
1. Introduction
The Madden–Julian Oscillation (MJO) is the dominant mode of tropical intraseasonal variability with a broad 
time scale of 20–100  days (Zhang,  2005). Besides affecting local winds and precipitation, MJO can also 
greatly influence remote weather and climate through tropical–extratropical teleconnections (Stan et al., 2017; 
Zhang, 2013); hence, it serves as a major source of subseasonal-to-seasonal predictability (Vitart et al., 2017; 
Waliser et al., 2003). The fundamental characteristics and dynamics of MJO have been well-documented (Jiang 
et al., 2020; Zhang et al., 2020) since its first discovery (Madden & Julian, 1971, 1972). After being initiated 
from the Indian Ocean (IO) (Matthews, 2008; Wei et al., 2019, 2020, 2023; Zhao et al., 2013), MJO deep convec-
tion expands and migrates eastward slowly (∼5 m/s) and may weaken when encountering the Maritime Conti-
nent (MC) barrier effect (Ling et al., 2019; Wei et al., 2022; Zhang & Ling, 2017); nevertheless, it can usually 
reintensify over the Western Pacific (WP) (Waliser et  al., 2009; Wei & Pu, 2021) and finally damp over the 
Central-Eastern Pacific (Hendon & Salby, 1994; Wang & Chen, 2017; Wei et al., 2018).

However, observed MJO propagations are diverse in many aspects. For example, the MJO may propagate fast or 
slow (Pohl & Matthews, 2007; Yadav & Straus, 2017) under different modulations of low-frequency background 
states (Chen et al., 2022; Ren et al., 2023; Suematsu & Miura, 2022; Wang & Li, 2021; Wei & Ren, 2019, 2022; 
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Xiang et al., 2021). The propagating MJO may be blocked by the MC barrier effect (Barrett et al., 2021; Hirata 
et  al.,  2013; Zhang & Ling,  2017), which sometimes can be overcome by moistening arising from the lead-
ing suppressed convection (LSC) over the WP (Chen & Wang, 2018; Feng et al., 2015; Kim et al., 2014; Wei 
et al., 2022) or by reduced land diurnal cycle (Hagos et al., 2016; Ling et al., 2019; Oh et al., 2013). Additionally, 
MJO propagation trajectory (Kim et al., 2017; Liu et al., 2020; Zhou & Murtugudde, 2020) and group velocity 
(Wei et al., 2023; Wei & Ren, 2019) are changeable. Clustering analysis has been recently used to objectively 
identify diverse MJO propagations (Chen & Wang, 2021; Wang et al., 2021), such as standing, jumping, and slow 
eastward propagation and fast eastward propagation MJO modes (Wang et al., 2019, hereafter WCL19; Xiang 
et al., 2021; Wang & Wang, 2023). Although low-frequency variabilities, such as El Nino–Southern Oscillation 
(ENSO) and Quasi-Biennial Oscillation (Lyu et al., 2021; Wei et al., 2023; Xiang et al., 2021), likely control 
various MJO propagation behaviors, why diversified MJO propagations exist remains elusive.

Besides eastward-propagating intraseasonal oscillation (ISOe), westward-propagating intraseasonal oscilla-
tion (ISOw) is also active in the tropics, such as equatorial Rossby waves (Gonzalez & Jiang,  2019; Kiladis 
et al., 2009) or westward-propagating “moisture mode” (Fuchs-Stone et al., 2019; Mayta et al., 2022). Previous 
studies have noticed that ISOw might shape the boreal summer intraseasonal oscillation (Wang & Rui, 1990; 
Wang & Xie, 1997; Wang et al., 2021), anchor or initiate MJO deep convection by interplaying with high topogra-
phy (Feng & Li, 2016; Roundy & Frank, 2004; Takasuka & Satoh, 2021; Wei et al., 2019, 2020, 2023), and block 
eastward propagation of MJO moist convection through dry intrusion (DeMott et al., 2018; Feng et al., 2015; 
Fu et al., 2018; Huang & Pegion, 2022). In this study, we unexpectedly found that ISOw, which cooperates with 
ISOe, over the WP, can offer a plausible explanation of diverse MJO propagation initiated from the IO (WCL19). 
Moreover, as an arguably key prerequisite for MJO eastward propagation (Chen & Wang, 2018; Feng et al., 2015; 
Kim et al., 2014; Wei & Ren, 2019), the LSC over the WP is found to be closely related to the ISOw. These results 
will be comprehensively described in Section 3 after an introduction of data and methodology in Section 2. 
Finally, we discuss our main findings and outline the conclusions in Section 4.

2. Data and Methodology
2.1. Data

The main data set used in this study is the daily, 2.5° × 2.5°, advanced very high-resolution radiometer outgo-
ing longwave radiation (OLR) during 1979–2018 from the National Oceanic and Atmospheric Administration 
(NOAA; Liebmann & Smith,  1996). OLR is a good proxy of deep convection and rainfall in most tropical 
regions (Peatman et al., 2014). The atmospheric circulation is diagnosed using the 5th generation of ECMWF 
reanalysis  (ERA5) products (Hersbach et al., 2020). Daily anomalies are calculated by subtracting calendar daily 
climatology. A 20–100-day bandpass Lanczos filter (Duchon, 1979) with 201 weights is used to extract the intra-
seasonal oscillation (ISO) from the daily anomalies. The westward and eastward components of ISO (i.e., ISOw 
and ISOe) are further extracted using the Fourier and inverse-Fourier transforms along each latitude.

2.2. Methodology

We first derive a convective index (CI), defined as the ISO component of OLR averaged over the IO (15°S–15°N, 
70°–100°E). The reference date (hereafter, Day 0) is selected as the first day when CI becomes smaller than 
one negative standard deviation (STD) of itself. The composite map for the total ISO component of OLR shows 
enhanced convective anomalies in the central IO and suppressed convective anomalies in the WP (Figure S1 in 
Supporting Information S1). Thus, we further derive a dry index (DI) following Kim et al. (2014) as the ISO 
component of OLR averaged over the WP (15°S–15°N, 120°E−180°E). The large scatter of DI, relative to the 
small CI scatter (Figure 1a), suggests that the LSC defined by the DI can be independent of the MJO moist 
convection over the IO. Kim et al.  (2014) revealed that strong LSC could support a propagating MJO, while 
weak LSC usually corresponds to a nonpropagating MJO. This is reproduced in Figure S2 in Supporting Infor-
mation S1. Here, “Strong” (“Weak”) is defined as the scenario when DI is larger (smaller) than the mean plus 
(minus) half of its STD.

We further decompose DI into ISOe and ISOw components to quantify the relative LSC contributions from 
eastward- and westward-propagating disturbances. Again, there exists no clear linear relation between CI and 
the two DI components (Figure 1b). However, the total DI is considerably correlated with its two components 
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(Figure 1c), and the dryness over the WP is mainly contributed by ISOe as the magnitude of ISOe is larger 
than ISOw. The LSC over the WP is a robust signal of eastward-propagating MJO, both in the successive- 
and primary-type events (Chen & Wang, 2018; Matthews, 2008). Here, we reveal that besides the preceding 
eastward-propagating dry anomalies, ISOw also contributes to the LSC (Wei et al., 2023). More interestingly, 
ISOw and ISOe are largely independent (Figure  1d). Thus, we can readily investigate their separate roles in 
affecting MJO eastward propagation.

Specifically, we define four scenarios based on the strength of ISOw and ISOe over the WP on Day 0. In the first 
scenario (S-I), both ISOw and ISOe are weak; in the second scenario (S-II), ISOe is weak, but ISOw is strong; 
in the third (S-III) and fourth (S-IV) scenarios, ISOe is strong, while ISOw is respectively weak and strong. The 
definitions of “Strong” and “Weak” are similar to the total DI. The equatorially (15°S–15°N) averaged convection 
and circulation anomalies of total ISO are composited in each scenario to examine the propagation pattern of 
MJO initiated from the IO. The composite of ISOw and ISOe components diagnoses the underlying mechanisms 
of distinct MJO propagation behaviors. The significance of composite results is evaluated based on the two-tailed 
Student-t test at the 95% confidence level. We consider the all-seasonal analysis to make a fair comparison with 
previous studies (e.g., Kim et al., 2014; Wei et al., 2023). In the represented results, seasonal variations, if any, 
are discussed somewhere in the following.

3. Results
3.1. MJO Propagation Under Weak Versus Strong ISOe

We first observe the MJO behaviors when only referring to the ISOe component of LSC over the WP. The maps 
of 20–100-day-filtered OLR and 850-hPa horizontal winds (UV850) on Day 0 are shown in Figures S3a and S3b 
in Supporting Information S1. As expected, the LSC in the strong ISOe case is considerably stronger than in the 

Figure 1. Dry and convective indices (DI and CI). (a) Scatter diagram of CI versus DI derived as the 20–100-day-filtered 
OLR anomalies (W/m 2) over the Western Pacific (15°S–15°N, 120°E−180°E). The horizontal (vertical) blue line is the mean 
of DI (CI). (b) Same as (a) but for the CI versus ISOe (black) and ISOw (green) components of DI. The black and green 
horizontal lines denote the means of ISOe and ISOw. (c) Scatter diagram of DI versus its two components of ISOe and ISOw. 
(d) Scatter diagram of ISOw versus ISOe components of DI.
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weak ISOe case. The strong LSC over the WP excites anticyclone Rossby gyres to the west (Gill, 1980), of which 
the poleward wind anomalies are observed, in contrast to the equator-ward winds in the weak ISOe case. Addi-
tionally, the equatorial easterly wind anomalies are considerably strengthened, mainly due to the dry Rossby wave 
excitation. Moreover, the suppressed convection of ISOe maximizes along the equator when it propagates into the 
WP on Day 0 during both boreal winter and summer (Figure S4 in Supporting Information S1), thus explaining 
the equatorially symmetric feature of the LSC in the ISOe component (Figure S3b in Supporting Information S1). 
The anomalous convection and circulation are generally similar to that based on the total LSC (Figures S1b and 
S1c in Supporting Information S1), which implies that weak (strong) LSC over the WP is mainly because of the 
weakening (strengthening) of ISOe.

The contrasting circulation between the two scenarios sheds some light on the different propagation patterns of 
MJO (Figures 2a and 2b). In the weak ISOe case, the deep convection is initiated from the western IO on Day 
−10, then migrates to the eastern IO with significantly enhanced amplitude, and quickly damps upon approaching 
Sumatra Island in the western MC. Therefore, a non-propagating (or a stand) MJO probably commences when 

Figure 2. MJO propagation patterns conditioned by only ISOe or ISOw. (a) Lagged composite Hovmöller diagram of 
equatorial (15°S–15°N average), 20–100-day-filtered OLR anomalies (shading in W/m 2, passing the Student-t test at 95% 
confidence level) when only the ISOe component of leading suppressed convection is weak. (b–d) Same as (a) but for strong 
ISOw, weak ISOw, and strong ISOw, respectively. The black contours show the ISOe component, and the green contours 
are the ISOw component. Solid (dashed) contours denote suppressed (enhanced) convection, and zero contours are omitted. 
“Strong” is defined as larger than one plus half of the STD, while “Weak” is smaller than one minus half of the STD. The 
two cyan lines show the west and east boundaries of the WP. The MJO case numbers in the four panels are 64, 79, 74, and 76, 
respectively.
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the suppressed convection of ISOe becomes weakened over the WP. In contrast, in the strong ISOe case, the deep 
convection successfully crosses the MC barrier and even reintensifies over the WP, manifesting a typical life 
cycle of propagating MJO. Two mechanisms have been previously used to explain the propagating MJO related 
to strong LSC. (a) The easterly winds induce boundary layer moisture convergence (Chen & Wang, 2018), and 
(b) the poleward winds cause positive meridional moisture advection (Kim et  al.,  2014; Wei & Ren,  2019). 
Both mechanisms helped MJO cross the MC barrier. Thus, the dryness of ISOe over the WP mainly determines 
whether the MJO can propagate eastward, thereby crossing the MC.

3.2. MJO Propagation Under Weak Versus Strong ISOw

What is the role of the WP dryness arising from ISOw? To answer this question, we examine the LSC and UV850 
(Figures S3c and S3d in Supporting Information S1) as well as MJO propagation (Figures 2c and 2d) by defining 
“Strong” and “Weak” cases based only on the ISOw component. Again, we yield significantly stronger LSC and 
easterly/poleward wind anomalies in the strong ISOw case than in the weak ISOw case. However, this cannot be 
treated as a duplicate of Figures S3a and S3b in Supporting Information S1. In the weak ISOw case (Figure S3c in 
Supporting Information S1), suppressed convection of ISOe, albeit weak, is still observed in southern WP, caus-
ing stronger easterly wind anomalies along ∼10°S compared to the weak ISOe case (Figure S3a in Supporting 
Information S1). The underlying reason is that constraining ISOw to be weak does not necessarily guarantee a 
weak ISOe because the two components are largely independent (Figure 1d). Moreover, in the strong ISOw case, 
the LSC and the induced wind responses to the south of the equator are weak because the dryness of ISOw, as 
a major contributor to LSC, reaches a maximum in the north of the equator (Figure S3d in Supporting Informa-
tion S1). The dry signals of ISOw are mainly seen along 10°N, although featuring westward propagation in boreal 
winter and northwestward propagation in boreal summer (Figure S5 in Supporting Information S1). We found 
that the LSC in the ISOw component in boreal summer is stronger than in boreal winter (Figure S6 in Supporting 
Information S1). Besides, in this case, both the easterly and poleward wind anomalies over the MC (especially 
those over the southern MC) are weaker than the strong ISOe case (Figure S3b in Supporting Information S1).

The deep convection over the IO in the weak ISOw case (Figure 2c) displays a similar propagation pattern as that 
in the weak ISOe case (Figure 2a). The major difference is that the damping of moist convection over the western 
MC in Figure 2c is not that strong. Consequently, the MJO convection can continuously propagate into the WP, 
but without reintensification. Therefore, a propagating mode is supported in the weak ISOw case. In the strong 
ISOw case, a westward-propagating disturbance initiated from the Central Pacific (CP) is observed (Figure 2d). 
The dry phase, on the one hand, strengthens the LSC over the WP on Day 0 and, on the other hand, suppresses the 
enhanced convection over the MC on Day 10. Because of the strong LSC, the in situ active convection over the 
WP is intensified after Day 10. In general, the MJO, in this case, behaves as a mixture of jumping and propagating 
modes. Moreover, MJO propagation speed tends to be slow in the weak ISOw case but fast in the strong ISOw 
case. Also note that, the moist phase of ISOw in the strong ISOw case propagates westward and helps to trigger 
the MJO deep convection from the IO, which is essentially like the WPISO type of MJO initiation documented 
by Wei et al. (2023) using clustering analysis.

Hence, we can see that more stories can be detected when isolating the ISOw component from the total LSC 
over the WP. To exclude the contamination of ISOe and thus extract the “pure” effect of ISOw, we then compare 
the LSC, UV850, and MJO propagation by constraining both the ISOw and ISOe components in the following 
subsection.

3.3. ISOw Cooperating With ISOe Shapes Diverse MJO Propagations

Figure 3 shows the 20–100-day-filtered UV850, OLR, and the ISOw and ISOe components in the four scenar-
ios mentioned above (i.e., S-I to S-IV). In S-I, the northern WP interestingly displays weak active convection, 
and northerly wind anomalies are observed over northern MC, in contrast to weak southerly winds in southern 
MC (Figure 3a). In S-II, ISOw becomes strong, and significant convective suppression appears in northern WP 
(Figure  3b), thereby exciting southerly and easterly wind anomalies over northern MC (Figure  3b). In S-III 
and S-IV, owing to the dominance of ISOe, the suppressed convection over the WP becomes more symmetric 
about the equator and stronger (Figures 3c and 3d), which is more so in S-IV due to the further strengthened 
ISOw component (Figure 3d). Correspondingly, the spatial scale (both zonal and meridional) and amplitude of 
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lower-tropospheric winds largely increase, especially in S-IV. Note that the amplitude of deep convection over 
the IO is generally similar in the four scenarios; therefore, the increasing lower-level wind amplitude mainly 
reflects the strengthening Rossby wave responses to the LSC over the WP. The “pure” effect of, say ISOw, might 
be appreciated by comparing such as S-III and S-IV. Because the significant contribution of LSC is ISOe, we 
expect that the so-derived “pure” ISOe effect (e.g., S-I vs. S-III comparison) is roughly the same as that in 
Section 3.1.

Figure 4 shows the MJO propagation patterns of the four scenarios. In S-I (Figure 4a), convective anomalies only 
oscillate over the IO with a time scale of 30–40 days but without a robust eastward propagation into the WP (see the 
break at 110°E), which is reminiscent of the standing MJO mode documented by WCL19. This non-propagating 
behavior is mainly attributed to the phase locking of ISOw and ISOe over the IO, both of which have similar 
amplitude but features opposite propagation direction. Roundy and Frank (2004) also reported a similar standing 
feature of ISO, which they called “resonant” wave interactions. In S-II (Figure 4b), a strong dry signal of ISOw 
propagates westward from the CP, hindering the further eastward expansion of the eastward-propagating moist 
signal of ISOe from the IO. This decaying mechanism of the MC barrier effect due to westward-propagating dry 
wave is also documented previously (DeMott et al., 2018; Feng et al., 2015; Huang & Pegion, 2022). Interest-
ingly, significant moist convection reappears over the WP immediately following the dry ISOw signal. Overall, 
the propagation pattern in S-II is similar to the Jump MJO mode in WCL19.

A propagating mode can be observed in S-III and S-IV because the dryness arising from ISOe is strong over the 
WP. In S-III (Figure 4c), the ISOw signals mainly exist over the IO while weak over the WP. Similar to S-II, in 
S-IV, a westward-propagating dry signal of ISOw is observed, which propagates into the WP and strengthens 

Figure 3. LSC conditioned by both ISOe and ISOw. (a) Composite 20–100-day-filtered OLR anomalies (shading in W/m 2 and passing the Student-t test at the 95% 
confidence level) as well as their westward- (ISOw, green contours) and eastward-propagating (ISOe, cyan contours) components on Day 0 in S-I (weak ISOw and 
weak ISOe). The contours are only shown for the suppressed convection. The vectors are the 850-hPa horizontal winds. The magenta rectangle encloses the box 
(15°S–15°N, 120°E−180°E) to calculate the LSC over the WP. (b–d) Same as (a) but for S-II (strong ISOw and weak ISOe), S-III (weak ISOw and strong ISOe), 
and S-IV (strong ISOw and strong ISOe), respectively. See texts for the definitions of S-I to S-IV. The MJO case numbers in the four panels are 33, 15, 13, and 30, 
respectively.
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the in situ LSC (Figure  4d). However, the dry signal cannot propagate further west as in S-II because it is 
quickly damped by the moist convection of ISOe over the MC. The most attractive difference between S-III 
and S-IV is the propagation speed, which is slow in S-III and fast in S-IV. Thus, when the moist convection 
triggered from the IO can smoothly propagate across the MC (due mainly to the strong ISOe), the arrival of a 
westward-propagating dry signal over the WP will speed up the eastward-propagating moist convection (i.e., fast 
MJO); otherwise, a slow MJO will be supported. The crucial importance of ISOw in shaping the MJO diversity 
was further discussed in Text S1 in Supporting Information S1.

4. Discussion and Conclusion
4.1. Discussion

The results of this study have implications for the further development of the MJO theory (Zhang et al., 2020). 
Many popular MJO theories have intensively tried to simulate ISOe-like mode (Adames & Kim, 2016; Wang 
et al., 2016). However, according to the results of our study, along with previous studies, ISOw is also equally 
important to obtain a full paradigm of MJO propagation. A stochastically or interannually modulated onset or 
demise of ISOw in theoretical models should facilitate the formation of diverse MJO propagation as in reality. 
As a good candidate, the “MJO skeleton” model can simulate both ISOw and ISOe (Majda & Stechmann, 2009), 

Figure 4. Same as Figure 2 but for the MJO propagation patterns conditioned by both ISOe and ISOw.
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and the addition of a random process captures the irregularity of MJO initiation (Thual et al., 2014). However, 
whether the MJO propagation diversity was successfully reproduced in such stochastical models has not been 
examined.

The ISOw triggered from the CP has now been revealed to be crucial in shaping diverse MJO initiation and prop-
agation. Thus, the CP, which previously was less concerned, is likely a key region to understand MJO dynamics 
and predictability. Wei et al. (2019) successfully predicted strong primary MJO initiation 10–15 days in advance 
by adding optimal moisture perturbations over the IO, which was motivated by the DYNAMO field campaign 
(Zhang & Yoneyama, 2017). Thus, what if we consider the optimal initiation over the CP? Will the prediction 
skill of MJO initiation and/or propagation be extended, considering that the ISOw signal can be tracked earlier 
over the CP? Wei et al. (2023) found that by helping MJO convective initiation over the IO, the ISOw precursor 
signals from the CP can increase the predictability of primary MJO events by 1 week, compared with other 
primary MJO initiations without the ISOw preconditioning. Addressing these questions is of great and practical 
importance for the MJO target observation and ensemble prediction.

4.2. Concluding Remarks

A growing number of studies have recently discovered diversity in MJO propagation, which has advanced our 
understanding of the fundamental dynamics of MJO, a mysterious phenomenon prevailing in the tropics and 
greatly influencing global weather and climate (Hand,  2015). However, a comprehensive explanation of the 
origin of different MJO propagations still needs to be discovered. Herein, we observed that the diverse MJO 
propagation patterns can be physically reproduced by examining the amplitude variation in the WP dry signals 
of ISOw triggered from the CP. More specifically, when ISOe does not bring in strong LSC over the WP, a 
westward-propagating dry signal of ISOw will facilitate the formation of Jumping MJO mode. Moreover, when 
the ISOw dry signal is weak, a standing MJO mode may appear. In contrast, when the dryness from ISOe is strong 
over the WP, the dry ISOw signal will mainly affect the MJO propagation speed, which generally increases with 
the strengthening of ISOw. Therefore, the variations of westward-propagating intraseasonal disturbances from 
the CP may help shape diverse MJO propagations (WCL19) under cooperation with the eastward-propagating 
intraseasonal disturbances from the IO. By considering the modulation effects of ENSO, we added an extended 
discussion of the importance of ISOw-ISOe interactions in understanding MJO propagation in Text S2 in 
Supporting Information S1.

Data Availability Statement
The OLR data was from the NOAA/OAR/ESRL PSD, Boulder, Colorado (Liebmann & Smith, 1996), available 
at https://psl.noaa.gov/thredds/catalog/Datasets/interp_OLR/catalog.html. The ERA5 reanalysis data (Hersbach 
et al., 2020) was available at https://doi.org/10.24381/cds.bd0915c6. The NOAA ERSSTv5 (Huang et al., 2017) 
was available at https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html.
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