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Abstract Limitations are existed in current ensemble forecasting initial perturbation methods for describing the interactions
among various spheres of the Earth system. In this study, a new method is proposed, namely, the coupled conditional nonlinear
optimal perturbation (C-CNOP) method, which incorporates multisphere interactions much appropriately. The El Nifio-Southern
Oscillation (ENSO) is a typical ocean-atmosphere “coupling” (or “interaction”) phenomenon. The C-CNOP method is applied to
ensemble forecasting of ENSO. It is demonstrated that the C-CNOP method can generate coupled initial perturbations (CPs) that
appropriately consider initial ocean-atmosphere coupling uncertainty for ENSO ensemble forecasts. Results reveal that the CPs
effectively improve the ability of ENSO ensemble-mean forecasts in both temporal variability of Nifio3.4 sea surface tem-
perature anomalies (SSTAs) and spatial variability of ENSO mature-phase SSTAs. Notably, despite the weakest ocean-atmo-
sphere coupling strength in the tropical Pacific occurring during the boreal spring and summer, CPs still capture the uncertainties
of this weak coupling when ENSO predictions are initialized at these seasons. This performance of CPs significantly suppresses
the rapid increase of ENSO prediction errors due to the high ocean-atmosphere coupling instability during these seasons, and
thus effectively extends the lead time of skillful ENSO forecasting. Hence, the C-CNOP method is a suitable initial perturbation
approach for ENSO ensemble forecast that can describe initial ocean-atmosphere coupling uncertainty. It is expected that the C-
CNOP method plays a significant role in predictions of other high-impact climate phenomena, and even future Earth system
predictions.
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Introduction

superimposing growing-type initial perturbations on control

Ensemble forecasting is a vital approach for estimating the
uncertainty in weather and climate predictions and improv-
ing the accuracy of numerical forecasts. The World Me-
teorological Organization (WMO) has recognized this
approach as a key development strategy for future numerical
weather forecasting. The quality of ensemble forecasts de-
pends on how the initial perturbation samples are generated
(Du et al., 2018). Previous studies have indicated that only by
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forecasts can achieve much higher ensemble forecasting skill
(Toth and Kalnay, 1993; Duan et al., 2023a, 2023b). Re-
garding climate predictions that require considering multi-
sphere interaction of the Earth system, such growing-type
initial perturbations must also reflect the effect of multi-
sphere coupling uncertainties to further improve the level of
climate predictions. Currently, the widely popular methods
for generating growing-type initial perturbations are the bred
vector (BV) method (Toth and Kalnay, 1993) and the sin-
gular vector (SV) method (Mureau et al., 1993; Buizza and
Palmer, 1995; Molteni et al., 1996). The BV method had
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been applied in the ensemble forecasting system of the Na-
tional Centers for Environmental Prediction (NCEP) in the
U.S. in 1992. The SV method has been adopted by the
European Centre for Medium-Range Weather Forecasts
(ECMWF) for ensemble forecasting, which leads to tre-
mendous success in numerical weather forecasting. More-
over, the SV method is so far still one of the fundamental
ensemble forecasting methods of the ECMWF (https://con-
fluence.ecmwf.int/display/FUG/). Even though BV and SV
methods exhibit their own advantages, the initial perturba-
tions generated are insufficient for fully characterizing
multisphere coupling uncertainties (Kleeman et al., 2003;
Vannitsem and Duan, 2020). The BVs of a coupled system
are generated by breeding from an initial guess of pertur-
bations, whose components possess different variabilities,
but they often identify a kind of growing-type initial per-
turbations only responsible for the time period before the
forecast period (Du et al., 2019; Duan et al., 2023a). This
shortcoming results in that the BVs obtain a skillful en-
semble forecasting only for a very short lead time (Zhang et
al., 2023). Furthermore, Vannitsem and Duan (2020) applied
the backward Lyapunov vector (BLV) method, which is si-
milar to the BV method but independent of breeding para-
meters, to obtain ensemble forecasts with a reduced-order
multiscale coupled ocean-atmosphere model. They revealed
that the fastest-growing BLVs primarily reflect fast atmo-
spheric variability, while the slowly growing or nongrowing
BLV modes predominantly reflect slow oceanic variability.
If the fast-growing BLVs, generally needed to achieve a high
ensemble forecasting skill for atmosphere, are adopted to
initialize the coupled system, it is not conducive to im-
proving the ensemble forecasting ability of coupled ocean-
atmosphere events. The SV method of the ECMWF model
characterizes the fast-growing perturbations on control
forecasts within the forecast period, and exhibits reasonable
dynamics, which may be one of the reasons why the SV
method has achieved tremendous success in numerical
weather forecasting (Du et al., 2019; Duan et al., 2023a,
2023b). However, it is undeniable that SVs are obtained
based on linear error growth assumption, which cannot fully
reflect the effect of nonlinear processes (Mu et al., 2003);
furthermore, SVs cannot describe the coupling uncertainties
of different sphere variabilities (Kleeman et al., 2003).
Considering the linear limitation of SVs, Duan and Huo
(2016) proposed a new ensemble forecasting method,
namely, the orthogonal conditional nonlinear optimal per-
turbation (O-CNOP) method. The O-CNOP method not only
considers the influence of nonlinear physical processes, but
also characterizes the fast-growing initial perturbations on
the control forecast within the forecast period. Therefore, the
O-CNOP has reasonable dynamics. This method has been
applied in ensemble forecasting of typhoon tracks. It not only
effectively reduces the forecast errors of typhoon tracks, but

also yields higher forecasting accuracy than traditional SV
and BV methods in determining the typhoon landfall loca-
tion, landfall time, and even track turning (Huo and Duan,
2018; Huo et al., 2019; Duan et al., 2023a, 2023b; Zhang et
al., 2023). However, similar to the SV method, it is highly
challenging to apply the O-CNOP method in the considera-
tion of the effect of multisphere coupling uncertainties when
applied to a coupled model. Given the limitation of the O-
CNOP method while considering its advantage in char-
acterizing nonlinear-growth initial perturbations during the
forecast period, the aim of this study is to develop a new
initial perturbation method for ensemble forecasting that
generalizes O-CNOPs to consider coupling uncertainties.
This method is hereafter referred to as the coupled condi-
tional nonlinear optimal perturbation (C-CNOP) method.

The ENSO, as a tropical ocean-atmosphere coupled phe-
nomenon with the strongest interannual variability signal,
often leads to abnormal weather and climate conditions in
China and even globally, causing severe natural disasters. It
has attracted widespread attention from governments and the
public. Therefore, accurate prediction of ENSO events is
highly important (Lian et al., 2023). However, publically
recognized skillful ENSO forecasting has only a 6-month
lead time (Tang et al., 2018; Duan et al., 2022, 2023a).
Therefore, significant improvements in the ENSO forecast-
ing skill and the extension of the forecast lead time are ur-
gently important, which could be beneficial for governments
to effectively formulate disaster prevention and reduction
measures in advance and rationally deploy national social
and economic activities.

In many studies, ensemble forecasts of ENSO have been
conducted by perturbing the atmosphere or ocean alone or by
simultaneously but separately generating initial oceanic and
atmospheric perturbations (Yan et al., 2009; Duan and Wei,
2013; Du et al., 2012; Bachr and Piontek, 2014). However,
such initial perturbations cannot fully reflect the effect of
coupling ocean-atmosphere uncertainties. Then, if these ef-
fects are properly considered in ENSO ensemble forecasting,
whether or not the forecasting ability can be significantly
improved? In particular, previous research has indicated that
the strength of ocean-atmosphere coupling in the tropical
Pacific is lowest during the boreal spring and summer sea-
sons; nevertheless, current numerical models can hardly
capture this weak coupling; consequently, when predicting
the ENSO starting in spring and summer, the initial fields fail
to adequately incorporate this weak coupling information
(Webster, 1995; Zheng and Zhu, 2010). Hence, if fast-
growing initial perturbations of ENSO ensemble forecasts
can better capture the uncertainties of the lowest coupling
signal in spring and summer, will the ENSO forecast skill be
effectively improved? To address the aforementioned ques-
tion, the C-CNOP method is used for ENSO ensemble
forecasting to explore the effect of the initial coupling un-
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certainty on the ENSO ensemble forecasting skill.

2. Coupled conditional nonlinear optimal per-
turbations

Climate variability is caused by multisphere interactions
involving the atmosphere, ocean, land, and other spheres,
and each sphere exhibits its characteristic variability.
Therefore, in numerical forecasting of climate variability,
Earth-climate system coupled models should be adopted.
However, because of the limitations at the current cognitive
level, existing coupled models cannot accurately depict the
mechanisms of multisphere interactions, resulting in high
uncertainties in climate forecasting. Thus, the growing-type
initial perturbations employed for ensemble forecasting, as
stated in the introduction, must also account for multisphere
coupling uncertainties for achieving higher forecast skills
when using coupled models. Therefore, how can fast-
growing initial perturbations for ensemble forecasts be
generated that properly incorporate multisphere coupling
uncertainties?

To answer the above question, we abstract the multisphere
coupled dynamical system as a conceptual model that in-
cludes the interaction between fast-varying variables (such
as synoptic-scale variability in the atmosphere) and slow-
varying variables (such as climate variability in the ocean);
specifically, we consider the following nonlinear partial
differential equations:

%:F(X,Y,t)"’"f)(,
oYy _ 1
= eG4y, (1)

Up=(X1o= Xor Yl,o= %) Q%[0,T],

where, X and Y are the slow- and fast-varying variables,
respectively, U, = (X,, ¥;) denotes their initial state, ¢ is the
time, with ¢ € [0,T], T < 4o, F and G are nonlinear func-
tionals, £, and f, denote the external forcings of the slow-
varying variables (such as tides, sea surface heat fluxes and
freshwater fluxes in ocean) and fast-varying variables (such
as solar radiation, carbon dioxide concentration and aerosols
in atmosphere), and € < 1 is applied to distinguish the slow-
varying variable X and the fast-varying variable Y in eq. (1).

When forecasting the slow-varying variable X (such as the
ocean temperature in the climate system), the differential
equation for the slow-varying variable in eq. (1) can be ex-
pressed as follows:

dX=FX,Y,t)dt+f, ds. (2)
Assuming that both f, and f, are constant external for-

cings (e.g., preindustrial external forcings in the international
coupled model intercomparison project (CMIP) experi-

ments), we therefore have the indication of considering only
the effect of the internal variability of fast- and slow-varying
variables. The integration of eq. (2) over the time interval
[7,.1,](t, < t, < T) can be derived as in eq. (3):

p p p
I dX:I F(X,Y,t)dt+_[ £y dt
[a t[l [[l

- j CFOU Y, 0dr+ £ (1, 1), (3)

Therefore, the slow-varying variable X, at future time ¢,
can be described as follows:

p
X, =X, + I FOXL Y, 0dt+1y (1,- 1,). )

la

Note that ¥, also needs to be calculated when solving the

eq. (4). In fact, Ytb can be derived by eq. (5) similar to eq. (4):

Iy
Y, = Yg%j GO, Y. 0)dr+fy (1,~ 1,). (5)
t

a

For convenience, the initial state in eqs. (4) and (5) is

denoted as U, = (X,a, Yta), and the final state is represented

by U, = (X,,.Y, ).

1y "l
According to egs. (4) and (5), if we select two periods
[#o1- #,] and [¢,,, 2,] from time series of coupled model output
with initial states denoted as U, =(X, .Y, ) and
01 01 01

U,,= (Xloz, Yloz), respectively, the final states of the slow-

varying variables X, and X, can be written as follows:

3l
X, :I Fdt+ X, +fx (6= 1), (6)
‘o1

15}
X, :J. th+X102 Hx (b~ 1) (7)
£02

If the two periods are of the same length, eq. (7) minus eq.
(6) can be expressed as in eq. (8).

ty t
[ ra- | ra
t t

02 01

X, X, =X, X, + . (8)
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Eq. (8) can be rewritten in the eq. (9), which has the same
form as eqgs. (6) and (7).

X, -X, =X, X, +IZ[F ~F, . 9)

L2 to1 L2 fo1
where, F’ - is the F'in eq. (7), with the corresponding integral
interval X matching the time interval of [¢,,, 7,], and F, is the
Fin eq. (6), with the integration interval X equaling]¢,, ¢,]; in
particular, Y, and Y, in eq. (9) can be calculated by eq. (5).
Egs. (8) and (9) reveal that the difference between th and

X, stems from the difference between U, and U, .In other
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words, the differences in the initial states of the slow-varying
variable X and fast-varying variable Y jointly leads to the
differences of the slow-varying variable in the future.
Therefore, if the data series within the period [¢,,,#,] is re-
garded as an observation series, the data series within the
period [#,,,?,] can be regarded as the prediction series of the
observation series. Then the prediction error at the termina-

tion time is due to the difference between U, , and U, ,

namely, the initial errors (X, —X, .Y, =Y, ) of the slow-

02 for> “lo2
and fast-varying variables, respectively.

For a given time series, considering the initial error that
leads to the maximum forecast error, the following optimi-
zation problem can be established:

J(u;,) =MAX(1 <n<N;i <N) | X, =X, |, (10)

where, u;, = (x;,,V;,) represents the initial error that can
lead to the maximum forecast error at forecast time 7" based
on the i-th observation series and its » prediction series.
n <N indicates the number of prediction series and can be
widely selected from the model data series to ensure the
diversity of the prediction series. Therefore, the initial error
u;, obtained from eq. (10) is based on a finite number of
prediction sequences but causes a statistically significant
result, especially includes the effects of the interactions be-
tween the fast- and slow-varying variables.

As stated in the Introduction, CNOP represents the initial
perturbation that satisfies certain physical constraints and
causes the largest prediction error at the forecast time (Mu et
al., 2003). Regarding eq. (10), if the above limited number of
but statistically significant samples of the prediction se-
quences are adopted as constraints, eq. (10) provides the
statistically optimal coupled CNOP, denoted as C-CNOP.

The above C-CNOP is derived based on the predictions of
slow-varying variables. In fact, we can similarly deduce the
C-CNOP for predicting fast-varying variables. Furthermore,
one can extend this concept to more general situations of
multisphere interactions in the Earth system for research
needs. Therefore, C-CNOP could provide a method to pro-
duce optimal initial perturbations that not only much ap-
propriately take into account multi-sphere interactions, but
also much effectively enhance the forecasting level for
weather-climate seamless predictions. For the sake of sim-
plicity, additional details are not provided here.

3.  Application of the C-CNOP method in
ENSO ensemble forecasting

In this section, the C-CNOP method is applied to the Com-
munity Earth System Model (CESM), and its ability to fa-
cilitate ENSO forecasting is investigated by considering the
impact of ocean-atmosphere coupling uncertainties on the
optimal initial perturbations of the ensemble forecasts.

Sci China Earth Sci
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3.1 Model and Data

The CESM was developed by the National Center for At-
mospheric Research (NCAR). It is a fully coupled Earth
system model that comprises atmospheric, oceanic, land, sea
ice, and land ice components. Regarding the atmospheric
component, the Community Atmosphere Model 5 (CAMS;
Neale et al., 2010) contains a finite-volume (FV) dynamic
core with 30 vertical layers and a horizonal resolution of
0.9°x1.25° (longitude x latitude). The oceanic component is
based on the Parallel Ocean Program (POP) version (Smith
et al., 2010), which provides 60 vertical levels with a layer
spacing ranging from 10 m in the upper 150 m to 250 m
below 4000 m, and a horizontal resolution of 1°x0.27°
(longitude x latitude) at the equator, with the domain ranging
from 79°S to 89°N. It uses a displaced pole grid in the
Northern Hemisphere and spherical coordinates in the
Southern Hemisphere. In addition, the sea ice component
model, i.e., Community Ice Code version 4 (Hunke and
Lipscomb, 2008), and the land surface model, i.e., Com-
munity Land Model version 4 (Oleson et al., 2010), are
adopted in the CESM. The component models of the CESM
are coupled through the version 7 coupler (CPL7; Craig et
al., 2012).

In this study, the Global Ocean Data Assimilation System
(GODAS) dataset is utilized, which is retrieved from the
National Centers for Environmental Prediction (NCEP) of
the National Oceanic and Atmospheric Administration
(NOAA). This dataset is currently the most widely used real-
time ocean assimilation dataset. With the use of the nudging
method, we assimilate sea temperature data from the
GODAS into the initial field of the CESM ocean model and
obtain initial analysis fields of the predictions made by the
CESM. The assimilation area covers the global ocean hor-
izontally, and the vertical direction extends from 15 to 400 m
in the deep layer. The assimilation period ranges from 1980
to 2015. With the use of the initial analysis, forecasts of the
sea temperature in the tropical Pacific are obtained by in-
tegrating the CESM. For convenience, these forecasts are
hereafter referred to as control forecasts (denoted by “Ctrl”
in the figures).

3.2 Coupled initial perturbations generated by the
C-CNOP method for ENSO ensemble forecasting

Duan et al. (2018) demonstrated that the spatial pattern of the
fastest-growing initial errors of ENSO events (whether El
Nifio or La Nifia) is independent of the events themselves,
but is sensitive to the forecast start time (Mu et al., 2007a,
2007b; Duan et al., 2009; Hou et al., 2019). Therefore, if we
extract the basis of the phase space for the fast-growing in-
itial perturbations in the ensemble forecasts for ENSO from
the above rapidly growing initial error modes generated for
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different forecast start times, these bases characterize the
major modes of the initial perturbations that significantly
affect the ENSO. Based on the amplitude characteristics of
the initial analysis errors of the control forecasts, one can
utilize the linear combination of these base vectors to con-
struct the phase space of the nonlinearly coupled rapid-
growth initial perturbations in the ensemble forecasts at each
start time. By using perturbation samples from this space,
ENSO ensemble forecasting experiments can be conducted.
In this section, we generate C-CNOPs for different ENSO
events to construct a basis of the phase space for growing-
type coupled initial perturbations in ensemble forecasting.
Subsequently, we generate samples of initial perturbations
for ENSO ensemble forecasting, and investigate the effect of
these coupled initial perturbations on the ENSO ensemble
forecasting skill.

The CESM is integrated for 200 years, with constant pre-
industrial external forcing, and the last 150 years are applied
to generate C-CNOPs. From these data, we choose 10 typical
El Nifio years that are warm during the early boreal spring
and exhibit a peak temperature at the end of the year as
observations. For each of these one-year observations, the
remaining 149 years of the data sequence are assumed as the
149 predictions of the observations (with a lead time of
12 months), where the forecast errors are solely caused by
the initial errors. The objective function J(f) can be ex-
pressed as follows.

J0 = J ¥ (Z_):[%m 12,0 (11)

J(¢) measures the forecast errors of the sea surface tem-

perature (SST) in the tropical Pacific; 7% denotes the ob-
served sea temperature, 77 signifies its prediction, (i,j)
represents the grid points in the domain of the tropical Pa-
cific (20°S-20°N, 120°E-80°W), and N is the total grid
number in the tropical Pacific. Based on eq. (9), the C-CNOP
for each prediction can be calculated, which covers the
global ocean, including all components such as the ocean,
atmosphere and land surface. This C-CNOP represents the
coupled initial perturbation that imposes the greatest effect
on the forecasting uncertainty of the tropical Pacific sea
temperature in the CESM from a statistical perspective (see
Section 2).

The ENSO ensemble forecasting experiments start in
January, April, July and October of each year, with a lead
time of 12 months. In each starting month, the corresponding
prediction generates 1 C-CNOP, while the predictions of 10
El Nifio observations generate 10 C-CNOPs. Based on these
C-CNOPs, we continue to consider the second to fifth fast-
growing initial perturbations of each prediction. Thus, a total
of 50 fast-growing initial perturbations are obtained for the
10 observed El Niflo at each start month, collectively de-

Sci China Earth Sci

March (2024) Vol.67 No.3

noted as C-CNOPs.

In this study, the effect of ocean-atmosphere coupled initial
perturbations on the ENSO ensemble forecasting skill is
investigated. Based on the 50 C-CNOPs obtained at a given
start month, combined empirical orthogonal function de-
composition (CEOF) is performed on the sea temperature
component 7, and the wind component U, and ¥, to obtain
the 20 leading modes, denoted as E; = (T, U, V) (i=1, 2, 3,
... , 20; which explain more than 90% of the total variance).
By linearly combining these 20 leading modes, we obtain the
coupled perturbations of sea temperature and wind compo-
nents, signified as CP=(ITy, [U,, IVy)=a,E ta,E,+...+aFE,
where a; denotes constant coefficients. Obviously, CP is a
fast-growing coupled initial perturbation of sea temperature
and wind components. By selecting different coefficients a,,
different coupled initial perturbations can be obtained and
used as perturbation samples for ENSO ensemble forecast-
ing. As mentioned above, the CP amplitudes can be de-
termined by using the amplitudes of the initial analysis errors
at different starting months, which are measured using the L2
norm.

In this study, ENSO ensemble forecasting experiments
from January 1982 to December 2015 are conducted. As the
C-CNOP method proposed in this study is the first attempt
at ENSO ensemble forecasting, we only experimentally
generate 5 CPs for each prediction to validate the rationality
of the C-CNOP method. The 5 CPs are added and sub-
tracted from the initial analysis field of the control forecast
(as described in Section 3); then, 10 perturbed forecasts are
obtained by integrating the CESM, together with the con-
trol forecast, finally yielding a total of 11 ensemble mem-
bers. The CPs cover the entire globe horizontally and
comprise 17 layers of the sea temperature beneath the ocean
surface, with a depth of up to 165 m, which is approxi-
mately the depth of the thermocline bottom in the equatorial
Pacific. Simultaneously, the CPs include 19 layers of global
wind fields vertically above the bottom boundary layer,
with a height of up to nearly 200 hPa, which is approxi-
mately the height of the top of the Walker circulation in the
equatorial Pacific. As an example of CPs, Figure 1 plots 5
CPs of the control forecast for the 1982/83 El Nifio event
starting from 1 April in the El Nifio year. It is shown that the
5 CPs exhibit various patterns of the sea surface tempera-
ture (SST) and wind field; however, when the tropical Pa-
cific exhibits a local cold SST anomaly (SSTA), the
anomalous wind field primarily exhibits divergence; con-
versely, when there is a local warm SSTA, the anomalous
wind field converges. According to the wind-evaporation-
SST (WES; Xie and Philander, 1994) feedback mechanism,
it is known that the interactions between sea temperature
and wind field of the CPs are dynamically coordinated and
incorporate the effect of ocean-atmosphere interaction in
the tropical Pacific.
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Figure 1  Spatial patterns of the five CPs (a) and N-CPs (b) of the control forecast for the 1982/1983 El Niflo event at the start time of 1 April. The shaded

areas denote SSTAs, and the arrows indicate wind vectors.

3.3 Ensemble forecasting of tropical Pacific SSTAs

We use the CPs to conduct ensemble forecasting for SSTAs
with a 12-month lead time, where the CPs are generated at
the start months of 1st January, 1st April, 1st July and 1st
October from 1982 to 2015. A total of 136 predictions are
produced We now investigate the effect of the initial cou-
pling uncertainties described by CPs on the ENSO ensemble
forecasting skill.

3.3.1 Forecast errors

Figure 2 shows the time series of the Nifio3.4 SSTA (i.e., the
Nifio3.4 index) in the GODAS datasets and the ensemble-
mean forecasts of the Nifio3.4 index during the ENSO ma-
ture phase at 3-, 6-, 9- and 12-month lead times. The results
demonstrate that both the control forecasts and the CP-en-
semble mean forecasts can predict major El Nifio and La
Nifia events well with a 9-month lead time, whereas the CP-
ensemble mean forecasts are more accurate and achieve
higher forecasting ability. Quantitatively, the CP-ensemble
mean forecast errors (i.e., the root-mean-square errors
[RMSEs]) are statistically reduced by more than 16% re-

lative to the control forecasts for the Nifio3.4 SSTA during
all the ENSO mature phases from 1982 to 2015 at various
lead times; in particular, at a lead time of 9 months, the CP-
ensemble mean forecast errors are reduced by up to 25%
relative to the control forecasts, and even reach 30% at a 6-
month lead time (Figure 3).

To investigate the importance of simultaneously con-
sidering the initial uncertainties in both sea temperature and
wind in improving ENSO ensemble forecasting skill, en-
semble forecasting experiments are also performed with sea
temperature and wind perturbed separately. To better de-
scribe the initial uncertainties represented by individual sea
temperature or wind perturbations, we conduct empirical
orthogonal function decomposition (EOF) of sea temperature
and wind components of C-CNOPs, respectively, and select
the leading 20 EOF modes for the sea temperature and the
leading 20 combined EOF modes for zonal and meridional
winds as the bases to produce the rapidly growing initial
perturbations in ensemble forecasting. With the use of
combinations of these bases, we generate initial sea tem-
perature and wind perturbations for ensemble forecasting,
denoted as CP-T and CP-W, respectively. Figure 1 shows five
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Figure 2 Time series of the observed Niflo3.4 SSTAs and the ensemble mean forecasts for the mature phase Nifio3.4 SSTAs from 1982 to 2015 at lead
times of (a) 3, (b) 6, (¢) 9 and (d) 12 months. The black curves indicate the observations; the red, blue, green and yellow dots represent the CP, N-CP, CP-W
and CP-T ensemble mean forecasts, respectively; and the asterisks indicate the control forecasts.

CP-Ts and five CP-Ws (i.e., the SST and wind anomaly
components of the N-CP) for the control forecasts of the
1982/1983 El Nifio event starting on the 1 April in the El
Nifio year. The results show that, compared with sea tem-
perature and wind components of CPs, CP-Ts and CP-Ws
exhibit different perturbation patterns. Furthermore, CP-Ts
and CP-Ws are not dynamically coordinated for each other.
We conduct ENSO ensemble forecasting experiments with
CP-Ts and CP-Ws as initial perturbations, where CP-Ts and

CP-Ws possess the same amplitudes as those of the corre-
sponding components of C-CNOPs. The results reveal that
CP-Ts and CP-Ws ensemble mean forecasts can capture
realistic El Nifilo and La Nifia events at a lead time of
9 months (see Figure 2). However, they yield larger forecast
errors than the CP-ensemble mean forecast when forecasting
the Nifio3.4 SSTA during the mature phase, with the highest
deviation occurring at lead times of 6 and 9 months (see
Figure 3c).
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Figure 3 Predictions of the Nifio3.4 SSTAs during the ENSO mature phase. (a) RMSE of the control forecasts and the CP, CP-T and CP-W ensemble mean
forecasts; (b) RMSE of the control forecasts and the CP and N-CP ensemble mean forecasts; (c) the reduction degree of the RMSE (i.e., Skill Improvement in
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control forecasts and the CP-T and CP-W ensemble mean forecasts at the lead times of 3, 6, 9, and 12 months; and (d) the reduction degree of the RMSE for

the CP and N-CP ensemble mean forecasts relative to the control forecasts.

Based on the above results, the CP-ensemble mean fore-
cast for the Nifio3.4 SSTAs during the ENSO mature phase,
especially at lead times of 6 and 9 months, significantly re-
duces the forecast errors relative to the control forecasts and
the CP-T and CP-W ensemble mean forecasts. In other
words, when the Niflo3.4 SSTA during the mature phase is
predicted from spring and summer, the CP-ensemble mean
forecast imposes the greatest effect on reducing the forecast
uncertainty. In fact, the CP-ensemble mean forecasts also
exhibit the smallest forecast errors for the Nifio3.4 SSTA
during the mature phase when forecasting from these seasons
(Figure 3). The same conclusion is also statistically obtained
when forecasting the SSTAs from 1982 to 2015 starting at
different seasons with a 1-year lead time (Figure 4). That is,
when predicting from spring and summer, the CP-ensemble
mean forecast exhibits the greatest improvement and the
smallest forecast errors relative to the control forecasts and
the CP-T and CP-W ensemble mean forecasts.

Previous studies have indicated that the SSTA signals in
spring and early summer are generally much weaker than
those during the other seasons, and the strength of ocean-
atmosphere coupling is weakest in these seasons (Webster,
1995); thus, the current coupled models are less likely to
capture this weak coupling signal, potentially leading to the
occurrence of large amounts of atmospheric and oceanic
noise during these seasons (Webster and Yang, 1992; Web-
ster, 1995; Hou et al., 2019). Furthermore, due to the
strongest ocean-atmosphere coupling instability in the tro-
pical Pacific in spring and summer (Wang and Fang, 1996),
these noise errors can be rapidly amplified, resulting in
significant forecasting uncertainty (Xue et al., 1994; Chen et

al., 1995; Mu et al., 2007a; Mu et al., 2007b). However, the
CP-ensemble mean forecasts exhibit much higher forecast
skill than the control forecasts and the CP-T and CP-W en-
semble mean forecasts when predicting from these seasons.
This finding suggests that CPs are more appropriate than CP-
Ts and CP-Ws in describing the uncertainties of the spring
weakest ocean-atmosphere coupling strength.

3.3.2  Anomaly correlation coefficient

In the last section, the ability of CPs for improving the ENSO
forecasting skill is measured from the perspective of Nifio3.4
SSTA forecast errors, i.e., primarily considering the forecast
uncertainties of the ENSO event intensity. In this section, the
ensemble mean forecasting ability for the spatial variability
of ENSO events is investigated, and the similarity between
the forecasts and the observations is assessed by using
anomaly correlation coefficients (ACCs).

Figure 5 shows the statistical mean of the ACC for spatial
variability predictions of SSTAs during the mature phase of
both El Nifio and La Nifia events from 1982 to 2015. Figure 6
shows the differences in the spatial ACC of mature-phase
SSTAs between the ensemble mean forecasts (including CP,
CP-T and CP-W) and the control forecasts, and between the
CP-ensemble mean forecasts and CP-T and CP-W ensemble
mean forecasts. The results show that the spatial ACCs are
highest in the central-eastern tropical Pacific in both the
control forecasts and the ensemble mean forecasts, but gra-
dually decline with increasing lead times (Figure 5).
Nevertheless, the CP, CP-T and CP-W ensemble mean
forecasts still exhibit relatively large areas with the ACCs
exceeding 0.6 in the tropical central-eastern Pacific at a lead



834 Duan W, et al.

Sci China Earth Sci

1.8 - CP-W
. = CP-T

o~ 1.5 — CP'
S 12 ca
8 09-
5 0.6 -

0.3 4

(a)
0.0
Jan Apr Jul Oct
Start month
10

CP vs CP-W
CP vs CP-T
CP vs Ctrl
Average

i I

1001

Skill improvement (%)
S
|

T T T
Average Jan Apr Jul Oct

Start month

March (2024) Vol.67 No.3

1.8 == NP

: = CP
%) 1.5 Ctrl
QIE 1.2
«2 0.9
=
& 0.6

0.3

b
0.0 ®)
Jan Apr Jul Oct
Start month

10
S 8 N-CP vs Ctrl
|5
2
(7]
z a
&
£
E
2]

T T
Jan Apr Jul Oct
Start month

Figure 4 As in Figure 3, but for predictions of Nifio3.4 SSTAs over the 1982-2015 period starting form January, April, July, and October, respectively. The

lead time of predictions is one year.

time of 12 months; in contrast, the control forecasts exhibit
an almost negligible ACC at this lead time. In other words,
the above ensemble forecasts exhibit higher forecasting
ability than the control forecasts for the spatial variability in
the ENSO mature-phase SSTA. Much specifically, the CP-
ensemble mean forecasts provide higher forecasting skill
than the control forecasts in the equatorial southeast Pacific
and tropical western Pacific; in particular, the CP-ensemble
mean forecasts exhibit higher ACCs than the control fore-
casts and the CP-T and CP-W ensemble mean forecasts
throughout the entire tropical Pacific region at a lead time of
12 months (see Figure 6).

In conclusion, the CP-ensemble mean forecasts, which
incorporates the effect of initial ocean-atmosphere coupling
uncertainties, are more favorable than the CP-T and CP-W
ensemble mean forecasts for extending the lead times of
skillful forecasts for the spatial variability of ENSO mature-
phase SSTA, because of the lack of coupling ocean-atmo-
sphere effects in the latter forecasts. Figure 5 indicates that
the CP-ensemble mean forecast exhibits an ACC exceeding
0.6 in the tropical central-eastern Pacific for the ENSO
mature-phase SSTA forecasts with a 12-month lead time.
This result reveals that the CP-ensemble mean forecast
successfully captures the signal of tropical central-eastern
Pacific SSTA at a 12-month lead time, and statistically ex-
hibits a higher forecast skill (based on the ACC) for ENSO
mature-phase SSTA. Nevertheless, the forecasts of the
Nifi03.4 SSTA in Figure 2 shows that the CP-ensemble mean
forecasts can capture major El Nifio and La Nifa events at a
9-month lead time, whereas at a 12-month lead time, despite
the success of predicting most El Niflo events (as depicted in
Figure 2), it hardly captures La Nifia events. In summary, the
high ACC for predicting ENSO mature-phase SSTA at a 12-

month lead time shown in Figure 5 is primarily reflected in
the successful predictions of El Nifio events; therefore, after
comprehensive consideration of the forecast errors and the
ACC, the CP-ensemble mean forecasts exhibit higher fore-
casting skill for El Nifilo mature-phase SSTA, with the useful
forecasting skill extending beyond 12 months, while the
useful forecasting skill for La Nifia events is limited to
9 months.

3.4 Role of ocean-atmosphere coupling in initial per-
turbations for improving ENSO ensemble forecasting
skill

The sea temperature and wind components of CPs are gen-
erated while considering their interactions, and they are dy-
namically coordinated (as shown in Figure 1). However,
when CP-Ts and CP-Ws are combined to simultaneously
perturb sea temperature and wind components of the control
forecasts, although simultaneously considering initial un-
certainties in the sea temperature and wind field, their in-
teractions are not dynamically coordinated (for convenience,
this type of perturbations are denoted as N-CPs; see Figure
1). What effect would the N-CP have on the forecasting skill
if applied to ENSO ensemble forecasts? Answering this
question could help reveal the role of the dynamical coupling
of initial oceanic and atmospheric perturbations in improving
the ENSO ensemble forecast skill.

We use the N-CP as the initial perturbations for ensemble
forecasting and predict the SSTAs starting from January,
April, July and October of each year with a lead time of
1 year. Similar to the CP-ensemble forecasts, 5 N-CPs are
generated based on each control forecast. These N-CPs are
subsequently added and subtracted from the initial analysis
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field of the control forecast. Then, 10 perturbed forecasts are
obtained, together with the control forecast, yielding a total
of 11 ensemble members for each prediction. The N-CP
ensemble mean forecast skill is compared to the CP-en-
semble mean forecast skill to reveal the effect of initial
coupling ocean-atmosphere uncertainties on improving the
ENSO ensemble forecast skill.

Figure 3 shows the RMSE of the control forecasts and CP
and N-CP ensemble mean forecasts for Nifio3.4 SSTA dur-
ing the ENSO mature phase, as well as the reductions of the
prediction errors for CP and N-CP ensemble mean forecasts
relative to the control forecasts. The results indicate, al-
though both N-CP and CP-ensemble mean forecasts show
much significant improvement relative to the control forecast
at 6- and 9-month lead times, but the CP-ensemble mean
forecasts show greater improvement. Specifically, at the lead
time of 6 months, the improvement in the CP-ensemble
mean forecasts relative to the control forecasts is approxi-
mately 13.3% greater than that in the N-CP ensemble mean
forecasts. In other words, when forecasting the Nifio3.4
SSTA during the ENSO mature phase from spring and
summer, particularly from spring, the CP-ensemble mean
forecasts obviously outperform the N-CP ensemble mean
forecasts in terms of improving the control forecast skill.
When forecasting monthly SSTA from 1982 to 2015 with the
12-month lead time starting from different seasons, the CP-
ensemble mean forecast skill is often much higher than the
N-CP ensemble mean forecast skill, even though the differ-
ence is not as significant as that for the forecasts of the
mature phase Nifio3.4 SSTA (Figure 4).

Regarding the prediction of the SSTA spatial variability
during the ENSO mature phase, both CP and N-CP ensemble
mean forecasts consistently exhibit higher ACCs than the
control forecasts in the tropical Pacific at all lead times.
Furthermore, when comparing CP and N-CP ensemble mean
forecasts, the CP-ensemble mean forecast achieves a higher
forecasting ability, especially in regions on both sides of the
equator at longer lead times (Figures 7 and 8).

In summary, the CP-ensemble mean forecast achieves
higher forecasting ability than the N-CP ensemble mean
forecast for both the time series of Niflo3.4 SSTAs and the
SSTA spatial variability during the ENSO mature phase.
Especially for forecasts starting in spring and summer, the
CP-ensemble mean forecast provides more obvious ad-
vantages than the control and N-CP ensemble mean forecasts.
Therefore, the CPs featured by dynamically-coordinated
ocean-atmosphere interactions can extend the lead times of
skillful ensemble mean forecasts for ENSO. Even though the
ocean-atmosphere coupling strength is lowest in spring and
summer, CPs can also successfully capture this subtle cou-
pling signal, thereby effectively reducing the negative effect
of the initial noise-induced forecast errors and significantly
improving the forecast skill for ENSO.

Sci China Earth Sci  March (2024) Vol.67 No.3 837

3.5 Reliability of the CP-ensemble forecasts

Buizza et al. (2005) demonstrated that in a reliable ensemble
forecasting system, the ensemble spread and RMSE of the
ensemble mean forecast should be approximately equal. In
fact, the closer their ratio is to 1, the more reliable the esti-
mates of the prediction uncertainty provided by the ensemble
forecasting system. Figure 9 shows the temporal variability
in the ratio of the ensemble spread to the RMSE [i.e., RMSE/
SPREAD; hereafter referred to as the reliability index (RI)]
for CP, CP-T, CP-W and N-CP ensemble forecasts with re-
spect to the Nifio3.4 index. It is shown that although the RI of
the CP-ensemble forecast does not reach approximately 1, it
is much closer to 1 than those of the CP-T, CP-W and N-CP
forecasts at all lead times. Therefore, the CP-ensemble
forecast is more reliable than the CP-T, CP-W and N-CP
ensemble forecasts, and the ensemble spread provides a
better representation of the error of the ensemble mean
forecasts for Nifio3.4 SSTA in the tropical Pacific. Figure 10
shows the spatial distribution of the RIs for CP, CP-T, CP-W
and N-CP ensemble forecasts in the tropical Pacific. As
shown in the figure, the Rls for these ensemble forecasts are
all approximately 1 in most areas north of the equator in the
tropical central-eastern Pacific, however, in the tropical
southeast Pacific, the RI significantly exceeds 1, approach-
ing approximately 2. In any case, the RI of the CP-ensemble
forecast always remains closer to 1 than those of the CP-T,
CP-W and N-CP forecasts. Therefore, the spatial distribution
of the RI also indicates that the CP-ensemble forecasts can
better characterize the prediction uncertainties in the tropical
central-eastern Pacific SSTA than the CP-T, CP-W and N-CP
ensemble forecasts, especially accurately reflecting the pre-
diction uncertainties of SSTA in the region north of the
equator in the tropical central-eastern Pacific. Therefore, the
CP-ensemble forecast provides higher reliability than the
CP-T, CP-W, and N-CP ensemble forecasts, and yields more
reliable estimates of the prediction uncertainties. In addition,
Yang et al. (2012) demonstrated that current ensemble
forecasts of climate often exhibit an overconfidence phe-
nomenon in the ensemble and exhibit an ensemble spread
significantly smaller than the RMSE of the ensemble mean
forecast (also refer to Yang et al., 2016 and Liu et al., 2019).
The above results indicate that dynamically coordinated
coupled initial perturbations of oceanic and atmospheric
variabilities could help increase the ensemble spread and
reduce its distance from the RMSE of the ensemble mean
forecast. This result suggests that the C-CNOP method is
potential for yielding the fast-growing coupled initial per-
turbations that provide reliable members for ensemble
forecasts of coupled system. More key variabilities in at-
mosphere and ocean could be contained in the C-CNOP for
ENSO ensemble forecasting to enhance the RI much closer
to 1.
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4. Conclusion and discussion

The conventional initial perturbation methods for ensemble
forecasting fail to effectively characterize the initial un-
certainties arising from the interactions among the different
components of the Earth system, which limits the skill im-
provement in ensemble forecasts with coupled models. To
address this issue, the present study adopts directly the time
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series of the coupled model outputs to propose the coupled
conditional nonlinear optimal perturbation (C-CNOP)
method according to the nature of the solution of differential
equations. The C-CNOP considers the coupling uncertainties
of different spheres of the Earth system and represents the
nonlinearly coupled fast-growing initial perturbation within
the forecast period.

The C-CNOP method is used to generate the fast-growing
coupled initial perturbations for the ensemble forecast of the
Earth System Model CESM, and ensemble forecasting ex-
periments are performed for ENSO events from 1982 to
2015. In this study, the importance of accounting for the
effect of initial coupling uncertainty in improving the ENSO
forecasting skill is revealed from both the temporal varia-
bility in Nifio3.4 SSTA and the spatial variability in ENSO
mature-phase SSTA. Results reveal that the ensemble mean
forecast errors relative to the coupled initial perturbations
(CPs) generated by the C-CNOP method are notably smaller
than those of the control forecasts. In particular, the forecast
errors of ENSO mature-phase SSTA predicted from spring
and summer can be reduced by 30%. In addition, the CP-
ensemble mean forecasts exhibit smaller forecast errors for
ENSO mature-phase SSTA than the ensemble mean fore-
casts when perturbing the ocean temperature (CP-T) and
atmosphere wind field (CP-W) separately. Furthermore, the
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greatest reduction in the forecast errors is observed in the
forecasts starting from spring and summer. Physically, the
tropical Pacific exhibits the lowest ocean-atmosphere cou-
pling intensity in spring and early summer, which makes
coupled model initialization more challenging for accurately
capturing the subtle ocean-atmosphere interactions during
this season, easily resulting in atmospheric and oceanic
noise. Moreover, the noise errors are more likely to be ra-
pidly amplified due to the high ocean-atmosphere coupling
instability in this season, resulting in significant ENSO
forecast uncertainties. However, the CPs can better describe
the uncertainty in the weak ocean-atmosphere coupling in
this season than CP-Ts with only initial sea temperature
perturbations considered and CP-Ws with only wind per-
turbations considered. This performance of CPs further
suppresses the rapid growth of prediction errors and provides
a higher forecast skill than the CP-Ts and CP-Ws. Further-
more, the results show that the CP-ensemble mean forecast is
more conducive to prolong the lead time of the skillful
forecast measured by anomaly correlation coefficients
(ACC) for the spatial variability in ENSO mature-phase
SSTA than the CP-T and CP-W ensemble mean forecasts.
Therefore, in terms of both the forecast errors of Nifio3.4
SSTA and the ACC of the spatial variability in ENSO ma-
ture-phase SSTA, the skill of the CP-ensemble mean forecast
is significantly higher than those of the control forecasts and
the CP-T and CP-W ensemble mean forecasts. As a result,
incorporating initial ocean-atmosphere coupling uncertainty
in ensemble initial perturbations is crucial for improving the
ENSO forecast skill, especially for predictions starting from
spring and summer.

In addition, in this study, CP-T and CP-W are simply
combined to form a combination model of sea temperature
and wind field perturbations (i.e., N-CP), and ENSO en-
semble forecasting experiments are conducted including a
comparison of the results with those of the CP-ensemble
mean forecasts. The results show that the CP-ensemble mean
forecasts can more obviously improve the forecast skill of
the control forecasts than the N-CP ensemble mean forecasts,
especially for predictions starting from spring and summer.
The CP-ensemble mean forecasts yield a higher ACC for the
spatial variability in ENSO mature-phase SSTA than the N-
CP ensemble mean forecasts, and this advantage is particu-
larly evident for SSTA forecasts on both sides of the equator
with longer lead times. Therefore, CPs that appropriately
incorporate the dynamically coordinated interactions of
oceanic and atmospheric uncertainties can effectively in-
crease the lead time of skillful forecasts for ENSO events;
especially, CPs can capture the weak ocean-atmosphere
coupling signals in spring and summer, thus largely reducing
the forecast errors caused by arbitrary amplification of the
initial noise during this season.

A reliability assessment of the CP-ensemble forecasts is also
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conducted in this study. The results indicate that the CP-en-
semble forecasts better capture the consistency relationship
between the ensemble mean forecast error and ensemble
spread than the CP-T, CP-W and N-CP ensemble forecasts
from both temporal and spatial variability perspectives, espe-
cially in the area north of the equator in the tropical central-
eastern Pacific. Therefore, for ENSO prediction, CP-ensemble
forecasts that more appropriately account for ocean-atmo-
sphere coupling uncertainty can provide better estimates of the
prediction uncertainty than CP-T, CP-W and N-CP ensemble
forecasts, indicating that the CPs generated by the C-CNOP
method are helpful for overcoming the overconfidence phe-
nomenon in existing ensemble forecasts for climate.

In summary, CPs generated by the C-CNOP method better
considers initial ocean—atmosphere coupling uncertainties,
resulting in higher ensemble mean forecasting skill for
ENSO. In particular, the forecasts of ENSO mature-phase
SSTA with higher forecasting skills starting in spring and
summer further highlights the superior performance of C-
CNOPs in capturing the initial ocean-atmosphere coupling
uncertainty. However, it should be noted that the above
conclusions are mainly based on ensemble mean forecast
results, which mainly focus on the role of the C-CNOP
method in improving the deterministic forecast skill of en-
semble forecasting. These satisfactory results encourage us
to further investigate the role of C-CNOPs in improving the
probabilistic forecast ability of ensemble forecasting by
utilizing more ENSO events or longer time series. Ad-
ditionally, to quickly demonstrate the dynamic rationality of
the C-CNOP method and to reduce the computational burden
of ensemble forecasts, we initially use a smaller number of
perturbation samples in the ensemble forecast experiments.
However, the C-CNOP method yields better ensemble
forecasts than atmospheric or oceanic perturbations or sim-
ple combinations of these perturbations. Therefore, how
many ensemble members should be used to achieve the
highest ensemble forecasting skill when using the C-CNOP
method in combination with the coupled model should be
investigated in the future. Under this scenario, does the C-
CNOP method provide more obvious advantages over other
perturbation methods in improving the ensemble forecast
skill? Do C-CNOPs exhibit a more reliable consistency re-
lationship between the RMSE of the ensemble mean forecast
and the ensemble spread? These questions must be further
studied in the future. Furthermore, how to reasonably com-
pare the C-CNOP method with the SV and BV methods
without appropriately considering initial coupling un-
certainties for different spheres of the Earth system should be
considered. In conclusion, we hope to further develop the C-
CNOP method to have much solid theoretical basis and the
ability to achieve forecasting skill improvement, expecting
that it plays important role in future weather-climate seam-
less predictions and even Earth System predictions.
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2023b). (HARTATEIN, SVsEETLEMEBIAIKR, bk
a3 IR WA 2 1 AR B S IR (MuSE:, 2003), 171 BB EWI4G
PLah A BEFR A A 8l JE AL A8 A R A AN PR R
M (Kleeman4%, 2003).

DuanfllHuo(2016)%5 FERISVsHIZk M R FR T, $H
T IEAZ M AR 2 4 S A $L 3l1(Orthogonal  Conditional
Nonlinear Optimal Perturbations, f&i#% O-CNOPs)£E%
TR B 777%. O-CNOPsTIVEAMMNE L& 1 ARt it
FERIFEM, 7o EL 20 I 1 PR A ] B o] e A bRk 1
KAa s, ZI7 N T 6 XER AR 4 & TR
BT, AR 1 6 KB kiR 2, 1 HX
6 XU Bl A, BRG], L2 6 XUERAR A 0], #5
BAL G KISVsMBVsA B i i Tl 45 75 (Huo MDuan,
2018; Huo%%, 2019; Duan%¥, 2023a, 2023b; Zhang%¥,
2023). XM, O-CNOPs 5 SVs 7 iESA, #5148
A, B TC 2 A A JE R A BRI G AN

846

PEMIEm. ST O0-CNOPsHI RBR 1, (HIFIR % &2
Z0) 1 TR BT () B AR 2R PR B KA LR R B L, &5
HTEO-CNOPs Bl |, R & RENS 5 e & i ARV U
ANt € PERZ IR RS S A B A TR GG 3 i, B
A A AR MR AR BT 468 (1K I C-CNOP) 1%, M
T 3R A3 — A BEBE 78 70 Z1 i 9] 46 1% 22 35 26 1 A Fa e 1Y
K, MREH R G IR et B S e AR
A THRAIURI SN T7 2.

ENSOJ& B A i i FE Rl 245 5 G g < &
WL, ERRAELESFBERE TR AR T SER 7
W, R ENERKE, GRS EBUF A R
()8 3 Sy, (R, #ER TIIIENSO R A H 23 X (Lian
&, 2023). {HH FR SN FIENSO TR K A 64
H, i HiRZ AR B K (Tang%%, 2018; DuanZs,
2022, 2023a). fTLL, ZEHKENSOTIRAT R, $EHEENSO
TR EE TS, AR T & B BUR 5 FT K A 1 5 B % 6k
GEAE AN B R A A5 s 3.

XTTENSORITiifk, V12 fff 7t i i it 81 K < sk
WEEE, B RIRE 2 5 72 AR KSRV ERT a3 I s i
77 ATF B EA TR (YanZE, 2009; DuanfliWei, 2013;
Du’%, 2012; BachrflIPiontek, 2014), B0 _E iR, %%
WA A RE T 7 IR BRI IR R I EEWILEA
B PEAR ELAE FH I REm. B4, GnSRTEENSOLE & Tk
WA 2 2 R SR A AN B E TR X WD AR B Bh () RS
ENSOITIR KPS 2 B3 K, oA
R, Pl T PER RIS R 5SS, T H AT 4L
MR OR AP 2% ZE T 35 S A5 R, AT
MR A R ANE AT LG T ENSORY,  ¥IahIn AN IR
U M BB SX Bl 559 S5 JS.(Webster, 1995; ZhengFll
Zhu, 2010), M RRATS I FHR A E PE. £ XX
1HI, FATHRS N, WERENSOSES IR VLG Eh6E
B A e I A 2 A 8 e SR A R P TR AN 2 14, ENSO
TR 25 0] A e mle? RS Bl R, &
SCKH# FIC-CNOPT JEENSOHI4E & ik 78, 1+ %
FEA AR A AT 5 PEXTENSOSE & THAR 45 35 H 54 .

2 WA FF LRSI (C-CNOP)

SRR E R B AR R KRR . [
1 S A [ Pl 2 A LA P2 2R, B DL A2 6 i B
TR ZIAE R T R Gl A, (H T H AT AT
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KPR BR 1, BUAT (088 B 2K v A B 4 B 220 i A
I7] Pl JZ AR ELAT P ROBILAR, AT 3 B0 T 47 A2 K
AERE E. Bk, TR E R E S TR, £317
¥ LS H S KRB, A EA R R
RS AENE, AR AR AR A TR KT A 2
K. A, TP AL RES 1 2 S AN R Bl E A
B AN E TR SR G Bk M a6 LB e 2

AR LR, BA TR 2 RS RE) ) &
Giim 5ot PRAS B (KU IR R A R ) A
AR B (AU P AR U RUBE AR ) AR LA R 22,
B2 78 DN ARk i e 75 RE .
oX

= FOL Y0+,
oYy _ 1
E_ZG(XaYat)JrfY) (1)

Uy= (X|t:0: Xoo Y= Yo):Q>< (0,77,

Horp, XRY 73 BRI R, U, = (X, YWIREE
IR ZS, et [al, He € [0,T], T <o, FHGY)
NARLNRIZ R, £ 1 £, 0 s R AR B A aaa (s
FEARRIENY  ERHGEE, DUIR/KE RS RIE)
AERAR 5 1) AP SE (A1 KA Z FUORBRAR S . Ak
TRIRFE . AIEIRFESMRIE), S8 < X5 TR
HB AR XA & Y.

7 JE N AR B X (% R S8 BT IR R ) I il
ik, TR TR O R 18 AR B A T RS N
W
dX=F(X,Y,t)dt+f, dr. )

BRIE £, M £, 35009 78 1 A sl ([ B A A A U L
BT RICMIPES H 1) Tk #anar #homin ), B 5 RE
Py AR AR B AR S AR RZ . E I A XA [7,,, ]
(t, <t, < T) LR Q)45

j%dX=I%Fuynom+I7ﬁdt
t, t, t,
= ["FC Y nde+ £ @ -1,). 3)
ta

R, AR 222, % B F) PR AR AS A TR AL B X,
RN

“p
Xth :Xta+j F(Xa Y: t)dt+fX (tb_ta)' (4)
ta

TR T AU Y, , BIPRAR S YA ORI
At ME. L, Y, ANEE 577 (4R TTR(S)
i A= EI S

vt Gy a6 5)
97 AR L, 27 B (4) A (S) o B0 R

U, = (X,.7,). ZibikAU, = (X,.7,).

1y Tty

Un SR A A A5 A A BRI 8] Fr 1)
B AN I 18] B £y, 2, M2 0, 1,], A EATH H BIRIEEIR

HHU, = (X, .Y 0, = (X, 1,). TR @)

o1 fo1” o1 to2” "oz
HI(S), BT R A1 AR B ) 28 1R A X, MY, PR
|

X, = J‘ttletJrXtOlJer(tltOl), (6)

X, = J‘ttdet+Xt02 +fx (t,— t). (7
B SR AN B 23 I TR B BEAR [R], U 2 (7)—(6)

CIEGE

X, X, =X, X, + J:tdetJ:[let : (8)
W ITHER)E L5 i FE(6) M T BT MR R =X, T

X, ~X, =X, X, +[ [ £ F Jar 9)

R, F, ARERTTRE)FIIF, XTRLE > X A Z R R
[0 Belt o, 1,], TIF, FoRTTRE(6) P IF, X RIAIZAR
B0, 1, FEII, FETTRRO) A, AR, |, A7 FERAS
BAE M WARNEPRSE, BIY, Ay, , PSR E
AT HTREGS) AR R

F 77 RE() IO AT R, X, ALY, 2 (1 i) 22 5 T4
MR, MU, B2, R, 18 AR BRI R B
Y& EAIIRIRAS ¥ 22 A A BLAE LR 3 8082 & 72K
KIS ZIAEAE 2. W FKE 1, ¢, 10 IR B R VR R B Ry
SR FF, W[t o, 110085 18177 FU AT AE A2, 2,108 18]
U TRAR T 50", HIAEL R 2 TRIR 22X U,
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U, %50, B, B R W) B2 (X, X,
Y, - ¥, S
4 R RO D, % H8 A5 S Bk R s
TR E, T S T i
Ju;,) =MAX(1 <n <N:ii<N) | X, =X, [, (10)

i, uy, = 0y, RE T EET NN T 51 K Hon
AT 51 i 3R A B AE TR N 20 T, A8 3 BTk AL
BRI GEZE RV IRE, o< NARE T 07 41
AN E, FERE TR AT DO R R EL, AT CRAIE Tt
A Z AR RS 45 R g1t B e, ik,
TR0V FAF VIR R Fu,,, fedE T A BRAE AL TS
iR gt FRFER BT SRR, WIS RS
18 PR BB A LA S e R AE R

5| FHrik, CNOPHGER T 2 —E LR a4, H
TE TR B %1 RE 0% 3 B K TR IR 22 I 46 1% 22 (Mu e,
2003). XFF 7 FE(10), @S _E IR TR P A A FRAE AT
RT3 25 g vt b 8 3 1) T 7 B R AR AR R 23R 2%
f, WA T ik m it B &P, 182240
HAE AN & EH#E A CNOP, i JC-CNOP.

IR R AR B R TR E L T C-CNOP. F5¢ |,
B PR B ) TR, BATTRT R E X C-CNOP, ifif H.
IR T, E T HA R — R R 5 2
B 2 REAE AR 2 A0 ELAE S %, Wi Al AR S-S50
kit — R Z EEA AR, Hieh e
i TR SR B TRV Ga P sl BT i, N s i,
X HEAFHBR.

01’

3 C-CNOP/{EENSO£: G5 B

# C-CNOP 5 ¥ b i T Hi Bk R 8i 45 20(The Com-
munity Earth System Model, &i#CESM), IRIJEE S
TARWILE P B e 278 B U & A E YEXTENSO
AT IR AT BB E .

3.1 BAAnGER

CESM#% 22 HH 36 [ [H 2 KAt 7t 0 (National
Center for Atmospheric Research, & FRNCAR)JT & [
ARG, CESM #RaUE — M E R R G
R, BFRREE. KA BEm. WK FEOKSERBIE. Z0T
FLH CESMAE R KA 43 A 3 (the Community At-
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mosphere Model 5, fij#XCAMS, NealeZs, 2010)F1
sy B 3 (Parallel Ocean Program version, f&FXPOP,
Smith%%, 2010), HIZ KA RERE)HELE, EEH T
[[130)2, 7K 43 HE30.9°x 1.25°(4 5 x 2 B ) 25 AN
W%, J5 & KHEE T 602, MRZE10miZiE 2210 2
WIZ250m, 7KF 05 MR B A 3RS I T SLIERS
M Ze A, HorhdbEekpR SAm 24y, a3k
i 0T PN i, 7 e = BRI 0 1) 22 R AR AS, AL
PERI A E AR TE _EGIE 4, AP HRR A AR TE Hh
X H91°%0.27°(Z FEX A FE). CESMAL & T ik 5 &=
¥ (Community Ice Code version 4, fEjF#KCICE4,
HunkeflILipscomb, 2008), ifi %3 (Community Land
Model version 4, {#]FRCLM4, OlesonZ¥, 2010). CESM#&
4> A A E S A 2R CPL7HE & (CraigZs, 2012).

WM 8K F 3 B RS S L S 58 Tt 0 )
BRI R R4 R 4 55 Bl 45 (Global Ocean Data As-
similation System, f&iFXKGODAS), 1% ¥4l 4 /& H w7 M
A2 W S R AR . AT GODASH iR
PR}, I Nudging 77 % [ A6 B CESM A AT
UhY, b R E KT X878 o5 4 BRI, TE B 7 M)A
R Z15mZBIRZ400m, [FILEF]2Y1980~20154. K
FH AT IRAS B AL B2 BHME R WI14G3s, R4 CESMAT 3k45
KT H PR Tk, 978, DURFRZ TR
g PR (7R B il o eCrrl”).

3.2 FiC-CNOPj=HENSO A 7l i B9 58 4 0] b
Hzh

Duan’%(2018)% B, ENSOH 1 (J5 18 2EI Nio, if8
s&La Nifia) ) 5 PRI KA 4R 15 2 1) 72 5] 45 46 A 1K 36t
ENSOZH A B, H X AR RS 46 B 1] bE A U (Mu
&%, 2007a; 2007b; Duan%, 2009; HouZ, 2019). fiibA,
1 SR WA IS T A2 463 B ] 7 A 10 PR 3 A AT 463 o 2 A
A, SRBUZE LRI [ 5EA T ) PROE S K46 50
FHZS AR I, T4 3 S 558 JiS N7 6 1) 1) 122 4f3 P () et
ENSOTMHA BRI W IR R 2 10 A, T,
T AR AR T I 42 o] TR R 46 43 BT i 2 IR AR R RF A
BT i e TR S O ) R R PR A A AR T, B
2L G P 1) 4 2 TR P A 2 P B PR S KT 46 P 50
FHZS[E], HR &2 B AR A TT JRENSO&E &
TR

A i P2 A AN W ENSO A 1) C-CNOPs, 14
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AR TR G KBRS B A A P Sl AH 23 (R (R, 217
I A ENSO%E & T i PR 18 38 KA G W1 UE P 2 FE A%,
HE B A VRIS ENSOSE & Fidik B 15 1f 52 M.

FF Tl A i e i AhiRia 3%, A CESMAR 3G
20085 :04E, H S 1504 58l 42 C-CNOPs.  fEiZ Tk
FE 5 B 104N SRR EL Nifo R Wil 541, %t
TRE—ANFA, H1505F TR R 1499 5L RHT IME
DZEI 7 B B 149U Tk . HHER 275 Al 1, IXLE i
TR R Z A H LR 1R 22 S8 R ARk (1)
J B R B I T R 2,

JO) = J ]lv Z[ TE () = T30 2, (11)
(i)

Horp, TPARRCTHR MM, TR WL 1) i,
(6, RFHAHT KT PE X 45£(20°S~20°N, 120°E~80°W)F]
B 5, NARAZ XSG . SR R el A Fidi,
HRAE 77 FE(9) TH LA IR Tl ) C-CNOP, 1% C-CNOP#
e AERIEVE, AR, KA. FRSE &8, K
T CESM A E ST i b0 0y R S U Ui PR AN o 1
BA B R AR G WIIE AW ER277).

ENSOM ik M EFERTIH . 4H. 7THAI10H
FEAG, B IR 12N H, TSR AE B I e — AN
B H, "] 4 1 ASC-CNOP, 1078 WL El Nifio ) ik
A3 E]107~C-CNOPs. 7£_LiAC-CNOPsfj LRl [, &
PR L BB 2~ S PRE I KA A WG R B A i K
RV BHAT 1. X FE, AT H, 10k
TR FAF LT 7= A SO PRI KA da e sh, BA15E
FRIHAC-CNOPs.

A FEAR TR AR S BRI A6 HL S XTENSO
LA TR, 3T DL B RASR A 03810
501~C-CNOPs, % H MR /TR U, V)it
TR A 406 1522 PR B(Empirical Orthogonal Function,
fEI#REOF) /i, 32201 FHA, 1L NE, =Ty, Uy,
Vo) (i=1,2, 3, ..., 20; R T7 215 5)90% A ). %% 20
AN FRS AT R A, TRVIEERA XIS S
WBICP = (T, IUy, IV) = a [E,+a,E,+ ... taFEyy I
Ha N REL AR, CPREM IR F 43 (1 BE % S WL
AAH ELAE SR ELARSEE 1S K 1 4 BRI IR AT XA RS S ]
GEHREN. EHCA R R e, RV IR AN RS Ia6 A
B, KX LS VE NENSO%EA IR ML BhFEA, TR

FE T YIRS A A E,. W EATR, CPRIR/N
AT AR HE TR AL U6 H AR BRI 4E 53 BT 1% 22 04 % RS 45 A1
E, WG TR ZE /N L2YE 5% .

L ST 198241 H~20154E12 F 17 FENSO
P RS TR, KNC-CNOPZIZIF 7o #E H 1)
HrEE A TIRVIGAIL 5 7%, HAFENSO%E & Wik /2
IR R, BT CARRATTRE A K TR AS a6 2 b 7 A 54
CPsRISHIEC-CNOPH & #E M. ¥4 54N CPs3 7 LA IE £
BT 30 & INAE 3% H AR (L3831 W1 463, #15
CESMZRTF 10BN TR, 1% 10K TR 5 261 7
R %R TR NN EA A, thib, CPsTEK
ST R R A ER, R E T A SR LT 17 R,
REER[IA165m, 299788 Kl R 2R Z R B, BA
F KRG AL 192037, 5 B8 £1200hPa, 24975
T8 P Walker Rt 036 &1 . /B NCPs— /Mo 7,
K145 H1 7 1982/1983 El Nifio 24 4F4 H a4 i 42 i it
[FI5SACPs. WEIATLLE H, 5/NCPss H 23 T AN il
AR, (HIRATR I 301 KT 2R A
IR HEE, 5 R ERDUNERL, 1104 )5 i
T IR i, X N RS R IR . AR K78 K-
IR S HL I (Wind-Evaporation-SST, fij#XWES, Xie
HPhilander, 1994), _3iREFEATRIZ 1) S BHASAE 2% 1
T CPsH IR X 37 (¥ AH ELAE 2 30 1 D R 1.

3.3 PHPR PR IR B B F AR A TR

N 52 FE AR A N RE T XTENSOSE A Tk
F IRz, AR LIRCPs, LLA19824E1 H 2015
SE12AWIAEELH. 45, THRI10H MTERELSH,
o FAH R R P BE S (SSTA)FF B A A TR RS, Tidk
KON AR, L1367k TR

3.3.1 FifkiRE

K245t T GODASH % [fINifio3.4[X SSTA (R
Nifio3. 4480 BB 8] 751, LALGERT3. 64 9+ 124 H
AP TR I ENSO S 1 il 247 #H fINif03.4 SSTA.
SERERW, TR IEH T R CP-E AP TRk,
AEFR AT H ik ! = AIE] NifioAlLa NifiaZhF, 1
CP-E AT X TR 1 &5 S -5 W00 58 i Soh N [A] T
B, DL 1982~20154F B Ta] BT AT ENSO S 4 i 24 A
Nifio3.4 SSTAM TR = 2 (R4 77 il 1% 2 RMSE)iE1T
Uit nl A, CP-Ba4 1 24 TRAR 1 TR 5% 22 5 4% ) AR Ik
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(a)CP (b) N-CP
CP1 N-CP1
20°N 71 20°N 7
10"N-7% RN Ty 1o°Ng% e e \q
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20°N CP2 o 20N N- CP2 =
10°N % . - S Y T . S 10°N % \'\
=75 &

O-E"i/r/" - ,Q. L TREDT 0 E‘ s L
10°S =, S SE = e —~ G axsany 10°S % . e Ve
20°S - L 20°S -

120°E 150°E 180°  150°W  120°W  90°W 120°E 150°E 180°  150°W  120°W

CP3 N-CP3
20°N 71 20°N 7
10°N?%“/’/ = g - ~\/\100N7%\ B (- - 7 )
0:—q| e ] couamaein 0, | TN 0 LZEHE - oas TNGER C g™
)= S 0 =8~ o,
10°5 ++ ;. R TR - 10°5 +* e e A
20°S e .y \ 20°S e G S NN N
120°E 150°E 180°  150°W  120°W  90°W 120°E 150°E 180°  150°W  120°W  90°W
o CP4 g N-CP4 —
10°N - k <7 10°N % T N T \ ~ - -

0 Eo o\, =~ e e o~ - \ s ~ 0 e/
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20°S g L2 9 z A\ . 20°S 2 = ! v

120°E 150°E 180°  150°W  120°W  90°W 120°E 150°E 180° 150°W 90°W

CP5 N-CP5,
20°N \'\ﬁ 20°N e 7\%(
10°N % o L Lo SRR - 10°N L T »~ ESNETY >

0Bt ~pze\ /o N 0 N /J By e & - 7
10°S £ ... S = Tl —— 10°S 7 2ot =
20°S ) N /s M 20°S SR - )
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55 4 -3 -2 075 0 075 2 3 4. 55

B 1

1982/1983 El NifoE4 H 2R AT, I H HR KI5 CPs (a)FIN-CPs (b)

RS R LR T, #7 LR RE

INEI16%, T %S T TR 64 H 1Bk, CP-4
B T 28 TR P T 4 R 22 A ) R R B R A
30%, TERERTOAN H Ak £1]25%.

N T 5 5ZENSOSE G Tl W] 4a 1 3 [F] i 25 8 iR
AR AN e PR B, JATT 20 B s b Bt A0
RIAHHEAT T A TIRRLE. N REE A R I7 Psh 1
ML N AE0E B U MU AR AR A 155 B WIE AT 2
P, 4 B C-CNOPs HIEE A X3 4 31T T EOF 4
fift, HUHT20MNEOF##a S A FT 2026 7] K5 48 1)
MR EEOF EHEE, 1EAEA Tk PRE G K AW ia A
MR, FIHX ﬁbﬁtﬁ& o A= A TR Y UG i
B RIA IS, I NCP-THMCP-W. E14H T
1982/83 El Nifio 444 H 4 iy 42 i) 9idik (1) 54~ CP-Ts
FISASCP-Ws. HEIRTLLE H, CP-TsHl CP-Ws5CPsf)
RN B BEAAFERRS 6, HElIREE
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FEWES AN AR I8 b, F-AT75 5 LLCP-Ts Al
Ws AV, TFRENSO%E S Fid ik, thib, CP-
TsF1-Ws EL A 5 C-CNOPsx b 4y s A R K. 45581
RIL, CP-TsHFI-WsHE AT 35 TR 7088 5T 9 H B i 92
F| 7 FHEAEl NifoMLa NifaFE(LER), 1HX}
£ AHNifi03.4 SSTARI TR, E AT CP-SE A FHA B K
PP R 22, HAERT6N H A9 H TRk, % %15
SR EBC).

IR TTSN, CP-BE4-F- 3 TR AT ENSO B 27 A
Nifio3.4 SSTA TR, JCIAE AT Pk 64 H i
AN H B, A5 | TR I CP-THI-WHE A 3 TR 5t 2=
B, W2, WE. B IR THRENSO 824
{7 #HNifio3.4 SSTAR}, CPEEA P/ N ik 45 KA
EVERICR I . s b, CP-SE A TR %5
AR, X R A NIfi03.4 SSTATHIR (1) ik 1% 2=
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i (c) PUREI KO

Nifio3.415%
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QD DD DD D DD PP LD DD > O s
FEEFFEFTF T I T ST

(d) PuREI K12
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-1.04

Nifio3.4#5%

-2.0
-3.0

r-T T T, T T°1 r-r 1 1 T T, T T T T_T I, T I [N
FEIFFEFF LI P TSI E L T TIPS
=t
B2 1982~20155 8 MWLM AINifio3.4XSSTA, AREH3N A (). 61 H(b). 9MA (0. 12 H (M ENSOFE B LA
Nifio3. 45 ¥ Hy TR
SMARFWI, 2T, . S A BRECP, N-CP. CPTRICP-WHE A THIBUR, 1 B HR I H

A /NEI(EIB). T 1982~20154E AR (ISSTA, 4 1995), AR A G BNZZNT RS/ EES, N
AR ZE T AR VER, it B3R 7 Bid WA SRR W VEEE S (Webster fll Yang, 1992;
Zie(E4). CAHRRY, EEFNEY), BiRREE Webster, 1995; Hou%%, 2019), 1fj H.H1 T #if K P
SIEE BTN E N, A RS RIS (Webster,  H F R RS S AR E MR (Wang flFang,
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FURETK(R)
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(a) #EHITIR ELELCP. CP-THICP-WE A BTk M2 7 iR 2Z; (b) 12 Bk LK CP. N-CPE ST TR BT RIRZE; (¢) AR Tk
T CP-B2 AP TR (42 J5 iR ZE R 1 TR (BRI “Cel) P X MRS, R LR I Fidhe . CP-TAN-WHE &P S T 1 22 AE AN ) 8 iy i b
KTFHIR/ANREE. (d) CP. N-CPAE AT s | 0 (¥ ok /N B
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