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The typhoon intensity forecasts are much more affected by nonlinear processes than track forecasts. Recent
developments in models and nonlinear data assimilation methods have opened the way for the target observation
strategy of improving intensity forecasts. Based on the offline outputs of ensemble forecasts, the nonlinear
particle filter (PF) assimilation method which is not limited to Gaussian distribution, is used to investigate the
sensitive areas of target observation for typhoon intensity in the western North Pacific. The results show that
sensitive areas of zonal wind, meridional wind and geopotential height in most cases are mainly distributed in
the steering flow regions where typhoon interacts with western North Pacific subtropical high, and the regions
associated with the mid-latitude trough that has a strong influence on typhoon. In contrast, the distributions of
sensitive areas for relative humidity and temperature are more dispersed and case-dependent. It is further shown
that the sensitive areas of zonal wind, meridional wind and relative humidity in most cases are effective for the
improvement of typhoon intensity forecasts, especially for the long-term forecasts, and thus these variables are
relatively sensitive. This result provides a scientific guidance for actual typhoon intensity forecasts, i.e., if target
observation is utilized to obtain target data within sensitive areas of sensitive variables, it is very likely that the
prediction skills can be improved to a larger extent at a smaller economic cost.

1. Introduction

Typhoon is a kind of catastrophic weather system. The accompa-
nying occurrences of strong winds, heavy rainfall and other disasters,
especially storm surge, can pose a serious threat to human lives and
cause huge economic losses (Feng et al., 2023). Accordingly, accurate
and timely forecasts of typhoon intensity and track are of great signifi-
cance for disaster prevention and mitigation (Yao et al., 2021).

The skills of typhoon track forecasting in the northwest Pacific have
been greatly improved in the last few decades through the continuous
exploration of the previous scientists. In contrast, the prediction of
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typhoon intensity still presents a huge challenge (DeMaria et al., 2014;
Mu et al., 2015; Emanuel and Zhang, 2016). This is because the changes
of typhoon intensity and track are caused by the interactions of multiple
scale processes (Montgomery and Smith, 2017; Yao et al., 2021). The
typhoon track is mainly determined by large-scale kinematic environ-
ment. However, typhoon intensity is not only regulated by large-scale
environmental factors such as vertical wind shear, but also strongly
depends on mesoscale/microscale nonlinear and chaotic processes (e.g.,
moist convection). Therefore, the forecasts of typhoon intensity are
more difficult than that of the track. Moreover, many studies have
shown that typhoon intensity may increase as the climate continues to
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warm, making typhoon forecasting more difficult (Sobel et al., 2016;
Emanuel, 2017; Duan et al., 2019).

Currently, numerical weather prediction has been the main way for
typhoon forecasting, while the typhoon intensity forecasts are influ-
enced by several errors, including initial errors (Emanuel and Zhang,
2016), sea surface temperature errors (Yao et al., 2021), track errors
(Kieu et al., 2021), and parameter uncertainties (Parker et al., 2017),
etc. Among them, the impact of initial-condition errors on typhoon in-
tensity forecasts cannot be ignored, especially in the first few days
(Emanuel and Zhang, 2016). Assimilating observations is an effective
method to reduce the initial-condition errors and thus improve the skills
of typhoon intensity forecasting (Nystrom and Zhang, 2019). Since situ
observations are costly and never be dense enough to fully cover the
entire space of the studied events, especially over the ocean. Previous
studies proposed the “target observation” that can help to design
effective observation strategy, also known as “adaptive observation”, in
which limited number of observations placed in some critical areas are
expected to yield significant improvements on forecast skills (Morss
et al., 2001; Mu, 2013). The basic idea of target observation is to
maximize the forecasting skills in a focused area (verification area) at a
future time t; (verification time), additional observations are deployed
in some critical areas (sensitive areas) at a future time t, (target time,
t; < t;). In this way, we can assimilate these additional observations to
form a more accurate initial field, minimizing the forecasting errors in
the verification area (Mu, 2013; Mu et al., 2015; Qin et al., 2023).

In 2003, The Observing System Research and Predictability Experi-
ment (THORPEX) was established at the 14th session of the World
Meteorological Organization (WMO). THORPEX is a 10-year interna-
tional research and development programme to accelerate improve-
ments in the accuracy of one-day to two-week high impact weather
forecasts for the benefit of society, the economy and the environment
(Shapiro and Thorpe, 2004). Targeted observation is one of the main
research components of THORPEX and has played a key role in
numerous field campaigns and subsequent forecasts (Majumdar, 2016;
Feng and Wang, 2019; Qin et al., 2023). However, many studies of target
observation have focused on the typhoon track forecasting during the
THORPEX era (e.g., Burpee et al., 1996; Aberson, 2010; Wu et al., 2005;
Chou et al.,, 2011; Weissmann et al., 2011), with the average improve-
ment of around 10% in the track forecasting (Majumdar, 2016). There
are fewer studies on target observation for intensity forecasting. Mu
et al. (2009) identified sensitive areas in target observation of typhoon
using the conditional nonlinear optimal perturbation method, which
included a discussion of typhoon intensity, and in general assimilated
observations within sensitive areas to be effective for improving fore-
casts. Qin and Mu (2014) investigated the effect of target observation on
the improvement of typhoon intensity forecasts by conducting Obser-
vation System Simulation Experiments (OSSEs), and the OSSEs results
showed that intensity forecasts in 15 out of 20 typhoon cases were
improved but the improvements were much less than that in track
forecasts. Therefore, they concluded that improving numerical models,
using higher resolutions etc., are more urgent than increasing observa-
tions for an accurate typhoon intensity forecast when the models are not
sufficiently advanced.

Until now, with the continuous improvements in models and data
assimilation methods, researchers have started to focus more attention
on the impact of assimilated observations on typhoon intensity. Zhang
and Weng (2015) provide the first comprehensive demonstration that
typhoon intensity prediction may be improved by a combination of an
advanced data assimilation technique capable of efficiently ingesting
high-resolution observations, the most scientific forecast models that
can resolve dynamics, and sufficient computing resources to perform
ensemble-based probabilistic analysis and prediction. Poterjoy and
Zhang (2016) and Ito et al. (2018) also showed that assimilating ob-
servations has a positive impact on the prediction of typhoon intensity.
In fact, upper-air measurements of wind, temperature, humidity and
pressure inside and around typhoon are lacking, which limits the
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analysis of the intensity and circulation of typhoons as well as prediction
using NWP models (Chan et al., 2023). Thus, during typhoon Mulan
between 8 and 10 August 2022, China conducted the first-ever multi-
element ground-space-sky observing system experiment, an important
moment in the history of target observation. In the future, for further
development of typhoon forecasts, more such target observation field
campaigns may be conducted (Qin et al., 2023). Therefore, with the
continuous development of science and technology, it is necessary to
carry out studies of target observation corresponding to basic meteo-
rological elements at upper-air in most typhoon cases.

The key issue of target observation is to determine the sensitive
areas. The common methods of determination can be broadly classified
into two categories (Duan et al., 2018; Zhang et al., 2021). One is to first
calculate the initial errors that have the greatest impacts on the pre-
diction, and then identify the areas with large and concentrated errors as
sensitive areas from the perspective of the initial errors, e.g., breeding
vector method (BV; Lorenz and Emanuel, 1998), linear singular vector
method (SV; Palmer et al., 1998), and conditional nonlinear optimal
perturbation method (CNOP; Mu et al., 2003; Duan and Mu, 2009), etc.
Most of these methods require running numerical models with accom-
panying systems, and the obtained sensitive areas have some dynamical
significance but are computationally expensive. Another is to directly
reduce the uncertainties of the prediction by examining where the
assimilation regions can minimize the uncertainties, the regions are
deemed sensitive areas of target observation. The commonly used
assimilation methods are ensemble Kalman filter (EnKF; Liu and Kalnay,
2008) and ensemble transform kalman filter (ETKF; Majumdar et al.,
2011), which use ensemble dispersion to measure the sensitivity of the
forecast errors comparing to the initial errors. The EnKF and its variants
(e.g., ETKF) are currently popular data assimilation methods. However,
due to scientific and technological advances, three significant de-
velopments have occurred over the last decade in several geoscientific
applications, which limit the use of EnKF and its variants (Vetra-Car-
valho et al., 2018). Firstly, dynamic models have become increasingly
nonlinear. Secondly, the estimation of bounded variables or parameters
requires data assimilation methods that can handle non-Gaussian dis-
tributions. Thirdly, the observation operators that connect the model
states to observations from the newly added observational network are
nonlinear, again asking for non-Gaussian methods. These developments
amplify the limitations of the EnKF and its variants, because they are
based on linear and/or Gaussian assumptions. Particle filter (PF; Van
Leeuwen, 2009), as a new data assimilation method, has the prospect of
fully nonlinear data assimilation and is not limited to Gaussian distri-
bution (Van Leeuwen et al., 2019). In addition, it is worth mentioning
that the PF method can be implemented offline based on the outputs of
the run-completed ensemble forecasts. This offline approach does not
require model forward integration to update the weights of the particles
(or ensembles), that is, the particles after assimilation are not adjusted
which do not destroy the dynamical balances (Van Leeuwen, 2009;
Kumar and Shukla, 2019; Hou et al., 2023). Therefore, this offline
method also has the advantages of easy operation and less model
dependence. With such development backgrounds and application
prospects, the PF method has started to develop rapidly in the geo-
sciences. Meteorologists have applied PF method to identify sensitive
areas of target observation for ENSO and Kuroshio Extension (Kramer
et al., 2012; Kramer and Dijkstra, 2013; Duan et al., 2018; Zhang et al.,
2021). Preliminary experiments have shown that the PF method can be
competitive to current methods for NWP and will become mainstream
soon (Van Leeuwen et al., 2019).

As previously discussed, the accuracy of typhoon intensity forecasts
is much lower than that of track, a major reason being that the neglect of
nonlinear processes has a greater impact on typhoon intensity forecasts.
With the continuous development of models and nonlinear data assim-
ilation methods, the use of target observation to improve typhoon in-
tensity forecasts is very worthy of in-depth study. Under these
circumstances, we use the nonlinear PF method that is not limited to
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Gaussian distribution to carry out target observation for typhoon in-
tensity and try to answer the following questions. What are the distri-
bution characteristics of sensitive areas determined by PF method? Are
assimilated observations within sensitive areas effective in improving
typhoon intensity forecasts? If so, how long does the effectiveness last?

This paper is organized as follows. Section 2 introduces data and PF
method. Section 3 details the experimental procedure for conducting
target observation and demonstrates theoretically why the ensemble
mean can be used instead of observations to determine sensitive areas.
Section 4 analyses the characteristics of sensitive areas for each variable.
Section 5 further validates the validity of sensitive areas and its persis-
tence. Finally, Section 6 comprises the summary and discussion.

2. Typhoon cases, data and PF method
2.1. Typhoon cases

Based on the best track data from the China Meteorological
Administration (CMA), typhoon cases that originated in the western
North Pacific during 2016, 2017 and 2018 are examined (Lu et al.,
2021). We chose 16 cases for the research objects of the study according
to the following selection criteria. First, typhoons that cross the 48-h
warning line of China are selected. Then, experiment procedure for
target observation is designed for each case (see Section 3 for details),
where the decision time roughly coincides with the moment when
typhoon is located at the 48-h warning line. Considering that model
forecasts are difficult for tropical cyclone generation, we select typhoons
whose actual generation time exceeds initialization time of ensemble
forecast by 12 h or more.

2.2. Data

We use the European Centre for Medium-Range Weather Forecasts
(ECMWF) Ensemble Prediction System global forecast and China T639
Ensemble Forecast System global ensemble forecast to form a combined
ensemble comprising 117 independent members. The variables (zonal
wind, meridional wind, geopotential height, relative humidity, tem-
perature and sea level pressure) adopted here are uniformly interpolated
onto 0.5° x 0.5° the grids.

Due to the actual field campaigns are not conducted, we carry out the
simple OSSEs to validate the effectiveness of sensitive areas by taking
the advantage that the PF assimilation method can be implemented
offline. The “simulated observations” in OSSEs are replaced by hourly
high-resolution reanalysis data from ERA5 (ECMWF Reanalysis v5),
with same selected variables as ensemble forecast data.

2.3. PF method

The PF is a data assimilation method that uses Monte Carlo algorithm
to implement Bayes theorem (Duan et al., 2018). The core of PF method
is to capture the weight of particles (i.e., ensemble members) by using
Sequential Importance Sampling (SIS). When observation yj is available
att = t, the change of weight w}, follows Bayes theorem, as shown in Eq.
1):
ok =Ll

Here, the probability density function (PDF) of observation p(yx) can
be considered as a normalization factor, which assures that the total
weight is equal to one. p(yx|x) is the PDF of observation given the
model state xi, it is directly linked to the PDF of observational error.
Assuming that observation error is a multivariate normal distribution,
and its covariance matrix is 3", then p(yx|x} ) is given by the follows:

Atmospheric Research 303 (2024) 107326

O b ®

Where H is the observation operator, which means that state vector
space is projected to observation space. The weight ! can be calculated
from Eq. (1) and (2). Also, if several observations at different grids (j =
1,2,...m) are assimilated simultaneously, the weight w} is updated as
follows:

ot~ el L3 b)Y o) @

The advantage of SIS is that assimilating observation changes the
weight but leaves the particle itself unchanged, thus the dynamical
equilibrium of forecasts is not disturbed (Kramer and Dijkstra, 2013).
Hence, we can use the run-completed ensemble (i.e., offline members) to
determine sensitive areas for target observation in advance of the real-
time field campaign, which is the advantage of using PF method to
determine sensitive areas. A major problem of SIS is the degeneracy of
particles, which refers to the concentration of weights on a small number
of particles after a number of observations. This study weakens the de-
generacy by incorporating a simple resampling technique (Van Leeu-
wen, 2015). The basic principle of resampling is to copy particles with
large weight and discard particles with small weight. Furthermore,
setting the proper magnitude of the error covariance is also important to
avoid degeneracy. If the observation error is set too small, only particles
that are close to the observation remain, which will cause large de-
generacy. However, it will be unrealistic if we set the observation error
too large. In this study, after tuning experiments, the observation error is
set to 0.38,,;, where &, is the standard deviation of ensemble forecasts
before assimilation for each variable. For more specific details on PF
method, please refer to Van Leeuwen et al. (2019).

This study uses the Predictive Power (PP), an entropy-based metrics,
to measure sensitive areas determined by PF method (Schneider and
Griffies, 1999). Kramer and Dijkstra (2013) pointed out that working
with the PDF of the full state vector x is cumbersome and unnecessary.
We are only interested in predicting typhoon intensity, so the definition
of the PP index can be simplified as

62
PP=1- “)
q

Where o2 and o2 are the variance of the typhoon intensity index
before assimilating observations and after assimilating observations,
respectively. The intensity of typhoons is measured by their lifetime
minimum sea level pressure (MSLP). In fact, the PP index measures the
reduction degree of ensemble forecast uncertainties before and after
assimilating observations at target time, that is, it measures the
improvement degree of predition skills (Kramer and Dijkstra, 2013). The
PP index has a range from zero to one. When the skill improvement is
larger, PP is closer to one (Duan et al., 2018). The goal of target
observation is to improve forecast skills at verification time, so we
calculate the PP index at this moment. The regions with large PP index
represent these areas where observations deployed at target time can
significantly improve the prediction skill at verification time. Therefore,
the regions with high PP are determined as sensitive areas of target
observation.

3. Experimental procedure

Based on the common forecast case scenario (Majumdar, 2016), we
design an experimental process that is as realistic as possible (Fig. 1).
The two timelines in Fig. 1 are experimental procedure designed for
each typhoon case in this study. The first one is the process to determine
sensitive areas of target observation (Fig. 1a), and the second one is the
process to verify the effectiveness of sensitive areas (Fig. 1b).
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Fig. 1. Typical timeline for (a) preparation of target observation and (b)
verifying the effectiveness of sensitive areas, using ensembles initialized at time
t! and t2, respectively. The red dot marks the target time. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Firstly, for the ensemble forecasts initialized at time ¢, a decision on
whether and where to deploy observations is issued at the decision time
tg. The time interval between ¢} and t; is set to 60 h considering the
operation time of model and calculation time of sensitive areas. Because
of mission planning involved after the decision, the target time t, was set
24 h after the decision time. The purpose of target observation is to
improve the forecasting skills at the verification time t,. The time in-
terval between the verification time and the target time is 12 h. Based on
such a target observation process, we assimilate observations at each
grid point using the PF method and then determine sensitive areas by
calculating the PP values.

In the second process, we further verify the effectiveness of sensitive
areas and its persistence (Fig. 1b). For the ensemble forecasts initialized
at time 2, which exceeds the target time t, in the first process by 48 h,
we analyze the improvement of prediction skills at four verification
times t! (i.e. t, in the first process), 2, t2 and t! with interval 12 h by
assimilating observations in the sensitive areas at the target time t,. The
first verification time t‘} is the same as the verification time t, in the first
process. Therefore, we select the sensitive areas directly based on points
with large values of PP, which correspond to the grid points that may
have a relatively large impact on forecast at the first verification time ..

Since it is not possible to obtain future observations in advance in the
actual target observation, the observations assimilated in the first pro-
cess are replaced by ensemble mean of ensemble forecasts initialized at
time t} According to the theoretical study of Brankovic et al. (1990), the
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mean squared error (e2) and the mean squared spread (A2) of ensemble
members can be defined by the following two equations:

N

1

2= _ F, — Al
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AZ:fE F,—F 6
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Where F, is one member of the ensemble (i = 1,...,N). F = % Zf; . Fi
represents the average of the N ensemble forecast fields. Let A be the
analyzed field which verifies each F;.

As shown in Fig. 2, if the observation is the actual analyzed field, the
ensemble members after assimilating the observation must be theoreti-
cally close to the analyzed field. According to Eq. (5), it can be deter-
mined that the more sensitive the assimilated area is, the smaller the e2
of ensemble forecast after assimilating the analyzed field. For a
reasonable ensemble forecast system, there is a positive correlation
between e and A2 (Brankovic et al., 1990; Buckingham et al., 2010).
Likewise, if the ensemble mean replaces the analyzed field, the ensemble
members after assimilating the mean must also be close to it in theory. In
this way it can be decided directly from Eq. (6) that the more sensitive
the area of assimilation the smaller the A2 is. Considering the practical
meaning and the variance formula of Eq. (4), the variance og is actually

the A? before assimilating the “observation” (denoted AZ;

%
Therefore, regardless of whether we assimilate the analyzed field or the
ensemble mean, the AZ; is smaller for the more sensitive area, and the
corresponding PP value will be larger in the region. In practice, it is also
found through simple experimental tests that the locations of sensitive
areas determined by the PP method are basically similar regardless of
assimilating actual observations or ensemble mean. In summary, we
conclude that the approach of using ensemble mean instead of actual
observation to determine the sensitive areas of target observation is

feasible in this study.

), the variance

is actually the A? after assimilating the “observation” (denoted A2 ).

4. The characteristics of sensitive areas

The typhoon system itself is complex. As a result, the large variation
among typhoon cases makes the characteristics of sensitive areas case-

For the more sensitive area

e A

ps>
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Fig. 2. Theoretical schematic of ensemble mean replacing observations.
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dependent, but there are still some patterns to follow. Because typhoons
are strongly influenced by various weather systems around them, such
as western North Pacific subtropical high (WNPSH), mid-latitude
troughs and jet stream. Next, we take one of the typical cases as an
example, and analyze its characteristics of sensitive areas from the
perspective of synoptic meteorology through the circulation field and
other variable fields.

The identified sensitive areas for zonal wind and meridional wind are
shown in Fig. 3, which mainly covers two target regions. The center of
the typical case from the low-level to 500 hPa is the dominant target
[Fig. 3 (c-D)], due to the influence of the typhoon system. Another target
corresponds to the trough axis areas of the East Asian Trough (EAT)
running from the low-level to 500 hPa, and the sensitive variable is
mainly meridional wind. The EAT is a mid-latitude trough, so the dis-
tributions of this target confirm the influence of the mid-latitude trough
on typhoon. Besides, since Tropical Easterly Jet stream (TEJ) may
enhance the upper-level dispersion to some extent, there are also some
sensitive areas at 100 hPa. The geopotential height field has a good
matching relationship with the wind field, so the target areas of the
geopotential height are similar to that of the horizontal wind (Figure is
omitted). The sensitive areas of temperature are basically located in the
regions where significant coolings occur in the eastern Asia, throughout
from the low-level to 200 hPa [Fig. 4 (b-f)]. This may be due to the
northwesterly airflow behind the EAT guiding the southward intrusion
of cold air from the north, which causes a wide range of obvious cooling
in East Asia, and further the cold air in the region is likely to influence
the typhoon intensity by the circulation.

Referring to the description of dry air by Browning and Golding
(1995), this study characterized dry air with relative humidity <50%.
Fig. 5 shows that the sensitive areas of relative humidity are mainly
distributed at 500 hPa and below, with a little at 200 hPa. The sensitive
areas are correlated with the South Asian High (SAH), EAT and the
distributions of dry air. At 200 hPa, the strong northeasterly flow on the
eastern side of the SAH guides the dry air from the north to move
southward, and the target areas exist at the junction of the wet air and
the southward dry air (Fig. 5a). At 500 hPa and 700 hPa, there are large
dry air masses distributed on the west side of the EAT, and the target

(a) 100 hPa
4 P P

(b) 200 hPa
it 1 . . L
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areas are located at the junction of dry and wet air in the trough axis
areas [Fig. 5 (c, d)]. While at 850 hPa and 925 hPa, the above dry air
masses weaken or even disappear, and the sensitive areas are more
scattered in the eastern fringes of the dry air masses on the east side of
the EAT adjacent to typhoon [Fig. 5 (e, f)]. This may be due to the strong
wind field which has a great influence on the distributions of dry air in
the north, and further if the dry air on the periphery of the typhoon
invades its interior, it will play a suppressive role on the typhoon in-
tensity (Wang et al., 2018).

Similar to the above analysis for all cases, the following character-
istics of sensitive areas can be summarized. First, the steering flow of
typhoon interacting with the WNPSH and the mid-latitude trough have a
large influence on typhoon intensity, so the sensitive areas corre-
sponding to zonal wind, meridional wind and geopotential height of
most cases are mainly distributed in the regions associated with these
weather systems. Second, the distributions of dry air around typhoon in
conjunction with the wind field will also have an impact on the typhoon
intensity, whose relevant areas mainly correspond to the sensitive areas
of relative humidity in some cases. Third, the cold and warm air
advection caused by the configuration of temperature and wind fields
will also have some influence on the typhoon, which is related to the
distribution of sensitive areas for temperature in a certain extent.
Fourth, the characteristics of sensitive areas for relative humidity and
temperature are more dispersed and case-dependent than that of zonal
wind, meridional wind and geopotential height. It is worth noting that
although some of sensitive areas are distributed in the centre of ty-
phoons, more sensitive areas are located away from the centre. Why do
remote targets have the ability to influence the intensity of typhoons? In
fact, some common physical explanations of such targets do exist
(Majumdar et al., 2011; Chen et al., 2009; Wu et al., 2009; Ren et al.,
2007; Wang et al., 2018; Zhang et al., 2013). Overall, the WNPSH and
the mid-latitude upstream trough mentioned in the previous analysis, as
well as the dry-cold air transported in the flow of these weather systems,
will gradually move towards the typhoons over time, resulting in
interactions.

The vertical distributions of sensitive areas corresponding to basic
meteorological elements are shown in Fig. 6. The sensitive areas of zonal
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the previous time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) 100 hPa (b) 200 hPa

40N

ofs

(c) 500 hPa =

ks
/4
i ////;

T

LIl
-~ AL L L L L i

%2
1 AL
& et
oo e
D DD ks 22
A 3 %4

iz

Ticieeeeee
S

0 L TR T B N S S B
100E  120E  140E 100E  120E  140E 100E  120E  140E
(d) 700 hPa (e) 850 hPa (f) 925 hPa
- O Y O L x L
40N
20N ]
0 T v ; ‘- T o IR | ' LI T o | D
100E  120E  140E 100E  120E  140E 100E  120E  140E
I I ]
10 20 30 40 50

Fig. 5. Same as Fig. 3 but for the sensitive areas of relative humidity (green dots). The fill colors are the distributions of dry air (shaded; %) at the target time. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

wind, meridional wind and geopotential height are generally distributed
from the low-level to 500 hPa, while the vertical distributions of relative
humidity and temperature are more case-dependent. Overall in some
cases, the sensitive areas for temperature are mainly distributed at 925
hPa, 850 hPa and 200 hPa, and that for relative humidity are mainly at
850 hPa to 700 hPa. Anyway, the sensitivities (PP value) for each var-
iable are higher at the levels where the sensitive areas are concentrated.

5. The validity of sensitive areas and its persistence

Conducting the simple OSSEs based on the PF method implemented
offline is actually similar to the ensemble forecast adjustment (EFA)
technique in previous studies, which can be used to rapidly evaluate the
impact of target observations on short-term forecasts (Madaus and
Hakim, 2015; Dong and Zhang, 2016). In the four-dimensional (4D)
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ensemble Kalman filter (4D-EnKF), observations can be assimilated to
update past and present states. Then, the EFA technique can be thought
of as a 4D-EnKF with an “open-ended” assimilation window extending
into the future. The essence of both the PF assimilation method and the
EFA is to obtain a subset of ensemble members that are closer to ob-
servations (Qi et al., 2013; Ancell, 2016). Differently, nonlinear forecast
evolution will eventually limit the effectiveness of EFA, whereas the PF
is a nonlinear data assimilation method. Therefore, we still use the PF
method to assimilate actual observations (replaced by reanalysis data)
to verify the effectiveness of sensitive areas. We select the first 20 grid
points of the maximum PP index for each variable as the sensitive areas
of each variable. For each variable, repeat the PF assimilation procedure
and examine the improvement degree of prediction skills for the
typhoon intensity index (i.e., MSLP index).
The improvement degree (1) in this study is defined as

,,:M“oo%

€ori

)

Here, e, is the root mean squared error (RMSE) of the ensemble
members for the MSLP index before assimilating observations, and e, is
the RMSE of the ensemble members for the MSLP index after assimila-
tion. The RMSE of the ensemble members can be calculated according to
Eq. (5). In addition, the observation error is increased to 0.95,; to
diminish the degeneracy of particles. In fact, in addition to updating the
ensemble mean, the PF assimilation can adjust future forecast uncer-
tainty using the spread-reducing properties of the ensemble data
assimilation.

As society continues to progress, the demand for operational fore-
casting is becoming more and more widespread and is no longer limited
to a single deterministic forecast. Titley et al. (2020) indicated that
potential value and prediction skill would be gained if operational
tropical cyclone forecasting can continue to migrate away from a
deterministic-focused forecasting environment to one that incorporates
the probabilistic situation-based uncertainty information into opera-
tional forecasts and warnings. The e in Eq. (7) is calculated as the root of
the average of the squared errors between all ensemble members and
observations for a given grid point. A larger e indicates that the ensemble
members are more likely to deviate from the observations, and
conversely most of the ensemble members are closer to the observations.
Therefore, e reflects the probabilistic information.

Fig. 7 shows the improvement degree of typhoon intensity forecasts
at the first verification time after assimilating observations. After
assimilating observations in the sensitive areas of each variable, the
intensity forecasts are improved overall, with 9 or more of the 16 cases
there were improvements, where the improvement degree is generally
greater for meridional wind. In addition, we calculate the effective
sample size of ensemble members after assimilating observations in
sensitive areas. The average effective sample size after assimilation is
about 8, which is sufficient for PF assimilation with only 117 particles.
Meanwhile, the resampling step is taken after the assimilation step,
which can further alleviate degeneracy.

As shown in Fig. 7, the typhoon intensity forecast after assimilating
the zonal wind observations for typhoon case 9 is significantly worse.
Therefore, we use this typhoon as a typical case for further analysis. The
ensemble forecasts of the MSLP index for the typical case, which are
obtained by assimilating sensitive observations of each variable, are
shown in Fig. 8. We found that compared to before assimilation, the
spread of the MSLP ensemble decreases significantly when simulta-
neously assimilating sensitive observations. In particular, the de-
generacy of ensemble members after assimilating the zonal wind is more
severe and the residual particles deviate significantly from the obser-
vations. Similarly, all other cases are analyzed (not shown). The
comprehensive conclusion is that the poor improvements for some cases
may be due to the severe degeneracy of ensemble particles after
assimilating observations and the significant deviation of the remaining
particles from observations. Moreover, at four verification time for most
cases, the ensemble members after assimilating the zonal wind, merid-
ional wind and relative humidity observations are mainly distributed on
both sides of the observation and the ensemble mean is closer to the
observation.

It is worth noting that the improvement in prediction skills after
assimilating observations from some regions does not fully indicate that
these areas are the most sensitive. It is possible that assimilation of
observations from other regions can also lead to improved forecasts with
greater improvement. Therefore, we conduct further examination using
a random experimental strategy. Randomly choose 20 grid points as a
random array 50 times (noted as the contrast areas) and repeat the PF
assimilation procedure and ensemble prediction. Fig. 9 shows the
average improvement degree and the percentage of improved cases on
typhoon intensity forecasts at four verification time for 16 cases after
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assimilating observations in the sensitive areas and contrast areas,
respectively. On average, the typhoon intensity forecast of each variable
is improved overall at the first verification time by assimilating obser-
vations in the sensitive areas, and the forecast improvements continue
for at least 36 h after the first verification time. Specifically, the average
improvement degree is more pronounced in zonal wind (Fig. 9a),
meridional wind (Fig. 9b) and relative humidity (Fig. 9e), especially in
the latter two verification time. The percentage of improved cases is
>60% overall. In conclusion, the average improvement degree and the
percentage of improved cases for all meteorological elements are basi-
cally increasing over time, which indicates that the assimilated obser-
vations in sensitive areas mainly improve the long-term forecasts of
typhoon intensity, reflecting the advantages of the nonlinear PF method.
Further validation by comparison with random experiments shows that
for zonal wind, meridional wind and relative humidity, the improve-
ment degree of intensity forecasts after assimilating observations in the
sensitive areas is generally greater than that in the contrast areas. The
above results demonstrate that zonal wind, meridional wind and relative

humidity are more sensitive variables for typhoon intensity forecasts.
Physically, the typhoon itself is a cyclonic circulation system. The
developments of other circulation systems around the typhoon (e.g., the
WNPSH, the mid-latitude trough, etc.) are bound to have direct impacts
on it (Ren et al., 2007; Wang et al., 2013). Therefore, the sensitive areas
of zonal wind and meridional wind have the most significant influences
on the predictions for typhoon intensity. In addition, the water vapour in
the atmosphere also has direct impacts on the evolution of typhoon. For
example, high humidity is the foundation that promotes the formation
and development of convection, while convective activity is the basic
driving force for typhoon development (Fritz and Wang, 2014). There-
fore, the sensitive areas of relative humidity reflect the remote dry air
targets that may have direct influences on the future development for
typhoon intensity. Further, the nonlinear process such as the circulation
will then wrap the dry air gradually into the typhoon's interior, can be
well captured by the nonlinear PF method. As a result, the sensitivity of
relative humidity is especially prominent in the later stages of the pre-
diction (Fig. 9e 24 h, 36 h, 48 h). However, the change of geopotential
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Fig. 9. The averaged improvement degree (bar charts; left Y axis) and the percentage of improved cases (line graph; right Y-axis) on typhoon intensity forecasts for
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periments. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

height first affects the wind field, such that larger gradient of geo-
potential height may lead to stronger wind field. Hence, compared to the
wind field and relative humidity that directly affect the typhoon, the
sensitivity of geopotential height is weaker. Moreover, Majumdar et al.
(2011) pointed out that remote mid-latitude targets for temperature
may be spurious and the wind sensitivity is superior to the temperature
sensitivity. Most of the temperature targets identified in this study are
also remote and dispersed, and case-dependent. Therefore, the sensi-
tivity of temperature is overall poor. In summary, we should first ensure
the target observation for the above more sensitive variables (zonal
wind, meridional wind and relative humidity) in the actual field
experiment, which may be more effective for the prediction improve-
ments of typhoon intensity.

6. Summary and discussion

This study analyzes the intensity of 16 typhoon cases in the North-
west Pacific. The characteristics of sensitive areas for target observation
corresponding to the basic meteorological elements are investigated
using the PF assimilation method to improve the probabilistic forecasts
of typhoon intensity.

The results show that the steering flow regions where the typhoon
interacts with the WNPSH, as well as the regions associated with the
mid-latitude trough, can have an impact on the environmental flow of
the typhoon, which consequently can affect the intensity of the typhoon.
These sensitive areas run through the low-level to 500 hPa. Therefore,
the sensitive areas of zonal wind, meridional wind and geopotential
height in most cases are mainly distributed in the above related regions.
In contrast, the characteristics of sensitive areas for relative humidity
and temperature are more dispersed and case-dependent than that of
zonal wind, meridional wind and geopotential height. The sensitive
areas of relative humidity in some cases are mainly distributed in the
regions associated with dry air. The dry air in the periphery of the
typhoon enters typhoon's interior under the action of the wind field and
thus affects the intensity of the typhoon. The vertical distributions show
that the target areas for relative humidity are mainly at 850 hPa to 700
hPa. Similarly, the distributions of sensitive areas for temperature are
somewhat correlated with the cold and warm air advection, with

vertical distributions mainly at 925 hPa, 850 hPa and 200 hPa.

After identifying the sensitive areas of each meteorological element,
we further verify the validity of these targets and the persistence of the
validity. It is found that whether we only analyze the improvement
degree of typhoon intensity forecasts after assimilating observations
within target areas or comparatively analyze the results of the target
areas and control areas, the effectiveness conclusions are generally
consistent. That is, the ensemble forecasts of typhoon intensity after
assimilating the zonal wind, meridional wind and relative humidity
observations are closer to the observed intensity in most cases. On
average, the effectiveness of sensitive areas of zonal wind, meridional
wind and relative humidity still persists for at least 36 h after the first
verification time, which means that the validity can last for at least 48 h.
Especially, the improvement degree of meridional wind is consistently
greater in four verification time. The percentage of improved cases for
any variable at any verification time is >60%. Moreover, from the
perspective of forecasts persistence, assimilating observations of each
basic meteorological element in the sensitive areas identified by the PF
method can bring forecasts continuously closer to observations. This
leads to significant improvements to the long-term forecasts of typhoon
intensity, reflecting the advantages of the nonlinear PF method.

In the comprehensive analysis, this study suggests that the zonal
wind, meridional wind and relative humidity are more sensitive vari-
ables in the target observation of typhoon intensity, especially meridi-
onal wind. If we can obtain observations in the sensitive areas of
sensitive variables by means of target observation, and assimilate these
observations using data assimilation methods. Then, in carrying out
actual forecasts of typhoon intensity, it is possible to improve the pre-
diction skills of typhoon intensity to a larger extent with less economic
cost.

As mentioned in the PF method, this study reduces the degeneracy of
particles by incorporating a simple resampling technique. In fact, a
growing number of scientists have conducted some research specifically
on the degeneracy of particles and have proposed many more improved
particle filter methods (Vetra-Carvalho et al., 2018; Van Leeuwen et al.,
2019). For the later work, we consider using more targeted advanced
methods for different study subjects to achieve better forecast
improvement. In addition, this study discusses the characteristics of
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sensitive areas for basic meteorological elements, with the aim of more
clearly and specifically analyzing the synoptic meteorology of sensitive
areas of each variable, and providing basic guidance for actual target
observation.

However, considering various factors such as manpower, material
and financial resources in the actual field campaigns, it will not deploy
observations for only one variable in a region but observe several ele-
ments at the same time. We hence need to determine the common sen-
sitive areas of several variables. In fact, based on the idea of the CNOP
method, the PF method can be used to determine the combined sensitive
areas from the perspective of energy, which deserves a more in-depth
exploration.
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