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Abstract 

In the stability, sensitivity and predictability studies in 
geophysical fluid dynamics, linear singular vector (LSV), which 
is the fastest growing perturbation of the linearized model, is one 
of the useful tools. However, the linear approximation has strong 
limitations on the applicability of LSV, since it ignores the 
nonlinear processes, such as wave-mean flow interactions. The 
authors have proposed a new method called CNOPs (Conditional 
Nonlinear Optimal Perturbations), which generalizes LSV into 
the fully nonlinear category. CNOP is the initial perturbation 
whose nonlinear evolution attains the maximum value of the cost 
function, which is constructed according to the problems of 
interests with physical constraint conditions. In sensitivity and 
stability analysis of fluid motions, CNOP describes the most 
unstable (or most sensitive) initial modes. It can also represent 
the optimal precursor of certain weather or climate event, or 
stand for the initial error that has largest effect on the 
uncertainties at the prediction time.  

In this review paper, we introduce the concept of CNOPs first. 
Then we present the results on the stability, sensitivity and 
predictability obtained by CNOP approach, which includes: the 
sensitivity and stability of ocean’s thermohaline circulation; 
predictability of El Nino-Southern Oscillation; nonlinear stability 
problems of a theoretical grassland ecosystem model. It is shown 
that CNOPs not only reveal the effect of nonlinearity on the 
physical problems in which nonlinear process plays an important 
role, but also demonstrate significant physical characteristics that 
cannot be shown by LSV. For example, in Zebiak-Cane model, 
CNOPs, rather than LSVs, act as the initial anomaly patterns that 
evolve into ENSO events most probably, which shows that 
nonlinearity enhances the evolution of El Nino. In the theoretical 
Stommel’s model, a nonlinear asymmetric response of THC to 
the finite perturbation is revealed by using CNOP approach, 
which cannot be realized by LSV.  

Other applications of CNOP, which includes ensemble 
forecast and target observations, are reviewed too. Prospect and 
challenge in the future applications of CNOP are also discussed. 
 
Introduction  

One of the central problems in the studies of geophysical fluid 
dynamics (GFD) is the stability and instability of atmospheric 
and oceanic motions, which has attracted numerous distinguished 
scientists. Quite a few methods have been developed from 
theoretical, experimental to numerical approaches.  

For linear stability studies in GFD, linear singular vector 
(LSV), which was introduced into GFD by Lorenz in 1960’s, has 
been widely used. Since LSV describes the fastest growing 
perturbation of a linearized model, it is usually used to find the 
most unstable mode of atmospheric or oceanic flows [9]. 
Recently, its applications have been extended to explore climate 
variability and predictability [26, 31]. However, LSV is 
established on the basis that the evolutions of initial perturbations 
can be governed approximately by linearized models, which, due 
to the absence of nonlinearity, cannot describe the nonlinear 

evolution of the finite amplitude perturbations. The atmospheric 
and oceanic motions are generally dominated by nonlinear 
systems, so the nonlinearity limits the applicability of LSV. 

Realizing the limitations of LSV, Oortwijn and Barkmeijer [27] 
and Barkmejier [1] applied a modification technique to the 
linearly fastest-growing perturbation and constructed fast-
growing perturbations for the nonlinear regime. However, they 
also recognized that this technique may not necessarily result in 
the nonlinearly fastest growing perturbations. Mu et al. [16] 
proposed a new method called conditional nonlinear optimal 
perturbations (CNOPs), which is a kind of initial perturbations 
that satisfy a certain physical constraint and has the largest 
nonlinear evolution at a future time. Then this method has been 
used to explore the studies of sensitivity, stability, and 
predictability of weather and climate [6, 7, 8, 10, 16, 17, 19, 20, 
22, 23, and 25].  All these works showed that CNOPs usually 
capture the nonlinear effects on the perturbation evolutions of our 
interested problem and some new conclusions are found by this 
approach. 

Considering the potential applicability of CNOPs to fluid 
dynamics, but almost all papers related to CNOP have been 
published in journals of atmospheric or oceanic researches, which 
might be ignored by the scientists in the field of fluid dynamics, 
the purpose of this review paper is to introduce the approach of 
CNOP to fluid dynamical researchers. The main results, which 
are obtained by the authors and their colleagues with CNOP 
approach, are summarised. In next section, we will first review 
the approach of CNOPs.  
 
Conditional nonlinear optimal perturbation 

Suppose that the fluid motions are governed by the 
following nonlinear system: 

⎪⎩

⎪
⎨
⎧

=

=+
∂
∂

= ,|

,0)(

00 ww

wF
t
w

t

               (2.1) 

where the state vector 
     )),,(,),,(),,((),( 21 txwtxwtxwtxw nL=  

),,( 21 nxxxx L=  are the spacial variables, t  is time, and 

Ω×Ω∈  ,],0[),( Ttx  a domain in nR , +∞<T . The 

operator F in Eq. (2.1) is a nonlinear partial differential 
operator, and 0w  is the initial state. We assume that the future 
state of the fluid motions can be determined by integrating Eq. 
(2.1) with the appropriate initial condition. The solution to Eq. 
(2.1) for the state vector w  at time τ  is given by 

)(),( 0wMxw ττ =                       (2.2)

Here τM  is the propagator, which, as described by (2.2), 
“propagates” the initial value to the time τ  in the future. In 
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GFD, its discrete form is usually called a “model”. Let ),( txU  

and ),(),( txutxU +  be the solutions of Eq (2.1) with initial 

value 0U and 00 uU + , respectively, where 0u  is an initial 
perturbation. We have  

)()()(    ),()( 000 uUMuUUMU +=+= ττ τττ .  

So ( )τu  describes the evolution of the initial perturbation 0u . 

For a chosen norm   ⋅ , an initial perturbation δ0u is called 

CNOP under the constraint δ≤0u , if and only if 

( ) )(max 0||||0
0

uJuJ
u δδ ≤

=             (2.3) 

where  
))()(()( 0000 UMuUMGuJ ττ −+=        (2.4)

  

The functional )(⋅G is a measurement, which measures the 
evolution of the perturbations and particularly can be a norm 
( |||| ⋅ ) of the state variables. Usually the constraint condition is 
simply expressed as belonging to a ball with the chosen norm. 
Obviously, we can also investigate the situation that the initial 
perturbations belong to other kind of functional set. Furthermore, 
the constraint condition could be some physical laws that initial 
perturbation should satisfy. 

CNOP is the global maximum of ( )0uJ  in the 

ball δ≤0u . It is also possible that there exist local maximum 

value of ( )0uJ . In this case, we call the corresponding 

maximum as a local CNOP, denoted by lu δ0 .  
CNOPs have clear physical and dynamical meanings. First, 

in the studies of sensitivity and stability analysis of fluid motions, 
it describes the most unstable (or most sensitive) initial 
perturbation of the fluid motions within the given finite time 
period. Second, when CNOP is considered to be an initial 
perturbation superposed on a weather or climate event, it is the 
initial error that has the largest effect on the prediction 
uncertainty. Third, when the initial perturbations are the initial 
anomalies, the CNOP represents the optimal precursor of certain 
climate or weather events. Finally, CNOP can also be used to 
estimate the upper bound of the prediction error [18]. Assuming 

0U  is an initial observation, and t
TU  is the true value of the 

state, then the prediction error is 
 

( ) t
TUUME −= 0τ  

If the propagator τM  is considered to be exact, the prediction 

error E  at prediction time T  is only caused by the initial 
observational error. Since the true value of the state cannot be 
obtained exactly, it is impossible to get the exact value of E  
(prediction error). But if we know some information on the errors 
of the initial observation, e.g., the initial observation error in 
terms of a norm is less than δ , we can estimate the prediction 
error, 
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where 0u  is the initial perturbation superimposed on initial 

observation 0U and satisfies the constraint condition δ≤0u . 

Obviously, the inequality uEE ≤  holds. uE  gives the upper 
bound of the prediction error [18], whose expression is the same 
as ( )δ0uJ  in (2.3) with 0U  being initial observation. Thus, 
CNOP gives the upper bound of the prediction error caused by 
initial uncertainties satisfying the constraint condition. 

Based on these above physical explanations of CNOP, CNOP 
has been applied to study a variety of problems in GFD. In the 
following, we mainly review the applications of CNOP in the 
sensitivity and stability studies of ocean’s thermohaline 
circulation (THC) and the predictability studies of El Nino-
Southern Oscillation (ENSO). Some other applications including 
ensemble forecast, target observation, and the sensitivity of 
grassland ecosystem are simply introduced. With these 
applications of CNOP, we summarize the characteristics of 
CNOP and tell the algorithms that compute CNOP. Finally, the 
challenge and prospect in the applications of CNOP are discussed. 
 
Sensitivity and stability of THC to finite amplitude 
perturbations 

What is THC? It is known that the water of the great world 
ocean is constantly in motion, which carries colossal amounts of 
water to transport around the globe and has been named “The 
Great Ocean Conveyor" [4]. The THC is what drives the 
Conveyor. It involves both heat, hence “thermo”, and salt, hence 
“haline”. The circulation of heat and salt through the ocean 
basins is called the THC. Since the transport of both salt and heat 
is quite advection dominated and both quantities are not mixed 
well once deep below the surface, a particular amount of water 
can be traced back to its origin. Hence, such a volume of water 
can be characterized by its temperature and salinity at formation 
and is called a water mass. The two attributes, temperature and 
salinity, determine the density of seawater, whose differences in 
density between the water masses in the world's oceans causes 
the water to flow. The THC thereby produces the greatest oceanic 
current and works in a fashion similar to a conveyor belt -- hence 
the name -- transporting enormous volumes of cold, salty water 
from the North Atlantic to the Northern Pacific, and bringing 
warmer, fresher water in return.  

One of the fundamental issues on climate variability is the 
stability and sensitivity of the ocean’s THC.  The sensitivity of 
the thermohaline circulation is caused by several feedbacks 
induced by the physical processes that determine the evolution of 
the thermohaline flow. One of these feedbacks is the salt-
advection feedback, which is caused by the fact that salt is 
transported by the thermohaline flow, but in turn influences the 
density difference that drives this flow. The salt advection 
feedback can be conceptually understood in a two-box model 
[28], where it is shown to cause multiple equilibria and hysteresis 
behavior. Knutti and Stocker [11] investigated the sensitivity of 
the THC to perturbations. It is found that this sensitivity severely 
limits the predictability of the future THC when approaching the 
bifurcation point. Although LSV can be used to investigate the 
stability and sensitivity of the flow [17], it cannot provide critical 
boundaries on finite amplitude stability of the THC. Furthermore, 
due to the linearity of LSV, it cannot be used to study the 
response of a THC system with multiple equilibriums and 
internal oscillatory modes to a finite amplitude perturbation.  

To investigate the effect of nonlinear processes on the 
sensitivity of THC, Mu et al [17] employed CNOP to determine 
the nonlinear instability boundaries of linearly stable 
thermohaline flow states by the famous Stommel’s two-box 
model of the ocean’s THC [28]. There are two steady states of 
the THC in the Stommel’s model. One is called thermally-driven 
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(TH) state; that is, a negative equatorial-to-pole temperature 
gradient exists dominating the density. The other is called salinity 
driven (SA) state; that is a negative equatorial-to-pole salinity 
gradient exists dominating the density. Mu et al. [17] extended 
the results on linear optimal growth properties of perturbations on 
both TH and SA thermohaline flows to the nonlinear case.  
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Figure 1. The asymmetric nonlinear response of THC to initial freshwater 
perturbation. The solid line (dash line) represents the nonlinear (linear) 
evolution J of the initial perturbation. The nonlinearity makes the 
evolution of the freshwater perturbation much faster. This figure is from 
[17]. 

 
In the case of TH states, the CNOPs superimposed on the TH 

steady stable state were calculated. All these CNOPs locate the 
boundaries of the constraint. The evolutions of the CNOPs were 
also investigated. The numerical results demonstrated that the 
initial saline and freshwater perturbations of ocean’s THC behave 
symmetrically with respect to the sign of steady flow rate in the 
linearized Stommel’s model (Figure 1). However, in the 
nonlinear Stommel’s model, due to the effect of nonlinearity, the 
nonlinear evolution of the freshwater (saline) perturbations leads 
to a larger (smaller) amplitude than their linear counterparts 
(Figure 1), which indicates that the perturbations which move the 
system towards a bifurcation point will be more amplified 
through nonlinear mechanisms than perturbations that move the 
system away from a bifurcation point. The authors of [17] also 
demonstrate that for the CNOPs with small amplitude, the flow 
rate recovers to the steady climate state rapidly. For the CNOPs 
with large initial amplitude, it takes much longer for the THC to 
recover to steady state. This is different from the results of a 
linear analysis and reflects the effect of nonlinearity on THC. 

In the case of SA states, there are similar results to TH state, 
that is, the CNOP always moves the system towards the 
bifurcation point. The SA states have an asymmetry in the 
nonlinear amplification of disturbances, with larger amplitude for 
initial salinity perturbation. 

In [17], the authors also paid attention to the sensitivity of 
THC along the bifurcation diagram. The results demonstrate that 
with the parameter changing, the linearly stable TH state 
gradually transits from nonlinearly stable state to nonlinearly 
unstable one (Figure 2). It is easily derived that for each value of 
the model parameter, a critical value of initial perturbation 
amplitude must exist such that the TH state is nonlinearly 
unstable, which induces a transition of the system from the TH 
state to the SA state (Figure 3). This critical value acts as the 
nonlinearly stability threshold of the thermohaline flows. For the 
salinity-driven branch, the nonlinearly instability thresholds were 
also provided based on the Stommel’s model. 
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Figure 2. The nonlinear evolutions J  of CNOPs with different values 

of freshwater parameter 2η . When 046.12 =η , the finite 

amplitude perturbation causes the transition of climate equilibrium. This 
figure is from [17]. 
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Figure 3. The critical value cδ  (of initial perturbation amplitude) for 

nonlinear stability versus the parameter controlling the thermally-driven 

state near the saddle-node bifurcation at 05.12 =η . This figure is 
from [17]. 

 
Within the above two-box model, Sun et al. [30] further 

studied the decadal variation of THC. They found that there are 
two different types of optimal perturbation in the nonlinear 
regime. One is the freshwater flux perturbation, which is the 
CNOP of THC and has stronger amplification. The other is 
salinity flux perturbation, whose amplification is weaker. 
Freshwater perturbations weaken the mean circulation and hence 
weaken the stability of THC, while salt perturbations enhance the 
mean circulation and the stability of THC. By superimposing the 
initial perturbations to the thermohaline circulation, Sun et al. [30] 
investigated the passive variabilities of THC. It is found that the 
passive variabilities are due to the nonnormal and nonlinear 
growth of initial perturbations. These variabilities, measured as 
recovering time of perturbations, can cause decadal variability of 
THC.  

Recently by using CNOP, Wu and Mu [32] studied the 
impact of wind-driven ocean gyres (WDOG) on THC within a 
modified Stommel's box model, in which WDOG is considered 
in the form of diffusion [14]. Focuses are on the multi-
equilibriums existence and nonlinear stability of THC. They 
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reported that there exists a physical mechanism, which makes 
WDOG result in more decrement of salinity difference in the 
meridional direction than that of temperature difference. 
Consequently the effects of WDOG on the thermally and salinity 
driven equilibriums of THC are different: WDOG stabilizes the 
former but destabilizes the latter. 

Wu and Mu [33] also investigated the impact of WDOG on 
the decadal variability of THC. Numerical analyses demonstrates 
that the physical mechanism found in Wu and Mu [32] plays 
different roles on the decadal variability of thermally and salinity 
driven equilibriums of THC too.  
 
Applications of CNOP to ENSO predictability 

Predictability studies in numerical weather and climate are 
concerned with the uncertainties of prediction caused by both 
initial and model errors. Clearly unstable states and chaotic 
process amplify the initial errors and finally lead the failure of 
predication. This implies that predictability studies are essentially 
related to the stability and sensitivity studies in atmospheric and 
oceanic sciences. One approach to attack the predictability 
problems is to investigate the evolution of the initial uncertainties 
that has the largest impact on the uncertainties of prediction [13]. 
CNOP acts as the initial uncertainties that have the largest 
negative effect on the prediction results. The authors and their 
colleagues used CNOP to explore ENSO predictability. 

ENSO is a well-known short-term climate phenomenon that 
happening in tropical Pacific Ocean. Usually the annual mean 
seas surface temperature (SST) over the equatorial Pacific takes 
on a strong asymmetry between the relatively warm western part 
of the basin, the region is called the warm pool, and the cooler 
eastern basin, called the cold tongue. In some years, the SST 
anomaly of the equatorial eastern Pacific is up to a few degrees, 
the phenomenon of which is usually as El Nino. This 
phenomenon is associated with the atmosphere, and thus the term 
ENSO that incorporates the Southern Oscillation phenomenon is 
commonly used. Southern Oscillation refers to a seesaw shift in 
surface air pressure at Darwin, Australia and the Southern Pacific 
Island of Tahiti. Though they originate in the tropical Pacific, 
they have an impact on weather and climate globally and can 
cause natural disasters.   

 
Figure 4. The patterns of CNOP-type error for a given El Nino event in 
the ZC model. (left) SSTA and (right) thermocline depth anomaly 
components for the start month being (a) January, (b) April, (c) July, and 
(d) October. This figure is from [20]. 
 

Since later 1980’s, considerable efforts have been devoted to 

study and to predict the ENSO phenomenon. An important aspect 
of these studies is on the exploration of “spring predictability 
barrier” (SPB) for ENSO. SPB is a well-known characteristic of 
ENSO forecasts, which is referred to a phenomenon that most 
ENSO prediction models often experience an apparent drop in 
prediction skill across April and May [36]. Many works have 
investigated this phenomenon [26, 34, 35, 36, etc.]. It is 
noticeable that Chen et al. [5] reported that by using the initial 
field produced by a data assimilation approach, SPB in the model 
of Zebiak-Cane model (ZC model; [37]) is not as severe as that in 
persistence or in most other forecast models, which indicates the 
importance of the accuracy of initial fields in ENSO 
predictability.  

 
Figure 5. Four representatives of Non-CNOP type errors for the El Nino 
events as in Figure 4, where the start month of prediction is January. (left) 
SSTA and (right) thermocline depth anomaly components. This figure is 
from [20]. 

 
Encouraged by the work of Chen et al. [5], Mu et al [20] 

investigated SPB problem for ENSO events in the ZC model, in 
view of the development of initial errors, by using CNOP 
approach, where CNOP is superimposed on the ENSO events and 
plays the role of the initial error that has largest negative effect 
on the prediction results. In [20], CNOPs were calculated for 
different types of El Nino events with different start months. 
Then the CNOP-type error patterns were obtained (Figure 4). 
Integrating the ZC model with these initial errors, the dynamics 
of the corresponding prediction errors was illustrated. By 
investigating the slope of the prediction error evolution at 
different seasons, Mu et al. [20] reported that CNOP-type error 
tends to have a significant season-dependent evolution with the 
largest error growth occurring in northern spring, and produces 
most considerable negative effects on the forecast results, that is, 
the largest prediction error. Therefore, CNOPs are closely related 
to SPB. On the other hand, some other kinds of initial errors 
(Figure 5), whose patterns are different from those of CNOPs, 
have also been found. Although the magnitudes of such initial 
errors are the same as those of CNOPs in terms of the chosen 
norm, they either show less prominent season-dependent 
evolutions, or have trivial effect on the forecast results, and 
consequently do not yield SPB. The results of this investigation 
suggest that the CNOP-type errors can be considered as one of 
candidate errors that cause the SPB. If data assimilation or (and) 
targeting observation approaches possess the function of filtering 
the CNOP-type or (and) other similar errors, it is hopeful to 
improve the prediction skill of ENSO.  
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Figure 6. Nonlinear and linear evolutions of the nondimensional model 
variable T (SSTA) corresponding to CNOP and LSV of annual cycle, 

respectively. ( )g
LN

g
N uuδ  and ( )g

LL
g
L uuδ : the nonlinear and linear 

evolutions of SSTA of the CNOP (the LSV). This figure is from [6]. 
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Figure 7. Comparisons between El Niño and La Nina events. 

( )l
LL

g
N uuδ ：the SSTA nonlinear (linear) evolution of the CNOP (the 

corresponding LSV), and ( )l
LL

l
N vvδ : the SSTA nonlinear (linear) 

evolution of T−  (negative anomaly of SST) of the local CNOP (the 
corresponding LSV). This figure is from [6]. 
 

Optimal precursor is another important problem of 
predictability studies for ENSO. The optimal precursor for ENSO 
is the initial anomaly mode that evolves into ENSO event most 
probably, which is the most predictable, meaning that if this 
signal related to CNOP is observed in nature, then the future 
outcome of the system is fairly certain. By using CNOP approach, 
Duan et al. [6] studied the optimal precursor problem for ENSO 
events by a simple coupled ocean-atmosphere model, where the 
CNOP is superimposed on the climatological annual cycle and 
represents an anomaly signal of ENSO events. For the different 
start months, the CNOPs were computed [6]. By studying the 
behaviour of the evolutions of these CNOPs, Duan et al. [6] 
demonstrated that the CNOPs of the climatological annual cycle 
evolves into the positive SST anomaly in the nonlinear model, 
which takes a striking resemblance to the development of El 
Nino (Figure 6).  In fact, it acts as a precursor for El Niño event 

in the adopted model. Although the corresponding LSV also 
develops into an El Niño, the intensity is considerably weaker 
than that of CNOP. In this sense, Duan et al. [6] regarded CNOP 
as the optimal precursor for El Niño. For the local CNOP of the 
annual cycle, its nonlinear SST anomaly evolution is only a little 
larger than that of the corresponding LSV. This phenomenon can 
be explained by the locality of the local CNOP. As to the 
physical characteristic local CNOP bears, by investigating the 
nonlinear evolution, it is found that local CNOP acts as the 
optimal precursor of the model La Nina event. Furthermore, 
Duan et al. [6] compared the amplitude of El Nino and La Nina 
events in the adopted model. The theoretical ENSO events show 
themselves the significant asymmetry in amplitude (Figure 7), 
which originates the nonlinear feedback: the nonlinearity 
enhances the El Nino, but not La Nina event. These theoretical 
results were verified by the 22-year NCEP reanalysis data 
qualitatively. 
 

 
 
Figure 8. Difference between the composite El Nino and La Nina in term 
of SSTA amplitude. The line 61-75 (81-95) illustrates the amplitude 
difference between El Nino and La Nina during 1961-1975 (1981-1995). 
The values denoted by the line 81-95 are larger than those denoted by the 
line 61-75, showing that the asymmetry of the observed El Nino and La 
Nina during 1981-1995 is stronger than that during 1961-1975. This 
figure is from [7]. 
 

The observed El Nino events are generally stronger than the 
La Nina events, which is termed as ENSO amplitude asymmetry 
in literatures. The theoretical results related to CNOP also 
revealed this property of ENSO (see the paragraphs related to 
optimal precursor for ENSO). Duan and Mu [7] demonstrated 
that this asymmetry has changed since the famous 1976 climate 
shift (Figure 8). Along the thinking of how the tropical 
background field modulates ENSO cycle, they explored the effect 
of the climatological basic-state change on the ENSO asymmetry 
by applying the CNOP approach in a theoretical coupled model. 
Duan and Mu [7] found that from the preshift (1961–1975) to the 
postshift (1981–1995) period, significant changes have occurred 
in the observed climatological background state, i.e., the mean 
temperature difference between the equatorial eastern and 
western Pacific basins and between the mixed-layer and 
subsurface-layer water, which control the ENSO oscillation in the 
theoretical coupled model. By computing the CNOPs of the 
climatological basic state corresponding to the 1961–1975 
(1981–1995) epoch, Duan and Mu [7] reproduced the observed 
decadal change of ENSO asymmetry qualitatively (Figure 9). On 
the basis of the physics described by the model, they [7] further 
explored the mechanism of ENSO amplitude asymmetry change 
on interdecadal scale. The results showed that the decadal change 
of ENSO amplitude asymmetry is induced by the change of 
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nonlinear temperature advection, which is closely related to the 
decadal change of the tropical background state. Therefore, Duan 
and Mu [7] demonstrated that the decadal change of ENSO 
amplitude asymmetry results from the collective effect of the 
changes of the tropical background state and the nonlinearity. 
This finding in this study also suggest that the nonlinearity can 
explain not only the asymmetry of interannual ENSO, but also 
that of interdecadal ENSO, which may present a powerful 
evidence to the ENSO chaotic theory. 
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Figure 9. Amplitude differences between El Nino and La Nina in the 
adopted theoretical model, where the amplitude is measured by the 
absolute of SSTA. The solid (dot) line denotes the amplitude differences 
between El Nino and La Nina for 1961-1975 (1981-1995) basic state. The 
amplitude asymmetry of El Nino and La Nina for 1981-1995 basic state is 
larger than that for 1961-1975 basic state. This figure is from [7]. 

 
For the different types of nonlinearities in the ZC model, 

Duan et al. [8] investigated respectively their roles in ENSO 
amplitude asymmetry and identified clearly the origin of ENSO 
asymmetry, then emphasizing the decisive role of the nonlinear 
temperature advection. The nonlinear temperature advection 
enhances the El Nino amplitude but has little effect on La Nina, 
resulting in the asymmetry of ENSO in amplitude. They also 
demonstrated that the stronger the El Nino event is, the larger the 
nonlinear effect related to the NTA is and the more significant 
the ENSO asymmetry is, which can be used to explain the strong 
asymmetry of ENSO after 1976 and support the results of [7]. 

 
Other applications of CNOPs   

Ensemble forecast is one of the major implementations for 
numerical weather and climate prediction. At European Centre 
for Medium-Range Weather Forecasts (ECMWF), LSVs have 
been utilized to generate the initial perturbations for its ensemble 
prediction system. Considering that CNOP is a natural extension 
of LSV into the nonlinear regime, it is reasonable to explore the 
possibility of using CNOPs to construct the initial perturbations. 
In Mu and Jiang [21], CNOPs is applied to ensemble prediction 
study by using a quasi-geostrophic model under the perfect 
model assumption. LSVs and CNOPs have been utilized to 
generate the initial perturbations for ensemble prediction 
experiments. The results are compared for forecast lengths of up 
to 14 days. It’s found that the forecast skill of samples in which 
the first LSV is replaced by CNOP is comparatively better than 
that composed of only SVs in the medium range (day 6-day 14). 
Similarity index and Empirical orthogonal function (EOF) 
analysis are performed to explain the above numerical results. 

Considering that LSVs have also been utilized in the 
adaptive observation research, particularly in the determinations 
of sensitivity area, Mu et al. [23] studied the applicability of 
CNOP in the determination of sensitivity area in adaptive 

observation. MM5 (Mesoscale Model 5) model and its adjoint 
form are utilized to study the effects of initial errors on the 
forecasts of two precipitation cases in July 2003 and in August 
1996. The authors compare the differences between the structures 
of the CNOPs and the first linear singular vector (FSV), and 
calculate the developments of their total energies. It is found that 
the structures of CNOPs differ much from those of FSVs as well 
as the developments of their total energies. The results of 
sensitivity experiments indicate that the forecast results are more 
sensitive to the CNOP-type initial errors than the FSV-type ones. 
This indicates that it is feasible to use CNOP for the 
determination of sensitivity area in adaptive observation. 
    In addition, CNOP is also used to the studies of blocking, 
which is a typical large-scale circulation in the atmosphere with a 
characteristic time scale larger than that of synoptic motions. 
Blocking has long been recognized to have a profound effect 
upon regional weather and climate. On the other hand weather 
forecasts during periods when the atmospheric flow changes 
from strong zonal flow to blocking or vice versa frequently suffer 
from a rapid loss of predictability, which may be mainly due to 
the sensitivity of block onset and breakdown to initial 
perturbations. Thereby, the determination of initial perturbations 
for blocking onset will deepen our understanding of the low-
frequency variability of the atmosphere and perhaps accordingly 
increase our skill in medium-range weather forecasting [15]. 

Mu and Jiang [22] studied the following problem: assuming 
that we have some information on the initial perturbations, e.g. 
they belong to an ensemble, which consists of the perturbations 
whose magnitudes are less than a given value, how to find out the 
perturbations belonging to this ensemble and triggering the 
blocking onset. By using a T21L3 quasigeostrophic (QG) model 
they reported that in some cases for the given initial ensemble 
perturbations, when CNOP triggers a transition to a blocking 
regime, whereas, LSV may not generate such a transition, which 
shows that nonlinear advection processes are fundamental for 
studying the weather regime transitions from zonal flow to 
blocking in the medium range. By choosing two objective 
functions and investigating the resulted CNOPs, they found that 
CNOPs obtained from the objective function of blocking-index 
form may trigger a transition to a blocking regime under some 
circumstances, whereas the CNOP related to the streamfunction 
squared norm fails to yield such transition. This demonstrates the 
importance of choosing a proper objective function when aiming 
at finding the perturbation yielding such transition. Besides, they 
also investigated the mechanism of perturbations of CNOP type 
trigging blocking onset. 

For a grassland ecosystem model, Mu and Wang [24] studied 
the sensitivity and instability of the grassland ecosystem to finite-
amplitude perturbations by CNOP approach. They found that 
linearly stable grassland (desert) states can be nonlinearly 
unstable with finite amplitude perturbations, which represent the 
human activities and (or) natural factors on the ecosystem. When 
the moisture index is between the two bifurcation points, a large 
enough finite amplitude perturbation can induce a transition from 
the grassland (desert) state to the desert (grassland) state. The 
thresholds of such transition along the bifurcation diagram of the 
moisture index are also given by the CNOP approach. The results 
also support the viewpoint of [38], which emphasis the shading 
effect of wilted biomass on the grassland ecosystem.  
     
Main characteristics of CNOP and algorithms 
   CNOP is a natural generalization of LSV into the nonlinear 
category. Naturally it is of necessity to compare CNOPs with 
LSVs. Besides, it is very difficult to obtain CNOPs analytically. 
Keep these points in mind, the authors and their colleagues 
investigated the well-known models in atmospheric dynamics, 
looked for the numerical solution of CNOPs, compared the main 
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characteristics of CNOPs with those of LSVs, and investigated 
the efficiency of numerical algorithms.  

The CNOPs of simple models of ENSO and THC 
demonstrated that they bear three main characteristics. First, 
when linear approximations are not valid, there exist 
considerable differences between CNOPs and LSVs, which are 
characterized by two facts: one is that as initial perturbations, 
their spacial patters are quite different; the other is that there 
exist considerable differences between their linear and nonlinear 
evolutions at the time we are interested. Second, in some cases, 
there exist local CNOPs possessing clear physical meanings. 
Third, the numerical results show that CNOPs and local CNOPs 
all locate at the boundary of the domain prescribed by the 
constraint conditions in the phase space. 

 Mu and Zhang [25] has calculated the CNOPs of a two 
dimensional quasi-geotropic model with dimensions 512 by 
using the Sequential Quadratic Programming (SQP) algorithm. 
Their results verify the above properties found by using simple 
models. The SQP algorithm [3] used in [25] calculates the least 
value of a function of several variables subject to equality and 
inequality constraints. The experiments made by them show that 
the SQP solver is capable of obtaining CNOPs with problems of 
dimensions around 310  with nonlinear constraints.  
  Jiang et al [10] further employed a T21L3 quasi-geostrophic 

model and investigated its CNOPs. Their results not only verify 
the above mentioned three properties of CNOP , but also reveal 
that CNOP depends on the norm chosen; the streamfunction 
squared norm yields small-scale disturbances, the results of total 
energy norm is characterized by intermediate-scale disturbances, 
and in case of enstrophy norm, CNOP is typified by large-scale 
disturbance with large zonal flow contribution. The optimization 
algorithm employed to solve the optimization problem of 

dimension around 3103× is Spectral Projected Gradient 2 
(SPG2) [2], which calculates the least value of a function of 
several variables subject to box or ball constraints. 
  In the works on the predictability study of ENSO by using 

Zebiak and Cane model [37], and on the adaptive observation 
with MM5 model [23], the dimensions of nonlinear optimization 

variables are about 3102×  and 5102×  respectively. The 
algorithms they used are SPG2 too. These works show that the 
CNOPs all possess the mentioned three characteristics, and SPG2 
method is able to solve problems with higher dimensions.  

According to our numerical results, CNOPs or local CNOPs all 
located in the boundaries defined by the constrain conditions in 
the phase space. Recently Liu [12] proved theoretically that for 
any finite-dimensional dynamical system, CNOPs has such 
properties. Based on these results, Sun and Mu [29] reduced the 
calculations of CNOPs from solving constraint nonlinear 
optimizations to dealing with an unconstraint one, and compared 
the efficiencies of different algorithms, among which they found 
that Limited memory Broyden-Fletcher-Goldfarb-Shanno 
approach is the optimal one. 
 
Discussion 

This paper reviews the CNOP approach proposed by the 
authors and its applications to the sensitivity, stability, and 
predictability studies in GFD. Most of them are published, and 
some are in the review processes. It is clear from these studies 
that in the applications of CNOP, the corresponding cost function 
and the constraint conditions are of central importance, whose 
constructions should be capable of attacking the core of the 
physical problems that will be addressed. In the studies of ENSO 
predictability, to describe the evolution of the initial anomaly or 
the initial error, the nonlinear evolution of the perturbation 
measured by the norm of the state variables or the module of a 
state variable was chosen as the cost function. The obtained 
results showed its effectiveness. As to the constraint condition, 

the authors simply express it as belonging to a ball with the 
chosen norm. Obviously, the situation that initial perturbations 
belong to other kind of functional set can also be investigated. 
Furthermore, the constraint condition could be some physical law 
that initial perturbations should satisfy. 

  In the calculation of CNOPs, efficient nonlinear 
optimization algorithms are also essential, which guarantee the 
success of gaining CNOP. Atmospheric or oceanic flow motions 
are generally governed by intricate nonlinear models, which often 
have quite high dimensions. The involved nonlinear optimization 
problems could be difficult. Even in some cases, the problems are 
non-smooth. Nevertheless, encouraged by our works and the 
researches on the algorithms of [12, 29], it is expected that CNOP 
can be applied to realistic models with quite high dimensions and 
CNOP can also used to investigate the problems in other fields of 
fluid mechanics. 
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