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ABSTRACT    
A number of problems, arising from both theoretical research in atmospheric and 

oceanic sciences and numerical implementation of weather and climate prediction, can be 
formulated as nonlinear optimization problems (NOPs). Firstly the predictability problems in 
numerical prediction of weather and climate are investigated, of which three sub-problems 
are classified, and then reduced into nonlinear optimization problems. How to solve these 
NOPs to estimate the prediction errors, the maximal predictable time, and the maximal 
admissible initial errors is demonstrated by the well-known Lorenz model. Secondly the data 
assimilation problems in atmospheric and oceanic research are considered. Attentions are 
particularly paid to the variational data assimilation with " on- off " switch conditions in the 
model physical processes, which usually yields in non-smooth NOPs. Thirdly the NOPs 
related to the sensitivity analysis in atmospheric and oceanic studies are also explored. The 
difficulties both in the theory and in the lack of ripe algorithms are also presented, which 
leaves future works to both computational mathematicians and scientists in geophysics. 
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1. Introduction  

In theoretical research of atmospheric and oceanic sciences and numerical implementation of 
weather and climate prediction, many problems can be formulated as nonlinear optimization 
problems (NOPs). This paper is devoted to discussion of the NOPs related to predictability,  
variational data assimilation and sensitivity analysis.  

Numerical prediction of weather and climate consists of solving a set of partial differential 
equations, which is usually refered as model, with given initial values. But inevitable model 
deficiencies and initial errors will cause the uncertainties of the forecast results. The studies of 
these uncertainties have become known as  “predictability problems”, which can be traced back to 
Thompson (1957) and the latter Lorenz (1963). Untill now, the predictability problems of 
numerical weather and climate prediction is still one of the important subjects, e.g., the well-
known international research programme on “Climate Variability”. 

According to above two factors causing the uncertainties of the forecast results, the 
predictability problems are usually classified into two types: the first kind of predictability, which 
is related to the initial errors, and the second kind of predictability, which is to the model errors. 
The definition of the model error varies with authors. In this paper, we adopt the following 
definition (Talagrand, 1997): If the initial value of the model is the true state, then the difference 
between the value of the forecast and the true state at the prediction time is called the model error. 
From this definition, it is easily seen that there are many factors causing model errors. However, 
in this paper, we only consider the errors of the parameters in the model, which is generally 
considered to be the main problem in the model. 
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Obviously, the more accurate the estimate of the initial conditions, the better the quality of 

the forecasts. Currently, operational numerical weather prediction centers produce initial 
conditions through a combination of observations and short-range forecasts. This approach is 
entitled “data assimilation”, whose purpose is to determine as accurately as possible the state of 
the atmospheric (or oceanic) flow by using all the available information (Talagrand, 1997).   

Data assimilation consists of two types of approaches: sequential data assimilation and 
variational data assimilation. In this paper, our attention is paid to four-dimensional variational 
data assimilation, known as ‘4D-VAR’. It starts by consructing a cost function with respect to 
initial condition, which represents the difference between the model solution and the 
observational data. By seeking the minimum value for the cost function, the optimal initial field is 
obtained. This problem can be regarded as unconstrained optimization problem mathmetically. 
However, it is not easy to compute the gradient of the cost function with high dimensional models. 
In Le Dimet and Talagrand (1986), the adjoint method was proposed, which is an efficient way to 
catch the gradient. However, to apply adjoint method correctly and effectively in the 4D-VAR 
with physical processes, there are still a few important problems to be worked out, and the “on-
off” switch problem is one of them. 

The present study aims to address the above problems. We will, in section 2, derive the three 
sub-problems of the predictability, and adopt the well-known Lorenz model to show how to 
realize the idea in solving the three sub-problems. In section 3, the non-smooth NOPs in the 
variational data assimilation with on-off switch condition are explored. Section 4 is devoted to the 
NOPs related to the sensitivity analysis. In the last section, the difficulties in theory and in the 
optimization process are discussed.  
2.  Predictability problems 
       2.1 Three problems of predictability  
        On the basis of practical demands, the predictability problems can be classified into three 
problems (Mu, et al, 2002). 
        Problem 1 Assume that the initial observation obsu0

r
 and the first given value of the 

parameter gµr  in the numerical model are known. At prediction time T, the maximum allowable 
prediction error in terms of norm A|||| ⋅  is 

 
               (2.1) 

 
where TM  is the propagator, which propagates the state from the initial time to time T , t

Tur  the 

true value of the state at time T, and ε is given.  So the maximum predictable time εT  can be 
formulated into the following nonlinear optimization problem.  
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          (2.2) 

Since the true value t
tur  cannot be obtained exactly, εT  cannot be derived precisely too. But if we 

know more information on the errors of initial value and parameters, the useful estimation on εT  
can be derived. For example, if we know the information on the errors of the initial value and the 
parameter as follows 

                                             
(2.3) 

Then we investigate the following nonlinear optimization problem 
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where 
1δ

B , 
2δ

B are the balls with centers at obsu0
r

, gµr  and radius 1δ , 2δ respectively. 
         It is not difficult to prove that  

εε TT l ≤ . 
Therefore we have the lower bound of the maximum predictable time. 
         Problem 2 Assume obsu0

r
and gµ

r
are given, for a fixed prediction time T , the prediction 

error can be expressed as follows 

.0 ||),(|| A
t
T

gobs
T uuME rrr

−= µ  

Similar to the above problem, since the true value t
Tur  cannot be known precisely, it is also 

impossible to get the exact value of E. But we can estimate it by the information on the errors 
about initial value and parameters as follows. 

.||),(),(||max 00, 210
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gobs
TTBBuu uMuME µµ
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rrrr
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Without much difficulty, we can prove that 

uEE≤ . 
In this way, we established the upper bounds on the prediction errors. 

Problem 3 Assuming that the initial observation obsu0

r
and the first given value of the 

parameter gµ
r

are available. At the prediction time T , the allowing maximum prediction error is 
(2.1). Our purpose is to determine the allowable maximum initial error and the parameter error. 
More precisely, the purpose is to look for the maximum δ , such that if (2.3) holds with 

21 δδδ += , then (2.1) holds.  
           This problem can also be reduced to an optimization problem as follows, 
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Following the above idea, we can estimate δ . Investigating the problem 
},,,,||),(),(|||{max 21000max 21

δδδµεµµδδ δδδ
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rrrrrr  

we can conclude that  
.maxmax δδ ≤  

         2.2  Examples — Three problems of Lorenz model 
  In this sub-section, we study the three problems of the predictability of the Lorenz model as  

examples. For simplicity, we assume that the model is perfect. 
  Lorenz’s model consists of a set of ordinary differential equations: 
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where ,10=σ  ,28=r  3/8=b  (Lorenz, 1965) are the parameters? 
          It is easy to find out that Lorenz’s model has three stationary points: 
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We choose these three stationary points as initial observations to study the three problems. It 
should be pointed out that other points could be adopted as the initial observations too. The 
system is integrated by middle point scheme with time step .01.0=dt  

2.2.1 Problem 1 
Let tM be the propagator of the Lorenz model, *O the initial observation, 

),,,( 000 zyxX =
r

and XOu
rr

+= *
0 . With these notations, the lower bound of the maximum 

predictable time is 
{ }.0,||)()(||,max|min **
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In this paper, two norms 2
0

2
0

2
02|||| zyxX ++=

r
and |}||,||,max{||||| 000 zyxX =∞

r
are 

employed to measure the errors. For different initial observational error bounds δ≤2|||| X
r

and 

δ≤∞|||| X
r

, we obtain the lower bound of the maximum predictable time for the 
initialobservations O  and 1C . Because 1C  and 2C are z-axis symmetrical, the lower bound of 
the maximum predictable time should be equivalent. For simiplicity, we only show the results of 
O  and .1C  

        
Fig 1. lTε  for O with norm ∞⋅ ||||                           Fig 2. lTε  for 1C with norm ∞⋅ ||||       

Fig 3. lTε  for O with norm 2|||| ⋅                     Fig 4. lTε  for 1C with norm 2|||| ⋅  
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             It is clear from Figures 1-4 that the lower bound of the maximum predictable time of the 
initial observation 1C  is much longer than the corresponding one of  the initial observation O . 
This indicates that there exists stronger predictability around initial observation 1C than initial 
observation O . 
              2.2.2  Problem 2 

 With the above notations, the upper bound of prediction error of the initial observation 
*O  at time T is  

.||)()(||max **

||||
OMXOME TTXu −+=

≤

r
r

δ
 

The numerical results related to the maximum prediction error are presented in the 
following figures. 
Initial observation O   

                 Fig 5. *
δX
r

 for T=30 with 
2|||| X

r                              Fig6. uE  for T=30 with 
∞||||,|||| 2 XX

rr  

  Initial observation 1C  

                        Fig 7. *
δX
r

 for T=80 with 
2|||| X

r                       Fig8. uE  for T=80 with 
∞||||,|||| 2 XX

rr  
           2.2.3 Problem 3 
           From section 2.1, we can derive the lower bound of the allowable maximum initial error, 
i.e. 
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The numerical results are as follows.  

   Fig 9. maxδ for O with ∞⋅ ||||                                     Fig10. maxδ for 1C with ∞⋅ ||||   

                Fig 11. maxδ for O with 2|||| ⋅                                         Fig12. maxδ for 1C with 2|||| ⋅     

3. The variational data assimilation problems with on-off switch condition 
       3.1 The problem        
       The variational data assimilation (VDA) is an unconstraint optimization problem 
mathematically. In optimization process we need to calculate the gradient of the cost function 
with respect to the initial condition. The adjoint method is an efficient approach to obtain it. 
       But for the model with discontinuity resulted from the presence of the “on-off” switches, the 
computational efficiency and even the feasibility of the adjoint method used in variational 
assimilation should be checked. This section is devoted to this problem by using two kinds of 
humidity equation, which contain threshold processes (represented by “on-off” switches in 
models). 
       Model 1  (Xu 1996; Zou 1997): 
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       Model 2   (Xu 1996; Zou 1997): 
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where q is the state variable, cq the critical value of q , the switch is turned on or off, and 





<
≥

=+ 0    x0
0     x1

)(xH   is the Heaviside unit step function. 

       According to the characters of the switch term (represented by )(⋅+H in the equation), the 
“on-off” problems can be divided into two types: discontinuous (Type I) and continuous but not 
differentiable (Type II). 
       For these two types of problems, Mu and Wang (2002) recently got the following results. 

       For Type I switch:  1) In the case of time continuous model, the reason that the conventional 
approach, which ignores the variation at the switch point, fails to give a correct gradient is that the 
propagator of the conventional tangent linear model in this approach differs from the tangent 
linear operator of the propagator of the nonlinear forward model, in spite of the fact that the 
gradient of the cost function with respect to the initial condition exists except for the threshold. 2) 
In the case of time discrete model obtained by traditional schemes, the conventional approach can 
always be used to gain the correct gradient where it exists. But there might exist local minimum 
for the discrete cost function, which do not exist in the continuous case, and the optimization with 
the gradient obtained by the conventional approach could yield the local minimum rather than the 
global minimum as we require. 3) A new approach, which is based on the nonlinear perturbation 
equation directly, rather than on the conventional tangent linear model, is proposed. This 
approach can be used to obtain the accurate gradient in the continuous case. 4) In the discrete case, 
this new approach can be employed to obtain correct descent direction of the cost function, which 
yields the global minimum, and overcomes the drawback of the conventional approach. Further, 
the advantage of this new approach is that it is not necessary to modify the forward model, or the 
tangent linear and adjoint models. For Type II switch, the conventional approach can be used 
correctly both for the time continuous and discrete cases. 
       In the case of time discrete model obtained by traditional schemes, for the discontinuous 
switch, the cost function becomes piecewise and may have multiple minima. So the result of 
assimilation with convectional approach is sensitive to the first guess. This phenomenon can be 
elminated by our new approach.  For the Type II switch, the conventional approach is feasible. 
       3.2  Numerical results on Type I switch 
       The numerical experiments based on the optimization with the conventional approach ( Zou 
et al., 1993; Zou, 1997) (Algorithm 1) and the new one of Mu and Wang  (Algorithm 2) are made. 
For the discrete cost function , it is found that there are multiple minima in the case of Type I 
switch. 

In the following experiment, the continuous cost function has unique minimum 3.0*
0 =q , 

while the minima of the discrete cost function are: 19.0)1(
0 =q , 25.0)2(

0 =q . The first is a 
local minimum and the second is the global one. The global minimum is close to the analytical 
global minimum 3.0*

0 =q  but does not coincide with it due to model error. 
        Using different initial guess values, we compare the effectiveness of Algorithms 1 and 2. 
        Experiment 1: The first guess is 0.150, which is at the left of the local and global 
minimums. 
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Table 13. Results obtained by Algorithm 1 
 

 k     )(
0

kq     )( )(
0

' k
d qJ    )( )(

0
' kqJ  )( )(

0
k

d qJ  

  0 1.500000E-01 -4.134046E-2 -4.628400E-2 3.181858E-03 

  1 1.653934E-01 -2.579297E-2 -4.141818E-2 2.665143E-03 

  2 1.909308E-01 -1.172721E-7 -3.340439E-2 2.335806E-03 
 

 Table 14. Results obtained by Algorithm 2 
 

 k     )(
0

kq     )( )(
0

' k
d qJ    )( )(

0
' kqJ  )( )(

0
k

d qJ  

 0 1.500000E-01 -4.247610E-2 -4.628400E-2 3.181858E-03 

 1 1.649819E-01 -3.585407E-2 -4.154791E-2 2.675852E-03 

 2 2.460991E-01 -1.230505E-2 -1.634159E-2 5.263018E-04 

 3 2.497602E-01 -1.071611E-2 -1.522132E-2 5.261876E-04 

 4 2.497611E-01 -1.071578E-2 -1.522105E-2 5.261853E-04 
 
        Experiment 2. The first guess is 0.21, which is between the local and global minimal values. 
In Alogorithm 1, )(

0
kq  converges  to 0.19, which is the local minimum. The cost function varies 

from 2.5E-03 to 2.3E-03. In Algorithm 2, the final result is 0.25, which is the global minimum. 
The cost function varies from 2.5E-03 to 5.4E-04. At the beginning of the iteration, the derivative 
obtained by the conventioal approach has different sign with analytical one, which explains why 
the optimization process yields the local minimum. 
        Experiment 3. The first guess is 0.31, at the right to the local and global minimal values. In 
Algorithm 1, )(

0
kq comes through  0.29 to 0.25, the global minimum. Algorithm 2 ends with  0.25, 

which is also the global minimum. 
4. Sensisivity analysis of the model with respect to initial condition 

In this section we discuss how to make sensitivity analysis of the model with respect to initial 
condition by  

assuming that the model error can be ignored. 
        Let 

2
00 ||))(||

2
1min)(min obs

TT UUMUJE −== ,                              (4.1) 

where TM is the propagator (the numerical model), 0U  the initial value and obs
TU  the 

observational value at time T . By using the adjoint method and the optimization algorithms, the 
initial value 0U  and the minimum E satisfied  (4.1) can be found. For a given error bound ε , 

there are two cases for E : 



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≤≤
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ε
E

E
 



Nonlinear Optimization Problems in Atmospheric and Oceanic Sciences   177 

        If case (1) appears, it is easily shown that E is greater than the given allowable error, which 
means that the numerical model cannot predict  the observational value obs

TU within the allowable 
error even if we have the optimal initial value. In other words, no matter how we adjust the initial 
value,  the numerical model can not yield a satisfactory forecast results. In this case, we know that 
there exists considerable model error, and the model needs to be improved. In case (2), E is small 
enough . The numerical model solution and the observational value obs

TU have no essential 
difference. It implies that the forecast results of the numerical model are satisfactory. That is to 
say,  if we adjust the initial value of the numerical model 0U , the forecast result can be improved. 

        Let us further consider case (2), defining a maximum allowable initial error 0ε , we 

investigate the difference between the optimal initial value 0U  and the observational value obsU 0 . 
There are three cases: 









>>−

≈−

<<−

(c)                 ||||

(b)                   ||||

(a)                 ||||

0
2

00

0
2

00

0
2

00

ε

ε

ε

obs

obs

obs

UU

UU

UU

. 

        In (a), it is indicated that the numerical model has sufficient ability to forecast the 
corresponding weather or climate process. The satisfactory forecast results can be obtained from 
the existing observational data. So we don’t need to treat particularly with the initial field of the 
model. However, for (b), it is different from (a). Although the numerical model has the ability to 
forecast the corresponding weather or climate process, the satisfactory prediction results cannot 
be obtained with obsU 0 . Therefore we must improve the initial field by some methods (for 
example, assimilation method). From the improved initial field, the satisfactory prediction results 
can be obtained too. In the case of (c), similar to (b), the numerical model has the ability to 
forecast the corresponding weather or climate process. But the satifactory forecast results cannot 
be obtained from the existing observational data. This can be due to the lack of the information on 
the initial field. The existing observational data cannot reprsent the weather and climate processes.  
It is needed to intensify the observational network and obtain more detailed observational data 
than the existing one. Of course in the case of  (1), it is also possible that 0U  is too far away from 

obsU 0  to be true, and we should also investigate the model error. 

5.  Discussion 
        In this paper, we classify the predictability problems of numerical weather and climate 
prediction into three problems on the basis of practical demands, investigate the variational data 
assimilation problems with “on-off” switch condition, and discuss the sensitivity analysis of the 
model with respect to initial conditions. All these problems can be formulated as nonlinear 
optimization problems.  In operational numerical weather and climate prediction, the models are 
often very complicated and of high dimensions. To solve the above nonlinear optimization 
problems with such high dimensions, the capacity of the existing computers (speed, memory, etc) 
must be taken into account.  In addition, the models governing the motions of atmosphere and 
oceans are generally nonlinear. In some cases, the problems are non-smooth with complex 
constraint conditions.  
        With the development of the economy and society, quantifying study becomes more and 
more important in atmosphere and ocean research. It is expected that the rapid development in 
computational mathematics and in computers will serve our purpose in the future not too far, and 
it is time to devote our energies to these NOPs. 
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