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Based on the initial errors in the whole Pacific that are most likely to affect
the predictions of two types of El Niño events, the sensitive area of ocean
temperature in the whole Pacific for El Niño prediction starting from January
is identified by using the Geophysical Fluid Dynamic Laboratory CM2P1, a fully
coupled global climate model. The error growth analysis and the numerical
experiments illustrated that, the initial ocean temperature in the Victoria mode
(VM) region in the North Pacific will affect the intensity predictions of the CP-
El Niño while that in the subsurface layer of the west equatorial Pacific and the
surface layer of southeast Pacific will modulate the spatial structure predictions
of CP-El Niño. But for EP-El Niño, the former plus the surface layer of the
equatorial central eastern pacific will modulate the spatial structure predictions
of the event while the latter is shown to be more effective in predictions of the
intensity of the event. Furthermore, if targeted observations are conducted in
the sensitive area of the whole Pacific, the El Niño prediction skills, including
intensity and spatial structure predictions, could be greatly improved for both
EP- and CP-El Niño events. Neither the sensitive area of subtropical Pacific nor
the tropical Pacific can be precluded as accurate indicators when forecasting
particular flavors and the intensity of El Niño events.

KEYWORDS

sensitive area, El Niño, intensity predictions, spatial structure predictions, targeted
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1 Introduction

There are two types of interannual sea surface temperature (SST) variabilities
in the tropical Pacific: EP-El Niño and CP-El Niño (Larkin and Harrison, 2005a;
Ashok et al., 2007; Yu and Kao, 2007; Kao and Yu, 2009; Kug et al., 2010). EP-
El Niño events are traditional events with the largest SST anomalies (SSTAs)
in the equatorial eastern Pacific, while CP-El Niño events exhibit the largest
SSTAs confined within the equatorial central Pacific. Many extreme weather
events, such as high temperatures, rainstorms, cold currents and tropical cyclones
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(Weng et al., 2007; Kim et al., 2009, 2012; Yeh et al., 2009; Chen
and Tam, 2010; Marathe et al., 2015), are sensitive to both the type
and intensity of El Niño events. Moreover, the pacific sea surface
temperature precursors are suggested as robust seasonal predictors
of the central China July precipitation (CCJP) and the improvement
of ENSO forecasting ability can improve CCJP forecasting skills
(Li et al., 2023).Therefore, distinguishing the types of El Niño events
and accurately forecasting the intensity of each type of El Niño are
important.

Although significant progress related to EP- and CP-El Niño
event predictions has been achieved, both intensity and spatial
structure forecast uncertainties still remain in classical dynamical
models. Due to the spatial differences in the largest SSTAs during
peak times between EP- and CP-El Niño events, the types of
El Niño events cannot be exactly predicted with most coupled
climate numerical models (Jin et al., 2008; Barnston et al., 2012).
For example, using the Predictive Ocean Atmosphere Model for
Australia (POAMA), Hendon et al. (2009) noted that the model
could hardly predict the differences between EP- and CP-El Niño
events. Duan et al. (2014) reported that Zebiak–Cane model could
not predict CP-El Niño events because of large model errors. Zheng
and Yu (2017) revealed that systematic prediction errors mainly
originate from the prediction errors of CP-El Niño events, and
the IAP ENSO EPS often predicted the CP-El Niño events as EP-
El Niño events. Regarding intensity predictions, large prediction
errors still exist. For example, many models predicted 2014 years
as a moderate El Niño year, while in fact, it was a normal year.
Many models predicted strong 2023/24 EL Niño events as weak
or at most slightly strong El Niño events (Ren et al., 2016). With
BCC-CPS2model, Cheng et al. (2022) noted that there is an obvious
relationship between the predictability of El Niño events and their
intensity, and in general, strong El Niño events can be predicted
better. Therefore, forecasting the intensities and spatial structures of
the two types of El Niño events is still a worldwide difficulty.

Initial errors, model errors and stochastic forcing errors can
cause uncertainties in the above two types of El Niño predictions
(Chen and Cane, 2008; Lopez and Kirtman, 2014; Larson and
Kirtman, 2015). In addition, several studies have highlighted that
initial ocean temperature errors with certain spatial structures could
cause the highest prediction uncertainties in EP- and CP-El Niño
events (Hou et al., 2019; Yang et al., 2020; Qi et al., 2021a). Research
has shown that an accurate initial field is crucial for improvingENSO
predictions with numerical models (Duan and Hu, 2016; Tao et al.,
2017; 2018; Duan et al., 2018). Especially, ENSO predictability is
largely limited arising from the growth of initial ocean temperature
errors inmodel simulations rather than the effects of high-frequency
atmospheric “noise” (Chen et al., 2004). Thus, to improve the ability
to predict El Niño events, one effective way is to filter out initial
ocean temperature errors with particular patterns. Therefore, based
on the above idea, Mu et al. (2014, 2015) proposed that the ability
to generate ENSO predictions could be improved efficiently when
using optimal observations in certain key or sensitive regions, while
these regions possess particular structures and notably influence El
Niño predictions.

To improve the quality of the initial field and ENSO forecasting
ability, the target observations is an economic and practical method.
The pivotal problem of target observations is to determine the
optimal observation locations (or the most sensitive regions). With

Zebiak–Cane (ZC) model (Zebiak and Cane, 1987) corrected with
the optimal forcing vector approach (Duan et al., 2014), Duan et al.
(2018) identified sensitive areas related to two types of El Niño
predictions by calculating the optimal growing errors (OGEs), and
they indicated that SSTA target observation areas are located in
the eastern equatorial Pacific. However, ZC model is a regional
ocean–atmosphere coupled model and cannot be used to describe
subsurface layers or extratropical Pacific processes. Previous analysis
studies have shown that both subsurface ocean processes and
extratropical Pacific temperatures can drive the onset of EP- and
CP-El Niño events. Therefore, it is necessary to use a more
complex Community Earth System Model to identify the sensitive
areas for different types of El Niño predictions. In view of the
above considerations, Hou et al. (2023) adopted multi-model global
outputs from Coupled Model Intercomparison Project Phase 5
(CMIP5) experiments to explore the overall Pacific SST-sensitive
areas of EP- and CP-El Niño events. Their results suggested that
the optimal SST target observation areas are located not only in the
tropical Pacific but also outside the tropics.Hou et al. (2023) adopted
the particle filter (PF) assimilation method (Gordon et al., 1993;
Van Leeuwen, 2009; Shen et al., 2017) to determine the optimal
SSTA observational areas for the whole Pacific. However, the
limitation on particle numbers in the PF method may restrict
the use of too many observation members, so they only explore
SST-sensitive regions but ignore subsurface ocean temperature-
sensitive regions. Therefore, the results obtained by the PF method
should be verified by another method, such as focusing on error
growth and determining initial errors with particular patterns.Then,
by conducting target observations in areas with the initial errors
identified above, we could verify the prediction capacity for EP- and
CP-El Niño events.

Qi et al. (2021a) have explored the most sensitive initial ocean
temperature error mode for modulating the intensities of EP- and
CP-El Niño events over the whole Pacific. They demonstrated
that the ocean temperature in the North Pacific with a VM-like
SSTA pattern (CP-Type-A, 20°N −60 °N, 150°E−120°W, 0–85 m;
refer to Qi et al. (2021a); Figure 8) is more important than that
in other Pacific regions for intensity predictions of CP-El Niño
events. Additionally, their results revealed that the subsurface ocean
temperatures in the western equatorial Pacific and upper layer of the
southeastern Pacific in the meridional mode (EP-Type-B, including
10°S-10°N, 130°E−135°W, 95–165 m and 15°S-30°S, 140°W-85°W,
0–85 m; refer to Qi et al. (2021a); Figure 10) are more important
for predicting the intensity of EP-El Niño events. However, the
study of Qi et al. (2021a) mainly concerned about the intensity
prediction. In fact, there exist not only the intensity prediction
uncertainty but also the spatial pattern prediction uncertainty in
the practical ENSO forecasting. In particular, many models often
predict CP-El Niño events as EP-El Niño events, which may indicate
that high prediction uncertainties also exist in the spatial structure
related to EP- and CP-El Niño events. Therefore, it is natural to
ask, when we conduct ensemble hindcast experiments using initial
ocean temperature errors covering the whole Pacific, which types
of initial errors induce spatial structure prediction uncertainties?
What is the mechanism behind error evolution? When considering
both intensity and spatial structure predictions, what is the most
sensitive initial ocean temperature error mode in the whole Pacific?
Furthermore, how can the targeted observation strategy be applied
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to the generation of intensity and spatial structure forecasts of EP-
and CP-El Niño events? All of these questions are addressed in this
paper.

The remainder of this paper is structured as follows: in Section 2,
we briefly describe the GFDL CM2P1 model and select the EP-
and CP-El Niño events. In Section 3, we mainly introduce the
experimental strategy. In Section 4, we investigate another type of
initial ocean temperature error that may modulate spatial pattern
predictions and explore the physical mechanisms related to error
growth. In Section 5, verification experiments are performed to
determine the most sensitive initial error mode for modulating
spatial structure predictions. In Section 6, we identify the sensitive
target observation areas when considering both intensity and
spatial structure predictions. The study results are summarized
in Section 7.

2 Model and case selection

In this study, we used the Geophysical Fluid Dynamic
Laboratory (GFDL) CM2p1 model to study the predictability of EP-
and CP-El Niño events. The GFDL CM2p1 model is a fully coupled
ocean–atmosphere‒land–ice Earth system model. The standard
horizontal resolution of the ocean component is 1°×1°. However,
close to the equator, the horizontal resolution is increased to 1/3°.
There are 50 vertical layers, and the vertical resolution is 10 m over
the upper 225 m. Regarding the atmospheric module, the horizontal
resolution is 2.5° (longitude)×2° (latitude), and there are a total of 24
vertical levels. The land component is LM2.1 (Milly and Shmakin,
2002), and the sea ice component is the SIS model (Delworth et al.,
2006). All the modules are coupled with each other through the
Flexible Modeling System (FMS; http://www.gfdl.noaa.gov/fms),
and fluxes are exchanged every 2 hours. In previous studies, the
GFDL CM2p1 model was used to explore the predictability of EP-
and CP-El Niño events (Yang et al., 2020; Qi et al., 2021a), and it
was suggested that themodel could capture the characteristics of the
subtropical Pacific interannual variability and could reproduce EP-
and CP-El Niño events well.

In this study, the GFDL CM2p1 model was integrated for
300 years, and the test run was used as a control run. We only
analyzed the results of the last 250 years owning to that the data
of the first 50 years are not stable. First, eight EP- and CP-El
Niño events were selected from the control run. Figure 1 shows
the Niño index series and the characteristics of the mature phases
of all eight EP- and CP-El Niño events. All El Niño events
occurred in the boreal spring, developed to maturation in winter,
and then decayed in spring or summer of the following year.
Therefore, all the selected events exhibited obvious phase-locking
characteristics. In addition, the eight EP-El Niño events all exhibited
large SSTAs in the Niño 3 region, while the CP-El Niño events
exhibited large SSTAs in the Niño 4 region during the mature
phase season. Therefore, we adopted the Niño 3 and Niño 4 indices
to define two types of El Niño events in this study. Figure 1 also
shows that the amplitude of EP-El Niño events is significantly
larger than that of CP-El Niño events, and the intensity of the
former was almost twice that of the latter, which agrees with the
observed features.

3 Experimental strategy

In this study, we assumed that the model was perfect and
the prediction uncertainties were caused only by the initial
errors. Moreover, we mainly investigate the sources of ocean
temperature errors in two types of El Niño predictions. Thus,
in our experimental strategy, we conducted ensemble prediction
experiments by superimposing a group of ocean temperature errors
without modulating the atmospheric temperature onto the initial
field with the above eight selected EP- and CP-El Niño events.
We assumed that the eight selected cases from the model control
run are true-state El Niño events. The initial perturbation samples
were obtained by determining the differences between the ocean
temperature in the starting month of January and that in each
month preceding January of the 4-year period (a total of 48 months)
over the whole Pacific (66.5°S–66.5°N, 130°E−85°W, 0–165 m)
from each true-state El Niño prediction. Therefore, for each El
Niño event, there were a total of 49 predictions, including one
true-state prediction and 48 perturbation predictions. Since the
cycles of ENSO events occur over an approximately 4-year period
(48 months in total), the initial perturbation samples constructed
with the above method may exhibit considerable ergodic initial
errors. In addition, we mainly considered the growth phases of El
Niño events, especially concerning predictions across the spring
season when El Niño events develop to maturation. Therefore,
in our experimental strategy, we obtained the leading 12-month
ensemble predictions on the starting month of January for each El
Niño event with these initial errors. Obviously, the above leading
12-month ensemble predictions all occurred across the growth
phases of the El Niño events. In total, 384 (i.e., 4 (year)∗ 12
(months)∗ 8 (cases)) perturbed predictions were obtained for each
El Niño event to explore how the initial ocean temperature errors
over the whole Pacific affect the prediction uncertainties of EP-
and CP-El Niño events. In order to elaborate the experimental
strategy clearly, we make the following schematic diagram
(see Figure 2).

For the starting month of January, there were a total of
384 predictions for EP- and CP-El Niño events. As described
above, we first attempted to determine the most sensitive initial
errors that could induce the largest prediction errors in the
tropical Pacific at the final lead time. By examining the SSTA
prediction errors in the tropical Pacific with different ensemble
members at the end of the 12-month lead time, the results
showed that some predictions exhibited large SSTA prediction
errors, whereas other predictions exhibited small SSTA prediction
errors. Specifically, we selected 128 predictions with corresponding
prediction errors in the top one-third of all the predictions owing
to that the top 1/3 predictions may represent the large prediction
uncertainty category. The selected 128 predictions corresponded
to 128 initial ocean temperature errors. Therefore, we considered
whether the initial errors corresponding to the above mentioned
128 predictions belong to different categories sorted by the
spatial structure.

To answer the above questions, the K-means clustering method
was adopted for these initial ocean temperature errors.TheK-means
clustering approach is a traditional classification method proposed
by MacQueen (MacQueen, 1967; Wu et al., 2000) that aims to
classify a group of individuals into several categories according to
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FIGURE 1
Evolution of the Niño index and the mature phase related to EP-El Niño events and CP-El Niño events derived from the GFDL CM2p1 model. The red
stars in (A) and (B) indicate the months of the year when the Niño index reaches its peak. (a1–a8) show the eight selected EP-El Niño events, and
(b1–b8) show the eight selected CP-El Niño events.

FIGURE 2
The schematic diagram of ensemble prediction experimental strategy.

their similarity. The approach has been used to investigate cold-
wave weather processes and rainfall and is generally more capable of
determining the most appropriate number of clusters and efficiently
classifying ensemble samples (Qi et al., 2021b; Zhu et al., 2021).

4 Most sensitive initial error modes
and related error growth

With GFDL CM2P1 model, Qi et al. (2021a) have identified the
initial error mode affecting the intensity predictions of El Niño
events by performing CEOF analysis of the selected initial ocean
temperature errors, which cause large prediction errors in the Niño

3 (for EP-El Niño) or Niño 4 (for CP-El Niño) areas. However,
not only intensity prediction uncertainties but also spatial structure
prediction uncertainties occur. In particular, many models often
predict CP-ElNiño events as EP-ElNiño events.These false forecasts
are mainly due to the large spatial structure prediction uncertainties
of EP- and CP-El Niño events. In this section, we adopt the K-means
clustering approach to determine the category of the initial ocean
temperature errors inducing the largest prediction uncertainties of
El Niño events and then identify the most sensitive initial errors
modulating the intensities and spatial patterns of EP- and CP-El
Niño events. Furthermore, we mainly focus on the most sensitive
initial error mode for modulating the spatial structure predictions
of the two types of El Niño events and attempt to determine how
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these initial errors evolve and affect the patterns of EP- and CP-El
Niño predictions.

4.1 Initial errors modulating the spatial
structures of EP-El Niño events and related
initial error growth

As mentioned in Section 3, for the starting month of January,
there were 384 predictions in total for EP-El Niño events.
Specifically, we selected 128 predictions (top third) significantly
contributing to the large SSTA prediction errors in the tropical
Pacific at a 12-month lead time. For the 128 initial ocean
temperature errors corresponding to the above 128 predictions, we
first determined the most appropriate cluster number. Then, with
the above optimal number of clusters, we could finally determine
two stable clustering centers and the initial ocean temperature
error samples near the clustering center by using the K-means
clustering algorithm. We denoted the two stable cluster centers as
EP-Type-I and EP-Type-S, and both cluster centers caused large
SSTA prediction errors in the tropical Pacific. The structures of
the EP-Type-I initial errors were similar to those of the EP-Type
initial errors (i.e., Figure 10 in the study of Qi et al. (2021a)). Their
research revealed that EP-Type-I initial errors could induce the
largest prediction uncertainties in Niño 3 areas and could modulate
the intensities of EP-El Niño events. Therefore, we mainly focused
on EP-Type-S initial errors and did not consider the EP-Type-
1 initial errors in this study. EP-Type-S initial errors exhibited
ocean temperature structures with negative anomalies in the upper
layers of the central-eastern equatorial Pacific and a meridional
dipolar structure in the upper layers of the subtropical North Pacific
(see Figure 3).

Asdescribedabove,bothEP-Type-IandEP-Type-S initial errors
could cause the large predictionuncertainties in the tropical Pacific.
In particular, EP-Type-I initial errors could lead to the largest
SSTA prediction errors in Niño 3 region and could modulate
the intensities of EP-El Niño events. Compared with EP-Type-
I initial errors, although EP-Type-S initial could errors induce
smaller prediction errors in Niño 3 areas, they actually induced the
large prediction errors in the tropical Pacific and the large forecast
uncertainties for EP-El Niño events. Thus, we could speculate that
EP-Type-S initial ocean temperature errors may cause prediction
uncertainty related to spatial structures and modulate the spatial
structure predictions of EP-El Niño events. This speculation is
further confirmed in Section 5. In this section, we determine how
EP-Type-S initial errors evolve and modulate the spatial structures
of EP-El Niño events and explain the physical mechanisms related
to the growth of these initial errors.

After obtaining EP-Type-S initial ocean temperature errors,
which induce the largeSSTApredictionerrors in the tropicalPacific,
we also obtained corresponding initial error samples belonging to
the category of the EP-Type-S cluster center. First, we integrated
the model for 12 months with the new initial fields constructed
by overlaying each initial error sample belonging to the category
of cluster center EP-Type-S onto the initial ocean temperature in
January of each true-state EP-ElNiño event.Then, prediction errors
were obtainedby subtracting the true-state ocean temperature from
the predicted ocean temperature. For each sample, we obtained

a group of prediction error evolution. Based on these sample
prediction errors, we calculated the ensemblemean and performed
a significance test. The evolution of the mean prediction errors
is shown in Figure 4, and the evolution mode is similar to the
process in which La Nina events begin to develop and finally
evolve into the mature phase. Because the prediction errors were
caused by EP-Type-S initial errors, we could conclude that EP-type-
S initial errors lead to a negative SSTA bias in the central-eastern
equatorial Pacific at 12 months. Specifically, from the evolution of
the ocean temperature and sea surface wind, we could determine
that there exists the obvious Bjerknes positive feedback process
between the negative ocean temperature and anomalous easterly
winds along the equator. Moreover, Wind–Evaporation–SST (W-
E-S) feedback process occurs in the North Pacific. Both contribute
to the sustained growth of the prediction errors, and finally,
the negative SSTA errors in the central-eastern equatorial Pacific
evolved into aLaNiña-likemode.Therefore, the negative anomalies
in the upper layers of the central-eastern equatorial Pacific and
the meridional dipolar structure in the upper layers of the
subtropical North Pacific caused the large prediction uncertainties
in EP-El Niño events, especially spatial structure prediction
uncertainties based on the above hypothesis and mechanism
analysis.

4.2 Initial errors modulating the spatial
structures of CP-El Niño events and related
initial error growth

For CP-El Niño events, there were a total of 384 predictions.
Specifically, 128 predictions (top third) with large SSTA prediction
errors in the tropical Pacific were selected. For the 128 initial ocean
temperature errors corresponding to the above 128 predictions,
we adopted the same strategy as that for EP-El Niño events. First,
we determined the most appropriate number of clusters and the
optimalnumberof clustersK is 2.Then, two stable clustering centers
and initial ocean temperature error samples near the clustering
center were obtained by using the K-means clustering algorithm.
The two stable cluster centers were denoted as CP-Type-I and
CP-Type-S. Owning to that the pattern of the CP-Type-I initial
errors were similar to the CP-Type initial errors (i.e., Figure 8
in the study of Qi et al. (2021a)), the figure of CP-Type-I are
no longer showed in this paper. Based on their research, CP-
Type-I initial errors could induce the largest SSTA prediction
errors in Niño 4 areas and modulate the intensities of CP-El
Niño events. The structures of the CP-Type-S initial errors were
similar to those of the EP-Type-I initial errors (see Figure 5).
Because these errors in the model have been described in detail
in the previous study of Qi et al. (2021a), in this study, we mainly
focusedonCP-Type-S initial errors anddidnot considerCP-Type-1
initial errors.

The evolution of the mean prediction errors and the
corresponding significance test results are shown in Figure 6.
The results indicated that the evolution mode of CP-Type-S
is similar to the process in which EP-El Niño events begin
to decay, then transform into the opposite cold phase, and
finally develop into the mature La Niña mode. Because these
prediction errors were caused by CP-Type-S initial errors, we
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FIGURE 3
Clustering center (units: °C) of the EP-Type-S initial errors that cause the largest prediction errors in the tropical Pacific. The top 5 images (A–E)
correspond to different ocean depths, from the sea surface to 45, 85, 125 and 165 m. The latter (F) shows the meridional mean of the sea temperature
anomaly over 5°S-5°N. Composites of the initial errors not exceeding the 95% significance level are masked.

considered that CP-Type-S initial errors could lead to a negative
SSTA bias in the central-eastern equatorial Pacific. Figure 6
shows that the fluctuation process from the lower layer of the
western equatorial Pacific and the W-E-S feedback mechanism
from the subtropical southeast Pacific play dominant roles and
lead to large negative SSTA prediction errors in the eastern
equatorial Pacific.

As described above, both CP-Type-I and CP-Type-S initial
ocean temperature errors could cause the large SSTA prediction
errors in the tropical Pacific; in particular, CP-Type-I initial errors
could induce the highest prediction uncertainties in Niño 4 areas
and modulate the intensities of CP-El Niño events based on the
research of Qi et al. (2021a). CP-Type-S initial errors often lead to
predicting CP-El Niño events into traditional La Nina-like mode
with a negative SSTA center in the eastern equatorial Pacific, which
indicates that CP-Type-S initial errors could affect the patterns
of the CP-El Niño-like mode. Therefore, we propose that CP-
Type-S initial ocean temperature errors may influence the spatial
structure predictions of CP-El Niño events. In addition, according
to the evolutionary mechanism analysis, the results showed that
the subsurface ocean temperature in the western equatorial Pacific
and the top ocean temperature in the subtropical southeast Pacific
from CP-Type-S initial errors could induce the large prediction
uncertainties.

5 Determination of the most sensitive
initial error modes modulating
the spatial structures related to EP-
and CP-El Niño events

Qi et al. (2021a) have emphasized that EP-Type-I initial errors
couldmodulate the intensity ofEP-ElNiño events andminimize the
predictionerrorsofEP-ElNiñoeventswhenadditionalobservations
in key areas (10°S-10°N, 130°E−135°W, 95–165 m and 15°S-30°S,
140°W-85°W, 0–85 m) are implemented. CP-Type-I initial errors
couldmodulate the intensityofCP-ElNiñoevents andminimize the
prediction errors of CP-El Niño events when target observations in
sensitive areas (20°N-60°N, 150°E−120°W, 0–85 m) are acquired.
In addition, in Section 4.1 and Section 4.2, we obtained other
types of initial error patterns, namely, EP-Type-S and CP-Type-
S, respectively, via the K-means clustering method. For EP-El
Niño events, large EP-Type-S initial ocean temperature errors
are mainly concentrated in the upper layers of the North Pacific
with a triple-like SSTA pattern and in the upper layer of the
equatorial eastern Pacific (we denote the regions as EP-Type-S-
A, which include the regions 40°N-60°N, 150°E−120°W, 0–85 m
and 15°S-15°N, 135°W-85°W, 0–85 m). The above key EP-Type-
S-A areas may affect the spatial structures of EP-El Niño events
and lead to the large prediction uncertainties. Regarding CP-El
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FIGURE 4
Composite of the evolution patterns of the anomalous sea temperature (units: °C) and horizontal wind (units: m/s) of EP-Type-S initial errors, as shown
by the 3-, 6-, 9-, and 12-month predictions. The dotted areas denote those exceeding the 95% significance level. The rows correspond to sea depths
from the sea surface to 5 m and then to 45, 85, 125 and 165 m.

Niño events, large CP-Type-S initial ocean temperature errors
are primarily located in the upper layer of the central-eastern
equatorial Pacific and the subsurface of the western equatorial
Pacific, as well as in the upper layers of the subtropical North
Pacific and the subtropical Southeast Pacific. Furthermore, based
on the physical mechanism analysis related to CP-Type-S initial
error evolution, only the subsurface of the western equatorial
Pacific and the upper layers of the southeastern Pacific (the regions
denoted asCP-Type-S-B, including both 10°S-10°N, 130°E−135°W,
85–165 m and 15°S-30°S, 170°W-85°W, 0–85 m) facilitate the

prediction of the CP-El Niño mode as a La Nina-like mode and
lead to large SSTA errors in the tropical Pacific. The initial errors
in the above key areas may affect the spatial patterns of CP-El
Niño events by destroying the anomaly center in the equatorial
central Pacific.

On the basis of the above analysis, in this section, we
explore spatial structure predictions of El Niño events and
confirm the sensitive areas that could modulate these spatial
pattern predictions via numerical experiments. Specifically, we first
overlay the EP-Type-S (or CP-Type-S) initial ocean temperature
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FIGURE 5
Same as Figure 3 (A–F) but for CP-El Niño events.

errors onto the initial ocean temperature in January of each
true-state EP-El Niño (or CP-El Niño) event and integrate
the model for 12 months to determine whether EP-Type-S
(or CP-Type-S) initial errors may cause the large prediction
uncertainties. Then, we implement additional observations in the
above identified sensitive areas and determine whether the spatial
structure prediction skills of EP- and CP-El Niño events can be
greatly improved.

To illustrate the ability of the sensitive EP-Type-S-A and CP-
Type-S-B areas to improve the prediction skills related to the spatial
structure predictions of EP- and CP-El Niño events, respectively,
we designed three groups of numerical tests in total with EP-Type-
S and CP-Type-S initial errors, respectively. First, eight true-state
EP-El Niño events and eight true-state CP-El Niño events were
selected, and these events were predicted with a 12-month lead
from the starting month of January, as described in Section 2. We
then generated three groups of leading 12-month predictions with
different new initial states by adding different initial perturbations.
Concretely, the numerical experiments were designed as follows:
firstly, the initial ocean temperature was set up by overlaying the EP-
Type-S (or CP-Type-S) initial errors onto the original initial states

of January (0) of each true-state EP-El Niño (or CP-El Niño) event,
after which 12-month leading predictions were generated. A total of
8 predictions were obtained for each type of El Niño event, and the
tests were denoted as Ctl tests. In the Ctl tests, there was no targeted
observation strategy. Secondly, only EP-Type-S-A (CP-Type-S-B)
and EP-Type-S (CP-Type-S) initial ocean temperature errors were
superposed onto the original initial states of each true-state EP-El
Niño (CP-El Niño) event, and we generated 12-month predictions
with the new initial field. The experiments were marked as Sen-I
tests. In the Sen-I tests, we implemented the targeted observation
strategy outside the sensitive regions. Thirdly, the initial errors in
the sensitive areas were set to zero, and new initial errors were set up
by eliminating EP-Type-S-A (CP-Type-S-B) initial errors from EP-
Type-S (CP-Type-S) initial errors. Similarly, with the new initial field
by adding the above constructed initial ocean temperature errors to
the original initial states of each true-state El Niño event, leading 12-
month predictions were generated. The experiments were referred
to as Sen-II tests. In the Sen-II tests, we implemented the targeted
observation strategy in the sensitive areas.

The similarity efficiency was used to measure the similarities
between the prediction results of each group of tests and the true-
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FIGURE 6
Same as Figure 4 but for CP-El Niño events.

state SSTAs of El Niño events, and the similarity coefficient can be
calculated as follows (Buizza, 1994; Kim et al., 2004):

r = < T
α •Tβ >
‖Tα‖‖Tβ‖
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∑
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where Tα = (Tα
ij)m×n and Tβ = (Tβ

ij)m×n denote the SSTA prediction
results of each group of tests and the true-state SSTAs, respectively,
Tα
ij and Tβ

ij denote the corresponding ocean temperature, and

(i, j) denotes the uniform grid of the equatorial Pacific (10∘S−
10∘N,130.5∘E− 84.5∘W).

To characterize the role of the sensitive areas in improving the
prediction skills related to the spatial structure predictions, We
presented the tropical Pacific SSTAs of the predicted results with
a 12-month lead time for the start month of January for the true-
state El Niño, Ctl test, Sen-I test and Sen-II test. For EP-El Niño
events, all the predicted SSTAs of the Ctl test (b1-b8, as shown in
Figure 7) exhibited spatial patterns similar to those of a strong La
Ninamode,which suggests that EP-Type-S initial ocean temperature
errors could cause the largest SSTA negative bias for EP-El Niño
predictions and therefore induce the largest prediction errors in the
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FIGURE 7
Tropical Pacific SSTAs of the prediction results at the end of the 12-month lead time, the starting month of which is January, for the eight EP-El Niño
events. The prediction results are obtained by (a1–a8) the true-state SSTAs of El Niño events; (b1–b8) the Ctl test; (c1–c8) the Sen-I test; and (d1–d8)
the Sen-II test.

tropical Pacific. The results of the Sen I test (c1-c8, as shown in
Figure 7) exhibited a weaker cold mode similar to that of weaker
La Nina events or simply a neutral year, which indicates that the
prediction errors could also be reduced when implementing target
observations in the non-sensitive areas relative to Ctl test. The
predicted SSTAs of the Sen-II test (d1-d8, as shown in Figure 7)
exhibited spatial structures similar to those of a strong EP-El Niño
mode, which shows that when implementing target observations
in the EP-Type-S-A area, the predicted SSTAs demonstrated strong
warming signals in the central-eastern equatorial Pacific, and almost
all spatial structure predictions were valid for EP-El Niño events.
For CP-El Niño events, the prediction results of the three groups
of tests were similar to those of EP-El Niño events, but the spatial
patterns resembled those of the CP-El Niño mode for the Sen-II test
(Figure 8).

Furthermore, we calculated the similarity coefficients between
the prediction results of the three groups of tests and the true-
state SSTAs of El Niño events with Eq. 1 (Figure 9). The scatter
diagram reveals that, when implementing target observations in

the sensitive EP-Type-S-A (or CP-Type-S-B) areas, the prediction
results were highly similar to the true state of EP-El Niño (or CP-El
Niño) events. In other words, EP-type S-A initial ocean temperature
errors could modulate the spatial structure predictions of EP-El
Niño events, while CP-type S-B initial ocean temperature errors
could modulate the spatial structure predictions of CP-El Niño
events. Therefore, the ocean temperature accuracy in the sensitive
EP-Type-S-A and CP-Type-S-B regions should be monitored to
improve the spatial structure prediction ability of EP- and CP-El
Niño events.

6 Implications for targeted
observations of the two types of El
Niño events

In Section 5, we revealed the most sensitive initial ocean
temperature errors modulating the spatial structures of EP- and CP-
El Niño events and indicated that the spatial structure prediction
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FIGURE 8
Same as Figure 7 (a1–a8) (b1–b8) (c1–c8) (d1–d8) but for CP-El Niño events.

skills related to EP- andCP-ElNiño events could be greatly improved
when assimilation experiments were performed in the identified EP-
Type-S-A andCP-Type-S-B sensitive areas, respectively. In addition,
in the study of Qi et al. (2021a), we identified the most sensitive
initial ocean temperature errors modulating the intensity of the two
types of El Niño events. From the above results, we can see that the
initial sea temperature accuracy in the Victoria Mode (VM) region
in the North Pacific is more important for better predictions of the
intensity of the CP-El Niño while that in the subsurface layer of the
west equatorial Pacific and the surface layer of southeast Pacific is
of more concerned for better predictions of the structure of CP-El
Niño. But for EP-El Niño, the former is indicated to modulate the
structure of the event while the latter is shown to be more effective
in predictions of the intensity of the event. However, for practical
ENSO predictions, any type of El Niño event may occur and we
cannot determine it in advance. Therefore, the identified sensitive
areas should cover the regions that could affect the predictions,
including both intensity and spatial structure predictions. In this
section, we comprehensively consider both intensity and spatial
structure predictions and obtain the sensitive target observation

regions for the two types of El Niño events. Furthermore, we design
a group of verification tests to determine whether the identified
optimal targeted observations could effectively improve ENSO
prediction abilities.

Based on the previous analysis in Section 5, we determined
the optimal target observation areas. The sensitive areas include
region A (20°N-60°N, 150°E−120°W, 0–85 m), region B1 (15°S-
15°N, 135°W-85°W, 0–85 m), region B2 (10°S-10°N, 130°E−135°W,
85–165 m) and regionC (15°S-30°S, 130°W-85°W, 0–85 m). Regions
A, B1, B2, and C covered all the identified sensitive areas, which
could affect the intensity and spatial structure predictions of the
two types of El Niño events. The total identified areas accounted for
approximately 10% of the total volume of the Pacific. Particularly,
we make a sketch to summarize the sensitivity areas for El Niño
prediction in the Pacific as shown in Figure 10.

Next, we performed a group of ensemble prediction experiments
to illustrate the validity of acquiring target observations in the above
sensitiveareas for improvingENSOpredictionskills.Theexperimental
strategy was designed as follows: firstly, as described in Section 3,
there were 48 initial ocean temperature errors in total for each event.
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FIGURE 9
Scatter diagram superimposed onto a bar plot related to the similarity coefficient between the predicted SSTAs of the three groups of tests and the
true-state SSTAs of El Niño events for (A) EP-El Niño events and (B) CP-El Niño events.

FIGURE 10
The sensitive areas of target observations for two types of El Niño predictions.

Then, leading 12-month predictions were generated with the starting
month of January, where the 48 initial ocean temperature errors were
superposed onto the initial fields of the true-state El Niño events.
Therefore,weobtained384predictions in total for each typeofElNiño
event. The above tests were denoted as NO tests. Secondly, the initial
ocean temperature errors in regions A, B1, B2 and C were removed,
while the initial states in the other regions were retained. New initial
ocean temperatures were obtained with these updated initial ocean
temperature errors overlaid onto the initial fields of the true-state El
Niño events. Leading 12-month predictions were generated with the

new initial states, and we denoted this test as the SA test. Thirdly, to
ensure consistency, we randomly selected areas also accounting for
approximately 10% of the total volume of the Pacific, which indicates
that the total area of the above random assimilated observations was
the sameas that in theSAtest. Furthermore, to ensuremore reasonable
experimental results, random regions were generated 384 times, and
we obtained a total of 384 random regions for each type of El Niño
event.Similarly,weperformeddataassimilation intheabovegenerated
random regions and conducted ensemble predictions. This test was
denoted as the RA test.
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For the prediction results, we adopted the root mean square
error (RMSE) of the predicted SSTAs in Niño 3 (or Nino 4) areas to
measure the intensity prediction uncertainties of EP-El Niño (or CP-
El Niño) events. Specifically, the prediction error can be calculated
as follows:

RMSE(i,j) =
√

N

∑
i,j=1
(SSTAp

(i,j) − SSTAr
(i,j))

2

N
(2)

where SSTAp
(i,j) denotes the predicted SSTA, SSTAr

(i,j) denotes the
true SSTA, and N is the total grid points of the Niño 3 (or Niño
4) region. Additionally, we adopted the similarity coefficient (Eq. 1)
to measure the degree of similarity between the predicted and true
SSTAs andweusedRMSE (Eq. 2) tomeasure the intensity prediction
errors of El Niño events.

The RMSE values and similarity coefficients related to EP- and
CP-El Niño events are shown in Figure 11. The results showed
that the predictions obtained by performing assimilation tests in
the sensitive areas exhibited the smallest SSTA prediction errors
in Niño 3 areas for EP-El Niño events and in Niño 4 areas for
CP-El Niño events, which suggests that the intensity prediction
ability could be greatly improved when assimilation is performed
in the sensitive areas. Additionally, the similarity coefficient was the
highest for the forecast results of the SA test, which indicates that
the spatial mode predictions of EP- and CP-El Niño events are more
accurate. In addition, Figure 11 shows that the dispersion degree
related to both the RMSE and similarity coefficient of the different
prediction samples in the SA test were the smallest among the
three groups of tests. These results suggest that when we performed
assimilation in the sensitive regions, the improvement of prediction
skills was more robust. On the other hand, analyzed from the
perspective of the “spring predictability barrier” (SPB), due to that
RA test could reduce the prediction errors and improve the ENSO
prediction skills, therefore, we infer that the SPB phenomenon
of ENSO prediction could be weakened by assimilating target
observation data in sensitive areas of the whole Pacific. Overall,
the ENSO prediction skills, including intensity and spatial structure
predictions, could be greatly improved by assimilating target
observation data in sensitive areas of the whole Pacific for both EP-
and CP-El Niño events.

In addition, the present results have also important implications
for the development mechanisms of two types of El Niño. Using
the conclusion of targeted observations, we also find that, in the
ocean region B1, there exists the strong Bjerknes positive feedback
process between ocean temperature and anomalous easterly winds
along the equator. Moreover, In the ocean region A, VM-like ocean
temperature patterns in the subtropical North Pacific could induce
the ocean temperature errors toward the central equatorial Pacific
through the Seasonal Foot-printing Mechanism (SFM) process.
Both contribute to the sustained growth of the prediction errors,
and then caused the largest spatial structure prediction uncertainties
for EP-El Nino events and induced the significant SPB especially
the largest prediction errors in Niño 4 areas. In the ocean region
B2, there is a subsurface temperature wave process in which
the subsurface ocean temperature errors in the central-eastern
equatorial Pacific migrate to the east by driving up the thermocline
and generating upwelling Kelvin waves. In the region C, the ocean

temperature errors in the subtropical southeast Pacific could trigger
ocean temperature errors toward the surface of the central-eastern
equatorial Pacific via a W-E-S feedback process. Both the physical
process caused the largest spatial structure prediction uncertainties
for CP-El Nino events and induced the significant SPB especially the
largest prediction errors in Niño 3 areas.

7 Conclusions and discussion

In this study, we explored the predictability of two types of
El Niño events with the GFDL CM2p1 model. By focusing on
error growth, we first identified two types of sensitive initial ocean
temperature errors associated with EP- and CP-El Niño events
by adopting the K-means clustering method. For EP-El Niño
events, we finally determined two stable clustering centers. The two
cluster centers were EP-Type-I and EP-Type-S, and both types of
initial ocean temperature errors could cause the large prediction
uncertainties in the tropical Pacific. In particular, EP-Type-I initial
ocean temperature errors could cause the largest SSTA prediction
errors in Niño 3 areas and modulate the intensities of EP-El Niño
events, as reported in the study of Qi et al. (2021a). EP-Type-S initial
ocean temperature errors, which exhibit structures with negative
anomalies in the upper layers of the central-eastern equatorial
Pacific and a meridional dipolar structure in the upper layers of
the subtropical North Pacific, could cause negative SSTA errors
in the eastern equatorial Pacific and ultimately evolve into a La
Nina-like mode. By comparing the EP-Type-S and EP-Type-I initial
ocean temperature errors, we proposed that the EP-Type-S initial
ocean temperature errors could modulate the spatial structure of
EP-El Niño events. For CP-El Niño events, two stable initial ocean
temperature error clustering centers were also obtained by using
the K-means clustering algorithm. The two cluster centers were
denoted asCP-Type-I andCP-Type-S, and both types of initial ocean
temperature errors could cause the largest prediction uncertainties
in the tropical Pacific. In particular, CP-Type-I initial errors could
cause the largest SSTA prediction errors in Niño 4 areas and
modulate the intensities of CP-El Niño events, as noted in the study
of Qi et al. (2021a). CP-Type-S initial ocean temperature errors
resulted in predicting CP-El Niño events as a traditional La Nina-
like mode with a negative center in the eastern equatorial Pacific,
whichmay affect the spatial pattern predictions ofCP-ElNiño events
by destroying the anomaly center in the equatorial central Pacific.
Therefore, we proposed that CP-Type-S initial errors could cause
the large prediction uncertainties in CP-El Niño events, especially
spatial structure prediction uncertainties, and they could modulate
the spatial structure of CP-El Niño events.

Then, we validated the effectiveness of EP-Type-S-A and CP-
Type-S-B sensitive areas in improving the prediction skills related
to spatial structure predictions of EP- and CP-El Niño events,
respectively, by performing a series of numerical experiments.
The results indicated that the predicted SSTAs exhibited strong
warming signals in the central-eastern equatorial Pacific (or the
central equatorial Pacific)whenwe implemented target observations
in the EP-Type-S-A (or CP-Type-S-B) sensitive areas, and all the
predictions related to the spatial structures were valid for EP-ElNiño
events (or CP-El Niño events). Therefore, EP-Type-S-A initial ocean
temperature errors could modulate the spatial structure predictions
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FIGURE 11
Box–whisker plot of the skills of the updated forecasts with the NO test, SA test and RA test for EP- and CP-El Niño events. (A1) Average prediction
errors of Niño 3 SSTAs in December (units: °C) for EP-El Niño events; (A2) similarity coefficients for EP-El Niño events; (B1) average prediction errors of
Niño 4 SSTAs in December (units: °C) for CP-El Niño events; (B2) similarity coefficients for CP-El Niño events. The red lines denote the medians of the
prediction errors or the similarities for EP- and CP-El Niño events.

of EP-El Niño events, while CP-Type-S-B initial ocean temperature
errors could modulate the spatial structure predictions of CP-El
Niño events.

Furthermore, the sensitive target observation areas were
obtained by comprehensively considering both intensity and spatial
structure predictions. The sensitive areas in the whole Pacific are
region A (20°N-60°N, 150°E−120°W, 0–85 m), region B1 (15°S-
15°N, 135°W-85°W, 0–85 m), region B2 (10°S-10°N, 130°E−135°W,
85–165 m) and region C (15°S-30°S, 130°W-85°W, 0–85 m). By
performing a group of ensemble prediction experiments, we
illustrated that the ENSO prediction skills, including intensity
and spatial structure predictions, could be greatly improved by
assimilating target observation data in the above sensitive areas for
both EP-ElNiño andCP-ElNiño events.Moreover, the experimental
results indicated that the optimal observations in the above sensitive
areas are effective and the ocean temperature in both the tropical
Pacific and subtropical Pacific plays an important role in predicting
the two types of El Niño events.

In this study, we determined the sensitive areas that could
modulate the intensity and spatial structure of EP- and CP-
El Niño events, and the prediction skills could be greatly
improved by assimilating target observation data in the sensitive
areas. However, the identified sensitive areas jointly account for
approximately 10% of the total volume of the Pacific, which

still are large areas for constructing real observational arrays
when considering the economic efficiency. Therefore, in future
studies, we should explore the relative importance of the identified
sensitive areas A, B1, B2 and C and determine the optimal
practical observation array to achieve economic efficiency. In
our research, we only use GFDL CM2P1 model to study the
problem. If we use an operational global forecast model, which
also shows good performance for ENSO prediction, what is the
targeted observation strategy for obtaining exact forecasts of the
two types of El Niño events by focusing on error growth? Will
the sensitive areas change when using the operational global
forecast model? These issues should be considered and studied in
the future.

In addition, the atmospheric disturbance will also cause
the ocean temperature change through the air-sea interaction.
For example, based on Lian et al. (2014), westerly wind bursts
could be responsible for the existence of El Niño types and
for the extremes of the cold tongue El Niño. That’s, although
the atmospheric perturbations are not the main triggers, the
atmospheric perturbations do also modulate the types and the
strength of El Niño events. Therefore, in the future study, we will
also try to explore the respective role of ocean and atmospheric
perturbations related to the El Niño predictions. Moreover, we
only focused on the Pacific Ocean to obtained the targeted
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observation sensitive area in this study. However, in addition to
the Pacific Ocean, the interannual-scale variability of other oceans
has a significant impact on the two types of El Niño events
(Zhang et al., 2023; Zhou et al., 2020). If we can comprehensively
consider the interaction between other oceans and the Pacific
Ocean, and identify the sensitive areas of the global sea areas,
the forecasting skills of the two types of El Niño may be
further improved.
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