closer to the BTH region. By conducting
observing system experiments for each dust storm event, we verified numerically
and explained physically the advantages of CNOP in determining the sensitive
areas in target observation. The result highlights the importance of considering
nonlinearity when identifying the sensitive areas for target observation and may
provide a theoretical foundation for establishing upper-air radiosonde sites or
planning practical field observation campaigns.

K E Y W O R D S
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1 INTRODUCTION

Dust storms are a frequent meteorological hazard in East
Asia during the spring season. Despite China having made
notable achievements in addressing desertification in past

decades (Zhang & Huisingh, 2018), severe dust storms still
occasionally occur in northern China due to the trans-
boundary dust and sand particles, posing a serious threat
to Chinese ecological security (Vova et al., 2015; Chen
et al., 2023). Particularly since the 2020s, northern China
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has increasingly suffered from several severe dust storm
events. The super dust storm on 15 March 2021, regarded
as the most severe dust storm event in the past decade, has
affected an area covering approximately 450,000 square
kilometers and resulted in economic losses of over 30
million RMB (Yin et al., 2022). In the spring of 2023, China
experienced a total of 12 dust storm events, the highest
frequency recorded in nearly a decade (Chen et al., 2023).
The severe and frequent dust storm events not only cause
environmental pollution and affect people’s health, but
sand and dust particles can also change the radiation
balance of the earth–atmosphere system, thereby signifi-
cantly impacting the weather systems and long-term cli-
mate change (Feng et al., 2023; Shao et al., 2013). Due
to the significant impacts of dust storm events on human
society and the earth–atmosphere system, the accurate
forecast of dust storms has always been a focal and hot
research topic (Chen et al., 2024).

In contrast to statistical forecast models (i.e.,
machine-learning-based models), which primarily rely
on establishing statistical relationship between the mete-
orological variables and dust concentrations, numerical
forecast models can simulate the emission, transporta-
tion and deposition of dust particles, thereby being the
primary tool for forecasting the dust storms in both scien-
tific research and operational forecasts (Bao et al., 2019;
Kaimian et al., 2019; Gholami et al., 2020; Gong &
Zhang, 2008). Starting from the 1970s, many efforts have
been made to improve the skills of numerical forecast-
ing of dust storms, including establishing sandstorm
prediction systems, developing the parameterization of
dust emission flux and assimilating multiple sources of
observations (Gong & Zhang, 2008; Zhang & Li, 2014;
Zhang, Mu, et al., 2019a, Zhang, Sharratt, et al., 2019b).
However, due to the multiscale nature of the govern-
ing meteorological dynamics and the complex coupling
between the dust particles and meteorological variables,
the current numerical forecasting capability for sand-
storms is still insufficient and contains large uncertainties
(Chen et al., 2024; Knippertz & Todd, 2012). The Weather
Research and Forecasting (WRF) model coupled with
chemistry (WRF-Chem) model, which is a coupled model
and widely used in dust forecasts, struggles to capture
the dust observations during dust events. Specifically,
under dusty conditions characterized by aerosol optical
depths (AODs) greater than one, the correlation between
simulated and observed AOD values at the Mezaira sta-
tion, situated in a major dust source region in Saudi
Arabia, is only 0.42 (Ukhov et al., 2021). Evaluations of
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Integrated Forecasting System (IFS),
which is the operational forecast system in ECMWF, also
show that even though it can well forecast the long-range

transport regional dust event (appearance, dissolution),
the forecast peak dust concentrations remain underes-
timated (Chan et al., 2018). Using the Chinese Unified
Atmospheric Chemistry Environment for Dust forecasting
system (CUACE/Dust), which is an integrated system
for operational dust forecasting in Asia, the threat score
of 2006 spring dust storms was 0.31, 0.23 and 0.21 for
the 24-, 48- and 72-hour forecasts, respectively (Gong
& Zhang, 2008). Despite assimilating the Fengyun-3
aerosol optical depth data, the threat score only reaches
0.2 for events with a PM10 threshold of 200 μg ⋅ m−3 (Bao
et al., 2019). Recently, Chen et al. (2023) reviewed the fore-
casting capability for transboundary dust events and found
that the accuracy rate is only 30%–51%, while false alarms
peak at 49%–70%. Thus, the capability of numerical fore-
casts of dust storm events remains limited and enhancing
their numerical forecast skills is still urgently needed.

Dust storms typically occur under weather conditions
characterized by unstable atmospheric stratification and
strong surface winds (Qian et al., 2006). Moreover, the
horizontal and vertical transport of sand particles largely
depends on mid-to-lower tropospheric meteorological fac-
tors such as wind shear, temperature, and precipitation
(Gui et al., 2023; Lin et al., 2009). Thus, accurate meteo-
rological forecasts are crucial for acquiring high forecast
levels of dust storms. It has been confirmed numerically
by many previous studies that the meteorological forecasts
play significant roles in predicting the dust storms. During
the dust storm event occurring in North China from 27 to
30 March 2015, the operation departments underestimated
both the intensity and coverage area of the dust storm. By
analyzing the forecast results from ECMWF and CUACE/
Dust, An et al. (2018) showed that such underestimation is
mainly attributed to rapid changes of the weather situation
so that the transport of dust particles from south to north
was not accurately predicted. Duan et al. (2016) studied
several dust storm forecast results with the Global/Re-
gional Assimilation and Prediction Enhanced System
(GRAPES_SDM) and found the higher false rates are pri-
marily attributable to the forecast errors in near-surface
temperature and wind speed. To quantify the uncertain-
ties of meteorological fields on dust storm forecast, Lin
et al. (2009) designed a few sensitivity experiments and
showed that for a typical dust storm event that affected
Beijing city, when the mid-to-lower tropospheric wind
speed increases by only 20%, the root-mean-squared error
(RMSE) of highest PM10 concentration forecast increases
by nearly 1000 μg ⋅ m−3; while when the surface wind
speed decreases by 30%, the RMSE of PM10 concentration
decreases by 62%. The tropospheric wind fields guide the
transportation of dust particles, while the surface wind
field directly impacts the calculation of friction velocity
and then, influences dry deposition velocity and dust
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concentration (Ganor et al., 2010; Sarafian et al., 2023).
Therefore, to improve the forecast skills of dust storms, it
is crucial to provide high-quality meteorological forecasts
from surface to tropospheric atmospheric layers during
dust events.

Identifying the main sources of forecast uncertainties
and reducing the uncertainties are the fundamental ways
for acquiring high-quality meteorological forecasts. It is
widely accepted that the meteorological forecast errors
primarily stem from inaccuracies in the meteorologi-
cal initial conditions (Leith, 1974; Lorenz, 1963, 1975;
Slingo & Palmer, 2011; Toth & Kalnay, 1997). So, it is
inferred the meteorological initial errors will lead to sig-
nificant meteorological forecasts errors and then influence
the dust storm forecast accuracy. With the application of
the WRF-Chem ensemble forecast system, Bei et al. (2017)
demonstrated that the meteorological initial conditions
could lead to a rather large ensemble spread for simula-
tions of the aerosol constituent, and the ratio of ensemble
spread to the ensemble mean may exceed 50%. Similar
results can also be obtained by applying other dust ensem-
ble forecast systems (Lin et al., 2008; Zhu et al., 2009).
Thus, accurate meteorological initial states are of vital
importance for precise dust concentration forecasts. Data
assimilation is a common strategy used to reduce fore-
cast errors induced by initial errors (Bauer et al., 2015;
Talagrand, 1997). It integrates real-world measurements
with numerical model outputs and their associated error
statistics to produce a more accurate representation of
the initial state (Talagrand, 1997). To get reliable data
assimilation, sufficient and effective observations are
essential. Although thousands of ground meteorological
station have been constructed in the past few years and
assimilating them may benefit the dust storm forecast,
the stations are mainly distributed in densely populated
areas, and these surface observation data are insuffi-
cient to produce accurate dust storm forecasts. As Lin
et al. (2009) demonstrated, tropospheric meteorological
variables will further influence the transport of dust par-
ticles and thus, significantly impact the accuracy of dust
storm forecasts. Tropospheric meteorological observa-
tions are usually obtained from upper-air radiosonde sites
(https://www.weather.gov/upperair/). However, the con-
structed upper-air radiosonde sites are sparsely distributed
and may not be enough to provide a high quality of initial
conditions (Mee Kim et al., 2013). Even though the satel-
lite observations may be sufficient to provide an accurate
meteorological initial field, the assimilation of more obser-
vations may not necessarily enhance forecast accuracy
(Zhang, Mu, et al., 2019a). To significantly improve the
forecast skills, it is crucial to determine observations on
which areas should be preferentially assimilated. Assim-
ilating observations from areas with high sensitivity will

greatly enhance forecast skills. Conversely, assimilating
observations from areas with low sensitivity will result in
minimal or even negative improvements (Yang et al., 2022;
Yu et al., 2012). Therefore, identifying the areas with
high sensitivity to meteorological forecasts of dust storm
events, and assimilating additional observations on such
areas will benefit the meteorological forecasts, and then
the dust storm forecasts.

Such an idea belongs to the study of “target obser-
vation,” or “adaptive observation,” which means that
assimilating additional observations in specific areas (i.e.,
sensitive areas) can significantly improve the forecast
skills in the focused area (verification area) at a future
time (verification time), compared to other areas (Majum-
dar, 2016; Mu et al., 2015; Snyder, 1996). In 1997, the
multinational Fronts and Atlantic Storm Track Experi-
ment (FASTEX) field campaign was the first to introduce
the target observation technique to identify the sensitive
areas for realistic forecasts of frontal cyclones over Europe
(Joly et al., 1997). The success of FASTEX, with forecast
improvements of 10%–15% as a result of target observa-
tion, motivated the international Atmospheric Science
Program “Observing System Research and Predictability
Experiment” from 2005 to 2014 (THORPEX), aiming at
improving 1–4-day forecasts of phenomena such as winter
storms, tropical cyclones, and precipitation (THORPEX;
Majumdar et al., 2011). Meanwhile, theoretical studies
associated with target observation have increased such
developing methods for identifying the most sensitive
areas. Owing to its successful application in both practical
field observation experiments and theoretical research
related to various weather and climate events, includ-
ing typhoons, El Niño–Southern Oscillation (ENSO) and
mesoscale eddies, target observation has now emerged as
an effective strategy for enhancing the accuracy of numer-
ical forecasts (Chen et al., 2018; Duan et al., 2023; Feng
et al., 2022; Jiang et al., 2022; Qin et al., 2023). Actually, the
target observation strategy has been applied to improve
the meteorological forecasts for dust storm events. To
enhance the meteorological forecast accuracy for dust
events in Korea, using the adjoint method Mee Kim
et al. (2008, 2013) identified the sensitive areas of meteo-
rological fields for dust events. Through observing system
simulation experiments (OSSE), they demonstrated that
adding few observations in the sensitive areas could yield
greater enhancements in meteorological forecast per-
formance compared to adding observations randomly.
To address the issue of insufficient tropospheric meteo-
rological observations for Korean dust forecasts, on the
basis of the constructed upper-air radiosonde sites, Yang
et al. (2014) designed an additional upper-air radiosonde
observation network based on the characteristics of the
sensitive areas. Later, by applying the more advanced First
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Singular Vector (FSV) approach, Goris and Elbern (2015)
also arrived at similar conclusions, that assimilating fewer
observations on the sensitive areas could largely improve
the forecast skills of air polluted events.

However, the approaches they used to identify the
sensitive areas, whether adjoint sensitivity or FSV, are
developed assuming that initial errors evolve linearly
within a nonlinear model. This assumption does not fully
reflect the complexities of the real atmosphere. Although
assimilating the observations on the sensitive areas deter-
mined using linear methods has positive benefits for
forecast accuracy, the real atmospheric processes are
highly nonlinear and the sensitive areas determined by the
linear methods may deviate from the real sensitive areas,
significantly reducing the effectiveness of target observa-
tions in meteorological forecasts which are affected by
strongly nonlinear process. To address the limitation of
linear methods, Mu et al. (2003) proposed the Conditional
Nonlinear Optimal Perturbation (CNOP) method, which
can fully consider the nonlinear impact of the initial error
evolution. The CNOP represents the initial perturbation
that causes the largest forecast error, offering the poten-
tial to identify more effective sensitive areas. Recently, the
advantage of CNOP in identifying the sensitive areas has
been demonstrated by both theoretical studies and prac-
tical observation tasks related to tropical cyclones, ENSO
and mesoscale eddies (Duan et al., 2023; Hu & Duan, 2016;
Jiang et al., 2022; Qin et al., 2023). Such successful
attempts inspire us to investigate the role of nonlinearity
in identifying the sensitive areas of meteorological fields
for dust storm event forecasts and illustrate the role of
target observations in a more realistic way. Then we nat-
urally ask the following questions: how can we use the
CNOP method to determine the sensitive areas related to
meteorological forecasts for dust storm events? Compared
to the traditional FSV method, will assimilating target
observations on the CNOP-based sensitive areas lead to
greater improvements in forecasting skill? If so, why are
the target observations on the CNOP-based sensitive areas
more effective in enhancing forecast accuracy?

To address these questions, this study utilizes the
CNOP and FSV methods to identify the sensitive areas
related to meteorological forecasts for six severe dust storm
events that affected the Beijing–Tianjin–Hebei (BTH)
region, a major economic and metropolitan area in north-
ern China that has frequently experienced dust storms
since the 2020s. Although various methods have been
employed before to determine the distributions of sensi-
tive areas, the FSV method is compared here since it is
the key method for determining sensitive areas in oper-
ational forecasts and practical target observation field
campaigns (Parsons, 2017). First, we compare the spatial
distributions of sensitive areas determined by the CNOP

and FSV methods. Next, to verify the effectiveness of the
CNOP method, the improvements in numerical meteoro-
logical forecasts achieved by assimilating the same num-
ber of observations on the CNOP- and FSV-based sen-
sitive areas, respectively, for each dust storm event are
compared. Finally, physical interpretations on why assim-
ilating observations on the CNOP-based sensitive areas
lead to higher meteorological forecast skills are presented.
Our study may provide a theoretical basis for the deploy-
ment of upper-air meteorological detection instruments in
field campaigns or the practical establishment of upper-air
meteorological sites, thereby enhancing meteorological
forecasts and improving dust storm predictions.

The article is arranged as follows: the cases, model
and method we used are introduced in Section 2. In
Section 3, we identify the sensitive areas of meteorolog-
ical forecasts for dust storm events using the CNOP and
FSV methods, respectively. Subsequently, a comparison of
the effectiveness of CNOP and FSV in improving meteo-
rological forecasts for dust storm events through a series
of numerical experiments is presented in Section 4. In
Section 5, we attempt to provide physical interpretations
of why the target observations can lead to higher meteoro-
logical forecast skills. Finally, we summarize our study in
Section 6.

2 CASES, MODEL AND METHODS

In the study, the WRF model, along with its adjoint model
WRFPLUS, is utilized to compute the CNOP sensitivity of
meteorological fields associated with six dust storm events
in the BTH region.

2.1 Cases

From the years 2021 to 2023, six dust events reached
the levels of dust storm, significantly impacting the BTH
region (Table 1). The maximum PM10 concentration
ranges from 500 to 1550 μg ⋅ m−3. Particularly, during
21–23 March 2023, the maximum PM10 concentration
reached 1550 μg ⋅ m−3, the highest level ever recorded in
the past 10 years. This study focuses on the meteorological
forecasts related to the six dust storms. Since it usually
takes 24 hours for dust particles originating from Mongolia
(i.e., the southern Gobi region in Mongolia) to be trans-
ported to the BTH region we investigated (Piao et al., 2023),
the forecast time for each event is defined as the moment
when observed PM10 concentrations in the BTH region
peak, and two forecasts with lead times of 12 and 24 hours
are studied, respectively. Consequently, this study analyzes
a total of six 12-hour forecasts and six 24-hour forecasts.
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T A B L E 1 A brief introduction to six dust storm events that impacted the BTH region from 2021 to 2023.

Case no.
Forecast time
(UTC time, day month year)

Maximum PM10

(𝛍g ⋅ m−3)
12-hr forecast error
(wind: m⋅s−1/temp: oC)

24-hr forecast error
(wind: m⋅s−1/temp: oC)

1 0600, 15 March 2021 1481.8 6.04/3.31 6.09/3.52

2 0600, 28 March 2021 1244.0 5.07/1.21 5.23/1.39

3 1200, 15 April 2021 629.8 5.56/1.14 6.05/1.18

4 1800, 10 March 2023 561.5 6.69/2.58 6.61/2.34

5 0600, 22 March 2023 1550.8 4.67/2.26 5.04/2.83

6 1800, 10 April 2023 1037.6 5.94/2.60 6.30/2.45

Note: The forecast time and the concentration of the maximum PM10 are based on the observations on the BTH region. The 12- and 24-hour forecast errors in
wind and temperature fields averaged over the BTH region are listed.

2.2 Model configuration

We used WRF version 3.6 to generate the meteorologi-
cal forecast fields. The horizonal model domain covers
119× 119 grid points, with a horizonal resolution of
30 km. A vertical configuration with 25 levels, extend-
ing up to a top level of 100 hPa, is adopted. The physical
parameterizations used in the WRF model contain the
Yonsei University planetary boundary layer parameter-
ization scheme, Dudhia shortwave radiation scheme,
RRTMG longwave radiation and Lin microphysics scheme
(Dudhia, 1989; Hong et al., 2006; Iacono et al., 2008; Lin
et al., 1983). The same physical parameterization is also
used in its tangent linear model and adjoint model when
computing the CNOP and FSV sensitivities.

To obtain the meteorological forecasts, the National
Centers for Environmental Prediction (NCEP) GFS fore-
cast dataset is adopted to generate the initial and bound-
ary conditions for WRF simulations. Since it is hard
to obtain three-dimensional meteorological observations
that accurately describe the true state of the troposphere,
the fifth-generation ECMWF reanalysis data (ERA5) are
taken as an approximation of real observations. The ERA5
reanalysis is generated by combining large amounts of
observations and advanced numerical models and can
well describe the real atmospheric variability (Hersbach
et al., 2020).

2.3 Conditional nonlinear optimal
perturbation

Assume that a nonlinear model M acts on an
n-dimensional initial state vector x0 ∈ Rn, so that x(t) =
M(x0), where t is the forecast time, and x(t) is the state vec-
tor at forecast time t. If an initial perturbation 𝛿x0 is added
to the initial state, then the final state at forecast time t can
be written as x(t) + 𝛿x(t) =M(x0 + 𝛿x0). The 𝛿x(t) describes
the evolution of initial perturbation 𝛿x0 relative to the

reference state x(t). The CNOP (𝛿x∗
0) is the initial pertur-

bation satisfying certain constraint and has the largest
nonlinear evolution at time t, as shown in Equation (1):

J
(
𝛿x∗

0
)
= max

𝛿xT
0 C1𝛿x0≤𝛽

[M(x0 + 𝛿x0) − M(x0)]T

C2[M(x0 + 𝛿x0) − M(x0)]. (1)

𝛿xT
0 C1𝛿x0 ≤ 𝛽 is the initial constraint condition and 𝛽

is a pre-assigned positive value. C1 and C2 are matrices that
define the norms of the initial perturbation and its evolu-
tion. Obviously, the CNOP denotes the initial perturbation
with the potential to generate the largest forecast errors,
given certain constraint conditions.

As we mentioned in Section 1, meteorologi-
cal errors in wind and temperature from surface to
middle-tropospheric layers will result in large forecast
uncertainties of dust storms. Therefore, in this study, the
state vector x consists of zonal (U) and meridional wind
(V), temperature (T) and surface pressure (Ps) compo-
nents. The total dry energy norms from ground to top
in the whole model domain (D1), and from ground to
middle-level (i.e., 𝜎 = 0.5) in the verification areas (D2,
BTH region) are used to measure the initial perturbation
(Equation 2) and its evolution (Equation 3) respectively.

C = 1
D1 ∫D1 ∫

1

0

[
U′2

0 + V ′2
0 +

cp

Tr
T′2

0

+RaTr

(P′
s0

pr

)2]
d𝜎dD1, (2)

J = 1
D2 ∫D2 ∫

0.5

0

[
U′2

t + V ′2
t +

cp

Tr
T′2

t

+RaTr

(P′
st

pr

)2]
d𝜎dD2. (3)

U′, V ′,T′ and P′
s are the perturbed variables. Cp(=1005.7

J⋅kg−1⋅K−1), Ra(=287.04 J⋅kg−1⋅K−1), Tr(=270 K) and
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Pr(=1000 hPa) are physical parameters. Thus, in our study,
the CNOP-type initial perturbations, including wind, tem-
perature and pressure variables with a certain constraint
condition, will result in the largest meteorological forecast
error measured by total dry energy in the BTH region at
the forecast time.

After we clarified the optimization problem, the spec-
tral projected gradient 2 (SPG2) algorithm is adopted to
compute CNOP (Birgin et al., 2001). The SPG2 algorithm
is an optimization method designed for solving a min-
imum problem of nonlinear function with certain ini-
tial condition constraints. Thus, when we compute the
CNOP concerned here, we rewrote Equation (1) as
Equation (4).

J′
(
𝛿x∗

0
)
= min

𝛿xT
0 C1𝛿x0≤𝛽

− [M(x0 + 𝛿x0) − M(x0)]T

C2[M(x0 + 𝛿x0) − M(x0)] (4)

The SPG2 uses gradient descent combined with a pro-
jection step to handle constraints. The specific steps are
as follows. First, a first guess of initial perturbation (𝛿x1

0)
is added to the initial state x0. Then the WRF model is
integrated forward, with the initial state x0 + 𝛿x1

0. At the
forecast time t, we can get the forecast state M

(
x0 + 𝛿x1

0
)
.

By subtracting the reference state M(x0), we can get
J′(𝛿x1

0). Then the gradient of J′(𝛿x1
0) with respect to the

initial perturbation (𝛿x1
0) is calculated, using the adjoint

model of WRF. Theoretically, the gradient represents the
fastest descending direction of the cost function. In numer-
ical experiments, the gradient keeps a fast-descending
direction but is not necessarily the fastest. We still need
to update the initial perturbation using the gradient and
project the perturbation to satisfy the initial constraint.
Then the updated initial perturbation is added to the ini-
tial state and the WRF model is forward-integrated again.
By iterative forward and backward integration using WRF
and its adjoint model governed by SPG2, the initial per-
turbation is optimized. The algorithm terminates when
the convergence criteria are met, and then the optimized
initial perturbation, which is CNOP, can be obtained. For
more details, please refer to Yang et al. (2023).

2.4 First singular vector

CNOP is a natural generalization of FSV in nonlinear
dynamical regime. To facilitate their comparison, we also
briefly introduce the FSV method in this section.

The FSV method, which is the key method in oper-
ational forecasts and practical target observation field
campaigns, represents the fast-growing perturbation in a
linearized model (Parsons, 2017; Peng & Reynolds, 2006).

To describe the linear evolution of initial perturbation,
the forward-tangent propagator L is used. If there is an
initial perturbation (𝛿x0) on the initial state, then the
evolution of the initial perturbation at forecast time t can
be presented as 𝛿xt = L(𝛿x0). In that case, the optimiza-
tion problem defined in Equation (1) can be rewritten
via Equation (5).

J
(
𝛿xL

0
)
= max

𝛿xT
0 C1𝛿x0≤𝛽

[L(𝛿x0)]TC2[L(𝛿x0)] (5)

The format of both initial and final perturbations is
consistent with those used in the CNOP method. More-
over, the amplitude of the constraint for FSV-type error is
the same as that for CNOP.

The computation of FSV is also similar to that of CNOP,
with the primary difference being the forward models used
for integration in the optimization process. For FSV, the
tangent linear model of WRF is employed, whereas the
nonlinear WRF model is used for CNOP.

3 THE SENSITIVE AREAS OF
METEOROLOGICAL FIELDS FOR
THE DUST STORM EVENTS

In this section, we first show the meteorological forecast
errors during the dust storm events, which will influence
the transport and deposition of dust particles, thereby the
accuracy of dust storm forecast skills. To reduce the mete-
orological forecast errors, we computed the CNOP- and
FSV-type initial errors in the concerned dust storm fore-
casts. Based on these initial errors, the sensitive areas
of meteorological forecasts for each dust storm event are
identified, respectively.

3.1 The meteorological forecast errors
of the dust storms

The dust storm events in the BTH region usually occur
under the conditions of strong wind and low tempera-
ture. In this study, as mentioned in Section 2.1, a total of
twelve forecasts at the time when observed PM10 concen-
trations reached their maximum with lead times of 12 and
24 hours are studied. To quantify the meteorological fore-
cast error, we generated the meteorological forecasts by
the WRF model initialized by GFS data, which are con-
sidered as “control forecast.” The ERA5 reanalysis data
are taken as the “observation” data (the “truth”) since
they are created by combining large amounts of obser-
vation with the advanced model and have been widely
accepted as an approximation of the real atmospheric con-
dition (Hersbach et al., 2020). The discrepancies between
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the control forecast and the “truth” are forecast errors.
Table 1 summarizes the wind and temperature forecast
errors averaged from surface to mid-troposphere level
(P = 500 hPa) on the BTH region at the forecast time.
For the 12-hour forecasts, the average forecast error in
wind fields is 5.66 m⋅s−1 and 2.18◦C in the tempera-
ture field; while for the 24-hour forecasts, the mean
error is 5.89 m⋅s−1 in wind fields and 2.29◦C in temper-
ature fields. For the event occurring at 1800 10 March
2023, the meteorological forecast errors of wind and tem-
perature can reach 6.61 m⋅s−1 and 2.34◦C. According to
Lin et al. (2009) and Bei et al. (2017), small uncertain-
ties of wind field may lead to large aerosol concentra-
tion forecast errors. Thus, the capability of meteorolog-
ical forecasts for the dust storm events is limited and
efforts are still needed to enhance the meteorological
forecast levels.

The target observation strategy aims to enhance fore-
cast accuracy by reducing initial errors in numerical fore-
casts. As we introduced in Section 2.2, the CNOP rep-
resents the initial error that has the largest nonlinear
evolution in the focused region at the forecast time. The
areas where large CNOP-type errors are concentrated
likely contribute most to forecast errors and can therefore
be regarded as the sensitive areas for target observation.
Preferentially eliminating the initial errors in such sen-
sitive areas by data assimilation could help enhance the
forecast skills in the focused region at the forecast time
to a large extent. This process is essentially a form of
observing-system experiment (OSE, Kalnay, 2002). Thus,
in our study, we first computed the CNOP in the control
run and identified the sensitive area based on that. The
meteorological observations over the sensitive areas are
extracted from the ERA5 reanalysis, including wind speed,
wind direction, temperature at the surface, 850-, 700-, 500-,
300-, and 200-hPa layers, which are general meteorolog-
ical variables monitored in the field campaigns. These
observations are then assimilated into the control fore-
cast (forecast initialized by GFS data) through the 3DVar
assimilation system of WRF, finally obtaining an updated
forecast, which is called the assimilation forecast. If the
assimilation forecast is much closer to the truth than the
control forecast, it indicates that the sensitive areas are
effective. Similarly, the FSV-type errors are also computed
in the control run and the relevant sensitive areas are iden-
tified. Another assimilation forecast can then be generated
by assimilating the observations from the FSV-based sensi-
tive areas. If assimilating the same number of observations
from the CNOP-based sensitive areas results in higher
meteorological forecast skills than assimilating those from
the areas identified based on FSV, it indicates that the
CNOP-based sensitive areas are more effective in target
observations.

3.2 The sensitive area
of meteorological fields for dust storm
forecasts determined by CNOP-type errors

In the previous subsection, we showed the meteorological
forecast errors for the dust storm predictions. To improve
the meteorological forecasts during the Asian dust events,
Yang et al. (2014) designed an additional observation net-
work based on the linear method and have shown the
effectiveness of additional simulated meteorological obser-
vations for improving the meteorological forecast skills
through OSSEs. Such a successful attempt inspires us to
further adopt the nonlinear CNOP method to determine
the sensitive areas for dust storm forecasts and illustrate
the role of observations in a more realistic way. It is
expected that when the “real” observations are assimi-
lated for the sensitive areas which are determined by fully
considering the impacts of nonlinear processes, higher
forecasting skills of the meteorological conditions can be
obtained.

Now we calculate the CNOP-type errors in each con-
trol forecast, as introduced in Section 2.3; in total, twelve
CNOP-type errors are obtained. Since in each forecast, the
large CNOP components (U,V or T) at different vertical
levels may be distributed in different areas (see Figure S1),
we refer to Yang et al. (2022) and adopt the vertical inte-
gral to evaluate the comprehensive sensitivity of CNOP
(Equation 4). The Total Dry Energy norm (TDE) considers
all the concerned meteorological variable perturbations
and measures the comprehensive initial sensitivities. In
this situation, the meteorological forecasts could be sen-
sitive to the areas with larger values of TDE (sensitive
areas), and preferentially eliminating the initial errors on
such sensitive areas by data assimilation may help enhance
meteorological forecast accuracy more effectively than
addressing errors in other areas, ultimately improving the
dust storm forecast levels.

TDE = 1
2

(
U′2 + V ′′2 +

Cp

Tr
T′′2 + RaTr

(
P′

Pr

)2
)
. (6)

Figure 1 presents the horizonal distribution of the TDE
for the 12-hour forecasts in six dust storm events. Even
though the specific structures of the sensitive areas are dif-
ferent, five out of six sensitive areas are lying in the region
of eastern Mongolia. This implies that the uncertainties
of meteorological initial conditions in the eastern part of
Mongolia play important roles for the 12-hour meteorolog-
ical forecasts in the BTH region for most of the concerned
dust storm events. In particular, for the case that occurred
at 1800 UTC 10 March 2023, besides eastern Mongolia,
some regions in the western part of the BTH region, such as
central parts of Shanxi Province, also present as sensitive
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(a) (b) (c)

(d) (e) (f)

F I G U R E 1 The spatial distributions of the TDE (units: J⋅kg−1) values computed from Conditional Nonlinear Optimal Perturbation
(CNOP)-type error (shaded) and FSV-type error (contour line in blue) for the 12-hour forecasts in the six dust storm events concerned. (a)
The case occurring at 0600 UTC on 15 March 2021; (b) the case occurring at 0600 UTC on 28 March 2021; (c) the case occurring at 1200 UTC
on 15 April 2021; (d) the case occurring at 1800 UTC on 10 March 2023; (e) the case occurring at 0600 on 22 March 2023; and (f) the case
occurring at 1800 on 10 April 2023. [Colour figure can be viewed at wileyonlinelibrary.com]

areas. For the case that occurred at 1800 UTC on 10 April
2023, the sensitive areas are not located in eastern Mon-
golia, but are much more western, mostly located in the
western Inner Mongolia.

When the lead time increases from 12 to 24 hours,
the sensitive areas are more to the northwest of the BTH
region (Figure 2). Even though the specific structure of
sensitive areas depends on each case, five out of the six sen-
sitive areas are mostly located around the northern part
of Mongolia, closer to the southern part of Lake Baikal.
This indicates that the southern part of Lake Baikal may
be a sensitive area for 24-hour meteorological forecasts of
most dust storm events. For the forecast at 1800 UTC on 10
April 2023, the sensitive area becomes much more west-
erly as well. The large TDE values are arranged from the
western side of Inner Mongolia to central Inner Mongolia.
Preferentially reducing the errors over the regions in Inner
Mongolia may benefit the meteorological forecasts.

From the spatial distributions of CNOP-based sensitive
areas presented above, we find that eastern Mongolia, near
the city of Ulaanbaatar, is a sensitive area for the 12-hout
meteorological forecasts in most dust storms; while the
northern parts of Mongolia, closer to the southern parts of
Lake Baikal, are sensitive areas for 24-hout meteorological
forecasts in most dust storm events.

3.3 The sensitive area
of meteorological fields for dust storm
forecasts determined by FSV-type errors

The FSV method is the key method to identify the sen-
sitive areas in operational forecasts and practical target
observation field campaigns (Parsons, 2017; Peng &
Reynolds, 2006). For each meteorological forecast, the
FSV-type error, which includes the same meteorological
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(b) (c)

(d) (e) (f)

(a)

F I G U R E 2 The same as Figure 1 but for the 24-hour forecasts. [Colour figure can be viewed at wileyonlinelibrary.com]

variables with the CNOP-type errors, is computed.
Similarly, a total of twelve FSV-type errors are obtained
and the TDE is also used to measure the comprehensive
initial sensitivities. For the 12-hour meteorological fore-
casts, the FSV-based sensitive areas are to the northwest
of BTH as well. However, compared to the CNOP-based
sensitive areas, they are much closer to the BTH area,
primarily lying in central Inner Mongolia (i.e., Xilingol
League), and the northern part of Hebei province. The spa-
tial distances between the CNOP- and FSV-based sensitive
areas are case-dependent. For the forecast at 1800 on 10
April 2023, the FSV-based sensitive area exhibits overlap
with some parts of the CNOP-based sensitive areas. The
spatial distance between the most sensitive grid points
identified by the two methods is 189 km. Conversely, for
the forecast at 0600 on 28 March 2021, the sensitive areas
identified by the two methods are further apart and the
most sensitive grid points are 670 km apart.

When the lead time increases from 12 to 24 hours,
the FSV-based sensitive areas are distributed further
apart from those identified by CNOP-type errors. As we
showed earlier, the CNOP-based sensitive areas are mostly

located in the southern part of Lake Baikal; however, the
FSV-based sensitive areas are much more southern than
that. The distributions are also largely dependent on each
case. For the cases at 0600 UTC on 22 March 2023 and 1800
UTC on 10 April 2023, the sensitive areas identified by
FSV are closer to the northwestern part of the BTH region,
while the sensitive areas for the cases at 0600 UTC on 15
March 2021 and 1800 on 10 March 2023 are distributed
in the northern part of Mongolia. Western Inner Mon-
golia is a sensitive area for the remaining two cases. For
the forecast at 0600 on 15 March 2021, some parts of the
sensitive areas identified by the two methods overlapped.
The spatial distance between the two sensitive areas is
263 km. For the other forecasts, the distance range of the
sensitive areas identified by the two methods is between
416 km and 819 km, much further than for the 12-hour
forecasts.

Till now, we used the CNOP and FSV methods sepa-
rately to determine the sensitive area of the meteorological
field for dust storm forecasts and compared the spatial
distributions. We found significant differences in the spa-
tial distribution of the sensitive areas identified by the
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two methods. Although they are both distributed in the
northwest of BTH, the FSV-based sensitive area is much
closer to the BTH region. Theoretically, CNOP can fully
account for nonlinear effects, which enables it to provide
more accurate sensitive areas. However, in actual fore-
casts, the effectiveness of CNOP-based sensitive areas in
enhancing the accuracy of meteorological forecasts for
dust storm events has not yet been numerically validated.
Will deploying and assimilating observations on the CNOP
sensitive area lead to higher meteorological forecasting
skills for dust storm events compared to FSV? This ques-
tion will be explored in the following section.

4 THE COMPARISON OF CNOP
AND FSV ON IMPROVING THE
METEOROLOGICAL FORECAST
SKILLS FOR DUST STORM EVENTS

After the sensitive areas are determined separately using
the CNOP and FSV methods, we will verify their effec-
tiveness in improving the meteorological forecast skills
through numerical experiments. Additionally, we will
compare the improvements in meteorological field fore-
casting resulting from the assimilation of an equal number
of observations on the CNOP- and FSV-based sensitive
areas, with the aim to offer theoretical suggestions for field
campaign implementation.

Specifically, in each forecast, we select the top 50, 100
and 150 grid points with the highest TDE value computed
from CNOP-type errors. In this way, three new observa-
tion networks are constructed which are determined by
CNOP-type errors but with different numbers. Similarly,
the observation network determined by FSV-type errors
is designed as well. in this way, in each forecast, six obser-
vation networks which are determined respectively by
CNOP and FSV and various numbers of observations (50,
100, 150) are constructed. As we mentioned in Section 3.1,
the “real” observations from these observation networks
are assimilated to the control forecast, and if the assim-
ilation forecasts are much closer to the truth, then the
effectiveness of sensitive areas will be verified. More-
over, if assimilating the observation networks identified
by CNOP-type errors leads to higher improvements than
the networks resulting from FSV, then the advantage of
CNOP will be verified. The improvement in meteorolog-
ical forecasts can be quantified by the reduction rates of
the composite forecast errors averaged over the concerned
vertical levels at the forecast time (AEV; see Equation 5).

R(𝜎) = ∫ ∫x,y

1
2

(
U2

err,𝜎 + V 2
err,𝜎 +

Cp

Tr
T2

err, 𝜎

)
dxdy,

AEV = 1
6 ∫

𝜎

RC,T(𝜎) − RA,T(𝜎)
RC,T(𝜎)

d𝜎 × 100%, (7)

(𝜎 = 1000, 950, 850, 700, 600, 500 hPa)

where Uerr,𝜎 , Verr,𝜎 and Terr,𝜎 are forecast errors of the
zonal, meridional wind and temperature components rel-
ative to the observations at layer 𝜎 averaged for the BTH
region. RC,T(𝜎) measures the composite meteorological
forecast errors at the layer 𝜎 at the forecast time (T) in the
control run; and RA,T(𝜎) measures those forecast errors
in the assimilation run. AEV summarizes the forecast
improvements by averaging the error reduction R(𝜎) from
the surface to the mid-tropospheric layer at the verifica-
tion time (T, Equation 6). Positive values of AEV indicate
the improvements of forecast skills in the assimilation run,
and larger positive values indicate greater improvements.

The improvements in each forecast when the obser-
vations are assimilated, quantified by AEV are shown
in Figure 3. The assimilation of observations on the
CNOP-based sensitive areas consistently leads to higher
forecast skills, regardless of forecast time. For the 12-hour
forecast, assimilating an additional 50 observations on the
CNOP-based sensitive areas improves forecast accuracy
by 26.37% on average, which is 7.39% higher than assim-
ilating observations on the FSV-based sensitive areas.
When the number of observations increases to 100 and
150, the average improvements rise to 27.97% and 31.59%
respectively, which are 4.55% and 5.46% higher than the
improvements achieved by assimilating observations
on the FSV-based sensitive areas. In particular, for the
forecast at 0600 UTC on 22 March 2023, assimilating 50
observations in the CNOP-based sensitive area, located on
the western side of Mongolia, results in an improvement
of 40.87% in forecasting skill. In contrast, assimilating
observations within the FSV-based sensitive area, which is
mainly concentrated in the northern region of BTH, only
leads to a 25.22% improvement in forecasting skill, which
is 15.65% lower than the assimilation of obsevations on
the CNOP-based sensitive area. Thus, when conducting
the target observation field experiments, determination
of the sensitive areas is crucial for improving forecasting
skill; and the CNOP, which fully accounts for nonlinear
effects, is more effective in identifying sensitive areas.

In 24-hour forecasts, the spatial distributions of the
sensitive areas identified by the two methods differ signif-
icantly, leading to substantial differences in the enhance-
ment of forecasting skill. In general, the assimilation
of observations on the CNOP-based sensitive areas has
shown advantages compared to those on FSV-based sensi-
tive areas. More specifically, assimilating 50, 100 and 150
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F I G U R E 3 Comparison of the forecast improvement quantified by AEV (forecast errors averaged over the concerned vertical levels)
when 50 (blue circles), 100 (red circles) and 150 (yellow circles) grid points are assimilated, for the (a) 12-hour and (b) 24-hour forecasts.
[Colour figure can be viewed at wileyonlinelibrary.com]

observations on the CNOP-based sensitive areas will result
in a mean improvement of 15.86%, 20.44% and 24.06%
quantified by AEV; while assimilating the same number
of observations on the FSV-based sensitive areas leads to
improvements of 6.81%, 8.58% and 12.40%. Compared with
the 12-hour forecasts, the advantages of CNOP are more
apparent for 24-hour forecasts, due to the pronounced
nonlinear effects as the forecast time becomes longer.
Specifically, for the forecast at 1800 UTC on 10 April 2023,
assimilating 50 observations on the CNOP-based sensitive
areas lead to an improvement of 38.86%; while if we deploy
and assimilate the observations on the FSV-based sensi-
tive areas, which is much closer to the BTH region, the
improvement can only reach 8.28%.

By a series of OSEs, we first confirmed the effective-
ness of target observation in improving the forecast accu-
racy of meteorological fields for dust storm events. More-
over, by comparing the forecast improvement achieved by
the assimilation of the same number of observations, we
demonstrate the advantages of CNOP in identifying sensi-
tive areas, thereby enhancing meteorological forecasts for
each dust storm event.

5 PHYSICAL INTERPRETATIONS

Till now, numerical experiments have shown that deploy-
ing observations on the CNOP-based sensitive areas will
achieve higher meteorological forecast skills for dust
storm events. In this section, we attempt to give physi-
cal interpretations of why observations assimilated on the
CNOP-based sensitive areas lead to higher forecast results,
by comparing the meteorological fields updated with
observations assimilated in the CNOP- and FSV-based

sensitive areas, respectively. Especially, the meteorologi-
cal forecast in a super dust storm event which occurred
on 22 March 2023 will be introduced in detail. Then we
attempt to provide dynamical interpretations on the spatial
distribution of the sensitive areas by analyzing the weather
patterns.

During 21 and 22 March 2023, due to the strong winds
and upstream dust transport, the BTH region experienced
a severe dust storm event, and the visibility was only
300–800 m, which has attracted great attention from sci-
entists worldwide (Filonchyk et al., 2024). For the mete-
orological forecast, the control run shows northerly wind
and low-temperature forecast errors in the BTH region,
which are likely to impact the transport of dust particles
and the accuracy of PM10 forecasts. Taking the meteoro-
logical fields at 850 hPa as an example, at the initial time
(1800 UTC on 21 March), the control run presents sig-
nificant northerly wind errors and negative temperature
errors over eastern Mongolia (Figure 4a). These northerly
winds descend, carrying cold air, which results in larger
northerly wind and low temperature forecast errors in the
northeastern direction of BTH by the forecast time (0600
UTC on 22 March, Figure 4d). Influenced by the fore-
cast errors of cold air in the Jilin and Liaoning provinces,
the BTH region also exhibited a northerly wind error of
4.53 m⋅s−1 and a negative temperature error of 2.12◦C.
When 100 observations on the CNOP-based sensitive areas
are assimilated at 12 hours before the forecast time, the
assimilation forecast reduces the northerly wind errors
and the negative temperature errors on central and east-
ern Mongolia at the initial time (Figure 4b). The smaller
initial errors of wind and temperature in the upstream
region in the assimilation run leads to smaller wind and
temperature errors downstream, ultimately decreasing the

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4975 by Institution O
f A

tm
ospheric Physics, W

iley O
nline L

ibrary on [18/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


12 of 18 YANG and DUAN

(a)

(d) (e)

5m·s–1

(b) (c)

(e) (f)

F I G U R E 4 The forecast errors in temperature (shaded;◦C) and wind (vector; m⋅s−1) at the initial time (top) and the forecast time
(bottom) at the 850 hPa level. (a,d) The forecast errors of the control run; (b,d) the forecast errors of the assimilation run when 100
observations on the Conditional Nonlinear Optimal Perturbation (CNOP)-based sensitive area are assimilated; (e,f) the forecast errors of the
assimilation run when 100 observations on the First Singular Vector (FSV)-based sensitive area are assimilated. The red rectangle is the
Beijing–Tianjin–Hebei (BTH) region. [Colour figure can be viewed at wileyonlinelibrary.com]

northerly wind and low-temperature errors in the BTH
region at the forecast time. As a result, the wind forecast
error decreases from 4.53 to 3.11 m⋅s−1, and the tempera-
ture forecast error decreases from 2.12 to 0.95◦C averaged
over the BTH region at the forecast time (Figure 4e). By
comparison, although the sensitive areas determined by
CNOP and FSV are very close and assimilating 100 obser-
vations in the FSV-based sensitive areas reduces the ini-
tial errors in the eastern part of Mongolia at the initial
time (Figure 4c) as well, the reduction is not as exten-
sive. Moreover, the assimilation increases the tempera-
ture initial errors in the south of the BTH region, prob-
ably due to the imperfect assimilation procedure or the
unsolved scales and processes in the model (Janjić et al.,
2018). Consequently, although the forecast error in wind
field decreases from 4.53 to 4.21 m⋅s−1 and the temper-
ature error decreases from 2.12 to 1.45◦C averaged over

the BTH region at the forecast time, the assimilation was
less effective compared to the assimilation of observa-
tions within the CNOP sensitive areas (Figure 4f). When
the forecast time increases from 12 to 24 h, the fore-
cast errors in the BTH region primarily originate from
northerly wind and cold temperature errors around the
southern region of Lake Baikal. Assimilating observations
within the CNOP-based sensitive areas helps to mitigate
these errors, ultimately reducing the northerly wind error
in the downstream BTH region from 5.62 to 5.18 m⋅s−1

and the negative temperature error from 2.83◦C to 1.89◦C.
Additionally, although the objective function (Equation 1)
is designed to reduce the forecast errors at the verifica-
tion time, the assimilation can also enhance the mean
forecast performance throughout the forecast period. In
contrast, the FSV-based sensitive areas lie much closer to
the BTH region. As the model integrates, the assimilation
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on these sensitive areas can only reduce the wind error
to 5.40 m⋅s−1 and the temperature error to 2.74◦C at the
forecast time.

We also compare the meteorological forecast errors in
other dust storm events. The spatial distributions of fore-
cast errors for each event are presented in Figures S2–S6.
Similar to the super storm event, assimilating additional
observations on the CNOP-based sensitive areas strength-
ens or weakens the initial wind fields and modifies the
initial temperature fields upstream of the BTH region.
As the model integrates, these changes in wind intensity
and temperature modify the thermodynamic conditions in
the downstream areas, ultimately improving the meteoro-
logical forecast skills on the BTH region. To summarize
the reduced forecast errors for all the events achieved
by the assimilation, we also made a boxplot of forecast
errors averaged over the BTH region, for both tempera-
ture and wind fields (Figure 5). As shown in Figure 5,
assimilating observations on the CNOP-based sensitive
areas reduced the mean temperature forecast errors from
3.17 to 2.14◦C, while assimilating the same number of
observations on FSV-based sensitive areas reduced the
forecast errors to 2.59◦C. Meanwhile, in wind fields, assim-
ilating observations over the CNOP-based sensitive areas
reduced forecast errors from 6.22 to 5.00 m⋅s−1, compared
to 5.47 m⋅s−1 for FSV-based sensitive areas. As to the
reasons why the CNOP-based sensitive areas are more
effective, these may be related to the effect of the nonlin-
ear advection process, while the FSV is generated in the
linearized model and the nonlinear advection process is
linearized so that it cannot accurately capture the effect
of nonlinear processes. The nonlinear advection process,
together with the initial perturbation with the specific
structure and environmental fields provided by the con-
trol forecast, may contribute to the significant forecast
errors in the BTH region. So eliminating the CNOP-type
initial errors may result in a larger improvement of
forecast skills. Nonetheless, a more in-depth exploration
of the underlying dynamical reason is still intended in
future research.

In fact, although the distribution of CNOP-based sen-
sitive areas varies for each event, for 24-hour forecasts,
they are predominantly located around the southern
region of Lake Baikal; while for 12-hour forecasts, they
are mostly concentrated in eastern Mongolia. It is widely
accepted many strong dust storm events in North China
are driven by the Mongolian cyclone system and the
associated cold high-pressure center located to its west
side (Buhe et al., 2022; Gao et al., 2024; Yin et al., 2022).
The significant pressure gradient between the cyclone and
the cold high-pressure area enhances northerly surface
gusts, which intensify dust emissions in Mongolia and
drive the dust particles to the southeast. Concurrently,
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F I G U R E 5 Boxplot of the amplitudes of forecast errors of the
six events in temperature (◦C) and wind (m s−1) averaged over the
Beijing–Tianjin–Hebei (BTH) region at the 850 hPa level. The lower
and upper box boundaries represent the 25th and 75th percentiles,
respectively, while the lines at both ends indicate the minimum and
maximum values. The whiskers extend to the values outside the
interquartile range (below the 25th percentile and above the 75th
percentile). The dots and middle lines represent the mean and
median, respectively. CF, Control Forecast; CNOP, the assimilation
run when observations on the Conditional Nonlinear Optimal
Perturbation (CNOP)-based sensitive area are assimilated; FSV, the
assimilation run when the same number of observations on the
First Singular Vector (FSV)-based sensitive area are assimilated.
[Colour figure can be viewed at wileyonlinelibrary.com]

the ascending motions of Mongolian cyclones lift the
dust particles to the troposphere and transport them to
North China. The variation in the location and intensity of
Mongolian cyclones will affect the coverage and severity
of dust storm events in North China (Gui et al., 2022). As
demonstrated by Yin et al., 2022, during the period from
2011 to 2021, the strongest Mongolian cyclone happened
on 14–15 March 2021, effectively triggering the strongest
dust storm in the last decade. The Mongolian cyclone
moved eastward, accompanying the eastward progression
of the 500 hPa trough during dust storm events. Figure 6
shows the composite 500 hPa geopotential height averaged
from six dust storms. Consistent with the previous studies,
a deep trough is located on the southern part of southern
Lake Baikal 24 hours before the maximum observed PM10
concentration over the BTH region (Figure 6a). Then the
trough developed and moved southeasterly to the city of
Ulaanbaatar 12 hours before the maximum observed PM10
concentrations (Figure 6b). Behind the trough, there is a
strong cold advection, which leads to the cold air steadily
moving to the south. Under the influence of strong cold
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F I G U R E 6 The spatial distribution of the 500-hPa geopotential height (contour line) and the distribution of top 100 sensitive grids
(shaded) in more than two forecasts. (a) The 24-hour forecast; (b) the 12-hour forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

advection and the passage of a Mongolian cyclone, strong
winds swept the sandy areas in Mongolia, transporting
surface dust into the upper atmosphere. As the 500-hPa
trough moves eastward, the cold high pressure behind the
Mongolian cyclone moves eastward, transporting the dust
to North China and having great impacts on our country.
Meanwhile, if we compare the positions of the sensitive
areas and the upper trough, we can find that the sensitive
areas of meteorological forecasts with 12- and 24-hour
lead times overlapped well with the position of the trough.
As the lead time reduces from 24 hours to 12 hours, the
sensitive areas move southeasterly from North Mon-
golia to South Inner Mongolia. That indicates that the
meteorological conditions around the upper-level trough
are crucial for accurate meteorological forecasts of dust
storm events.

So far, we have verified the effectiveness of
CNOP-based sensitive areas on improving the mete-
orological forecasts for dust storm events through
numerical experiments; also, we have interpreted the
validity by comparing the meteorological forecasts with
the assimilation on the CNOP- and FSV-based sensitive
areas. Moreover, we try to give dynamical explanations
for the general features of sensitive-area distributions
of different dust storms. It is therefore expected that
the results may provide theoretical guidance for field
observations or constructing upper-air radiosonde sites

associated with improving dust storm forecasts in the
BTH area.

6 SUMMARY

Dust storms are a frequent meteorological hazard in north-
ern China, characterized by their suddenness and severity.
Accurate forecasts of meteorological fields from surface to
mid-low troposphere are crucial for dust storm forecasts.
However, the current meteorological forecasting capabili-
ties may not be sufficient for providing precise dust storm
predictions. To improve the meteorological forecasts for
dust storm events, we applied a target observation strategy
and investigated the sensitive areas for target observations.
By studying six dust storm events in the BTH region from
2021 to 2023, two methods were employed to identify the
sensitive areas. The first method, CNOP, fully accounts
for nonlinear effects, while the second, FSV, is commonly
used in operated forecasts but limited by linear approxi-
mations. The sensitive areas identified by the two methods
differ significantly, particularly in the 24-hour forecasts.
For the forecasts of maximum PM10 concentration with
a lead time of 24 hours, the CNOP-based sensitive areas
are mostly in northern Mongolia, whereas the FSV-based
sensitive areas are primarily in southern Mongolia. For
the 12-hour forecasts, the CNOP-based sensitive areas are
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primarily located in eastern Mongolia, near the city of
Ulaanbaatar, whereas the FSV-based sensitive areas lie in
central Inner Mongolia.

To numerically validate the role of the identified sen-
sitive areas in improving forecast accuracy, we conducted
OSE experiments for each dust storm event. Addition-
ally, we compared the improvements in meteorological
forecasts resulting from the assimilation of an equal num-
ber of observations in the CNOP-based and FSV-based
sensitive areas. Results show that assimilating observa-
tions on both the CNOP- and FSV-based sensitive areas
improves the meteorological forecast skills for dust storm
events in the BTH region. Moreover, the assimilation of
observations on the CNOP-based sensitive areas consis-
tently results in higher forecast skills. For the 12-hour
forecasts, assimilating 50 observations on the CNOP-based
sensitive areas could improve the forecast skill by 26.37%
on average, whereas assimilating the same number of
observations in the FSV-based sensitive areas results in
only a 18.98% improvement. This disparity becomes even
more pronounced in the 24-hour forecasts. Assimilating 50
observations on the CNOP-based sensitive areas leads to
a 15.68% improvement in forecast skill, whereas doing so
in the FSV-based sensitive areas results in only an 6.81%
improvement.

After numerically demonstrating the advantages of
CNOP, we attempt to give a physical interpretation by
comparing the meteorological fields. It is shown that the
CNOP method can provide a more accurate identification
of the initial errors that contribute to the largest forecast
errors in the BTH region. When the observations on the
CNOP-based sensitive areas are assimilated, it will reduce
the initial wind and temperature errors upstream of the
BTH area and then, the modified wind and temperature
may modify the thermodynamic field in the downstream
areas, finally improving the meteorological forecasts in the
BTH region. Moreover, we also find that the location of
the sensitive areas overlaps well with the 500-hPa trough,
which indicates that the meteorological conditions around
the upper-level trough are crucial for accurate meteorolog-
ical forecasts of the dust storms.

Through numerical experiments and physical interpre-
tations, our study demonstrates that the CNOP method,
which fully accounts for nonlinear processes, is more
effective in identifying the sensitive areas than the com-
monly used FSV method. Therefore, for implementing
target observation tasks related to dust storms in the BTH
region, it is suggested to deploy additional meteorologi-
cal observations on the sensitive areas identified by the
CNOP-type errors to improve the meteorological forecasts
of the dust storms. Moreover, since the sensitive areas
for 24-hour forecasts are primarily located in northern
Mongolia, and for 12-hour forecasts in eastern Mongolia,

establishing more upper-air meteorological stations in
these regions will be more likely to enhance meteoro-
logical forecasts for the BTH region, thus benefiting the
forecast skill of dust storm events. As a first attempt to
investigate the impact of the nonlinear CNOP method on
identifying sensitive areas associated with dust storm fore-
casts, we concentrate solely on improving the meteorologi-
cal forecast skills, given their crucial role in dust storm pre-
dictions. How the improved meteorological forecasts ben-
efit the dust concentration predictions has not been quan-
tified yet. Thus, further research addressing the impact of
target meteorological observations on dust concentration
forecasts with the meteorology- and chemistry-coupled
model (i.e., WRF-Chem) is expected. Besides, although
assimilating observations on the CNOP-based sensitive
areas can help enhance the meteorological forecast skills
for dust storm events in the BTH region, there are still
large differences between the assimilation forecasts and
the truth. In this study, we focus solely on the impact of
meteorological initial errors on dust storm forecasts and
adopt the CNOP or FSV method to eliminate the sen-
sitive meteorological initial errors; however, the model
errors can also lead to large forecast errors. To explore
the model error effects, Duan and Zhou (2013) proposed
a new approach named nonlinear forcing singular vector
(NFSV), which represents the total tendency perturbation
that describes the combined model errors resulting in the
largest forecast errors. To neutralize both the initial and
model error effects simultaneously, Duan et al. (2022) for-
mulated an NFSV data assimilation (NFSV-DA) approach.
The NFSV-DA considers the combined model errors that
come from the model tendency and calculates a tendency
perturbation that is superimposed on the model tendency
and makes the simulation results closest to the observa-
tion. The practical outcome of this approach is to offset the
effect of initial and model errors simultaneously through
NFSV-DA. Till now, the NFSV-DA approach has been suc-
cessfully applied in ENSO predictions and is verified being
effective in forecasting the type of El-Nino events (Tao
et al., 2020; Zheng et al., 2023). Therefore, it is expected
that neutralizing the effects of both initial and model errors
through appropriate approaches, such as NFSV-DA, with
meteorological forecast models, such as the WRF model,
will further help achieve higher forecast skills of meteoro-
logical forecasts and the ensuing dust concentration fore-
casts. Furthermore, besides the meteorological fields, dust
concentrations are also a key input for dust storm forecasts.
With the continuous advancement of observation tech-
nologies and the improvement of collaborative observation
network construction, massive, high-quality multisource
dust particle data can be easily assessed. How to effec-
tively integrate these observational data and assimilating
both dust particle and meteorological data into numerical
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models to optimize dust storm forecasting accuracy may
also be a key issue for future research.

Beside target observation technique, ensemble forecast
is also an effective strategy to improve the numerical
forecast skills of dust storms (Singh et al., 2021; Kim
et al., 2023). In fact, both target observation and ensemble
forecast utilize the sensitivity of initial perturbations to
improve the forecast skills. In the present study on target
observation, we show that the CNOP-type error can effec-
tively represent the optimally growing initial perturbation
in the nonlinear model and preferentially eliminating by
data assimilation the meteorological initial error on which
CNOP focuses can help enhance the forecast skills sig-
nificantly. Considering the sensitivity of these optimally
growing initial perturbations, it conceivable that, when
they are applied to the ensemble forecasting, they would
certainly enhance the forecasting skills. In fact, these
optimally growing initial perturbations are the orthogo-
nal CNOPs proposed by Duan and Huo (2016); and the
orthogonal CNOPs have been applied in tropical cyclone
(TC) track ensemble forecasts, significantly improving
their forecasting skills. Especially for unusual TC tracks,
such as the sharp northward-turning track of TC Megi
(2010) and the counterclockwise loop track of TC Tembin
(2012), the ensemble members generated by the orthog-
onal CNOPs can successfully reproduce these, while the
forecasts made by SVs, bred vectors and random perturba-
tions fail to do so (Zhang et al., 2023). Thus, it is expected
that orthogonal CNOPs can be used in dust storm ensem-
ble forecasts in the near future and contribute to enhance
the forecasting skills of dust storms.
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