
The Different Relationships between the ENSO Spring Persistence Barrier and

Predictability Barrier

YISHUAI JIN,a,b ZHENGYU LIU,c AND WANSUO DUANd

a Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
b Open studio for Ocean-Climate-IsotopeModeling, Pilot National Laboratory for Marine Science and Technology (Qingdao),

Qingdao, China
c Atmospheric Science Program, Department of Geography, The Ohio State University, Columbus, Ohio

d State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

(Manuscript received 7 January 2021, in final form 23 May 2022)

ABSTRACT: In this paper, we investigate the relationship between the El Niño–Southern Oscillation (ENSO) spring
persistence barrier (PB) and predictability barrier (PD) and apply it to explain the interdecadal modulation of ENSO pre-
diction skill using the anomaly correlation coefficient (ACC). Previous studies showed that a longer persistence (i.e., auto-
correlation) tends to produce a higher prediction skill. Using the recharge oscillator model of ENSO, both analytical and
numerical solutions suggest that the predictability (i.e., ACC) is related to the persistence of sea surface temperature (SST)
and cross correlation between SST and subsurface ocean heat content in the tropical Pacific. In particular, a larger damping
rate in SST anomalies will lead to a lower persistence and ACC and a stronger PD. However, a shortened ENSO period,
which controls the cross correlation, will lead to a lower persistence but a higher ACC associated with a weaker PD.
Finally, we apply our solutions to observations and suggest that a higher ACC associated with a weaker PD after 1960
is caused by the shortened ENSO period.
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1. Introduction

The El Niño–Southern Oscillation (ENSO) phenomenon is
the most prominent interannual signal of the climate system
(McPhaden et al. 2006; Cai et al. 2018), influencing patterns
of weather variability worldwide. As such, its predictability
and prediction have received considerable attention with one
major problem being the boreal spring persistence barrier (PB)
and the associated spring predictability barrier (PD). Spring
PB is derived from the time series of anomalous tropical Pacific
sea surface temperature (SST) (e.g., Niño-3.4; 58S–58N,
1708–1208W; McPhaden 2003; Ren et al. 2016), sea level pres-
sure (Troup 1965; Webster and Yang 1992), and rainfall
(Walker and Bliss 1932; Wright 1979). Regardless of the initial
month, a damped persistence forecast loses its predictability
most rapidly in the following April–June, forming the spring
PB of ENSO (Jin et al. 2020). Spring PD, on the other hand,
indicates the dramatic drop of prediction skill in the spring in
the numerical ENSO predictions. Overall, the spring PB indi-
cates a drop of persistence (indicated by the lagged autocor-
relation) in the spring while spring PD shows a significant
loss of prediction skill (calculated by the ensemble forecasts
against the observation of ENSO) in the spring. They two are
related but not identical (Jin et al. 2021).

Many studies have shown that a longer persistence of SST
anomaly, as indicated by autocorrelation, in the observation
tends to have a higher prediction skill, such that a stronger PB
tends to lead to a stronger PD (Jin et al. 2021). By using a sim-
ple statistical model and a fully coupled general circulation
model, Jin et al. (2018) found a persistence–skill rule: a larger
SST persistence tends to produce a higher forecast skill. Wang
et al. (2021) demonstrated that a stronger PB is accompanied
with a stronger PD through the Lorenz ‘63 model (Lorenz
1963). This opinion can also be pointed out in Fig. 1a using the
simple recharge oscillator model (ROM). When persistence is
higher (black dashed line vs red dashed line) because of the
weaker damping system, the anomaly correlation coefficient
(ACC; hereafter we use ACC to represent predictability) is
larger (black solid line vs red solid line; more details about the
experiments can be seen in section 3).

As ENSO is not a purely damping system, its predictability
comes both from SST persistence and elsewhere (e.g., sub-
surface or wind stress in the equational Pacific; Meinen and
McPhaden 2000; Anderson 2007). For instance, in the re-
charge oscillator framework of ENSO, the slow evolution of
upper-ocean heat content (OHC) in the tropical Pacific can
be a very important factor for ENSO forecasting (McPhaden
2003; Jin et al. 2021). When ENSO persistence is lower, the sub-
surface OHC can be an indicator such that the predictability of
ENSO may be higher. This point can be further identified in
Fig. 1b. When the ENSO period is shorter, persistence of the
SST is lower (red dashed line vs black dashed line) while ACC
is higher (red solid line vs black solid line). This can be under-
stood physically. As ENSO is a well-known oscillation, the
lagged autocorrelation of ENSO SST exhibits a clear cycle,
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namely a drop of lagged autocorrelation at the first half
cycle and an increase at the second half cycle. When the
ENSO period is shortened, the drop of lagged autocorrela-
tion of ENSO SST can be more intense at the first half cycle
(i.e., less persistence; Jin and Liu 2021). On the other hand,
this shortened period is caused by a stronger thermocline
feedback (Jin 1997). A stronger signal from the subsurface
can provide an additional information for prediction as the
subsurface of tropical Pacific is a predictor for ENSO events
(McPhaden 2003). Therefore, the predictability of ENSO is
not actually low.

To our knowledge, the relationship between ENSO spring
PB and PD is still unclear. As mentioned above, a lower per-
sistence can be accompanied with a higher ENSO predictabil-
ity, which also shows that a stronger spring PB may not be
able to indicate a stronger spring PD. As such, in this paper,
we want to answer the following two questions: 1) What is the
relationship between persistence and prediction skill theo-
retically and numerically in ENSO (more specifically, the re-
lationship between ENSO spring PB and PD)? 2) Can this
relationship be applied to explain the interdecadal modula-
tion of ENSO predictability in the real world?

In this paper, we attempt to understand the relationship be-
tween spring PB and PD in the context of the recharge oscilla-
tor and apply it to explain the interdecadal modulation of
ENSO prediction skill in the real world. Both analytical and
numerical solutions of ACC are derived in the framework of
the recharge oscillator. These solutions show that both persis-
tence and ENSO period contribute to ACC. In particular, a
stronger damping causes a lower persistence and ACC, lead-
ing to a stronger spring PB and PD, while a shortened ENSO

period leads to a lower persistence and a higher ACC, which
corresponds to a stronger spring PB and a weaker spring PD.
Finally, we show that a smaller ACC associated with a stron-
ger spring PD before 1960 is caused by the lengthened ENSO
period.

The paper is arranged as follows. The recharge oscillator
model, the second-order autoregression model, the verifica-
tion measures of ACC, and the reanalysis data we use are pre-
sented in section 2. In section 3, we explore the relationship
between persistence and predictability both analytically and
numerically. Further study about spring PB and PD is identi-
fied in section 4. In section 5, we interpret the interdecadal
modulation of ENSO predictability in the light of these
modeled relationships. A summary and discussion are given
in section 6.

2. Model, method, and data

a. The recharge oscillator model

Our ENSO model is based upon the recharge oscillator
framework of ENSO (Jin 1997), which describes the relation-
ship between variations in OHC and SST anomalies (Meinen
and McPhaden 2000). This recharge oscillator model captures
the dynamic relationship between the equatorial Pacific ther-
mocline (or OHC) anomaly (H) and eastern equatorial Pacific
SST anomaly (T) and can be written as follows (Burgers et al.
2005):

dT
dt

� 2kT 1 v0H 1 j, (2.1)

dH
dt

� 2v0T: (2.2)

Here, k is the damping rate (or 2k the growth rate) of the
SST anomaly, the ENSO linear frequency is v0, j is the white
noise that represents the atmosphere forcing, and s2

j is the vari-
ance of this white noise. All the numerical results are from the
last 500 years of a 1000-yr run. The numerical model Eqs. (2.1)
and (2.2) are solved in the time step of 4 h.

We also perform ensemble forecasts in the ROM to com-
pare the persistence with the prediction skill in the perfect
model framework. We use each control run (it is used to cal-
culate persistence) as the “truth.” For each of the forecast
ensemble members (20 members), a small random normal
perturbation (zero mean and 0.1 times the standard devia-
tion of T) is added to variable T as the initial condition
(Wang et al. 2021). We do ensemble forecasts in every
month of 500 years with 12 months forecast length to get
sufficient forecast data.

To derive the prediction skill of T in the ROM, two rules can
be derived according to Eqs. (2.1) and (2.2). First, the variance of
T is equal to the variance ofH; that is, 〈T(t), T(t)〉 = 〈H(t),H(t)〉.
Second, the covariance of T andH is zero; that is, 〈T(t),H(t)〉 = 0.
Note here that angle brackets denote the variance over all the
months or years in verifying time series. Both rules are
identified in the numerical solutions of the ROM (not
shown).

FIG. 1. The persistence (calculated by the lagged autocorrelation;
dashed lines; hereafter we use “Per” to represent persistence in the
legend) and ACC (solid lines) under different damping rates (k)
and ENSO periods (v0) through the numerical solution of recharge
oscillator model [Eqs. (2.1) and (2.2)]. Results are shown (a) when
k decreases from 0.2 month21 (red) to 0.1 month21 (black) and the
ENSO period is 4 years, and (b) when ENSO period ranges from
4 years (black) to 2.5 years (red) and k = 0.1 month21.
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b. The second-order autoregression model

The autoregression model has been used to study ENSO
extensively (Torrence and Webster 1998; Ren et al. 2016; Liu
et al. 2019). Note here that ROM needs both subsurface and
surface information of tropical Pacific to perform ENSO ret-
rospective forecasts [Eqs. (2.1) and (2.2)]. However, the sub-
surface dataset is not reliable before 1980. In this regard, we
use the second-order autoregression (AR2) model to perform
ENSO retrospective forecasts from 1910 to 2010 as ROM is
one special form of an AR2 model. The relationship between
these two models can be derived analytically (see the appendix
for more details). The AR2 model that incorporates a seasonal
cycle is as follows:

Xi11 � amXi 1 bmXi21 1 Ni11, (2.3)

where X is the temperature anomaly, and subscript i is the
time measured in months. The growth rates am and bm are
model parameters, which can be obtained by regressing Xi11

onto Xi, Xi21 respectively, where the subscript m is the sea-
sonal cycle in months; Ni11 is random noise. When bm = 0,
the AR2 model is reduced to a first-order autoregression
(AR1) model. The way we perform forecasts is same as what
we do using ROM, except that we use observation as the
“truth.”

c. Verification measure

In this study the forecast skill is verified using the ACC.
ACC is defined as the temporal correlation coefficient be-
tween the ensemble mean forecast and the corresponding
“truth”:

ACC � 〈Fi,Oi〉��������������������〈Fi,Fi〉〈Oi,Oi〉
√ , (2.4)

where Fi is the ensemble-mean forecast anomaly for forecast
month or year i, and Oi is the verifying observed anomaly.
The angle brackets denote the variance over all the months or
years in verifying time series.

d. Data

Here we use the dataset from January 1910 to December 2010.
The Hadley Centre Global Sea Ice and Sea Surface Temperature
(HadISST; 183 18) observational SST dataset version 1.l (https://
climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11) to
define general features of the Niño-3.4 SST anomaly for ENSO.
Monthly Niño-3.4 index anomalies are computed relative to the
climatology of the corresponding running 20-yr window (Deng
and Tang 2009), which could exclude the effects of low-frequency
variations.

3. The relationship between persistence and prediction
skill in ROM: Analytically and numerically

In this section, the ACC of T is solved both analytically
and numerically in the finite difference of ROM [Eqs. (2.1)
and (2.2)]. Accordingly, the relationship between persistence and
predictability can be understood. For convenience of illustration,

we will derive the relation in the finite difference form of ROM,
instead of the continuous form (e.g., Kleeman 2002). Further-
more, the seasonal cycle is not included in the analytical
derivation.

a. The analytical solution of ACC in the ROM

The finite difference of Eqs. (2.1) and (2.2) can be written
as follows:

Ti11 � aTi 1 bHi 1 j, (3.1)

Hi11 � Hi 2 bTi, (3.2)

where a � 12 k/Dt, b � v0Dt, and Dt is the time step.
First, we should understand what a and b mean. According

to Eq. (3.1), the two equations can be written as

〈Ti11,Ti〉 � a〈Ti,Ti〉 1 b〈Hi,Ti〉 and (3.3)

〈Ti11,Hi〉 � a〈Ti,Hi〉 1 b〈Hi,Hi〉: (3.4)

As mentioned above in section 2a, 〈Ti, Ti〉 = 〈Hi, Hi〉 and
〈Ti,Hi〉 = 0; according to Eq. (3.3), a can be derived as

a � 〈Ti11,Ti〉
〈Ti,Ti〉

� 〈Ti11,Ti〉�������������������������〈Ti,Ti〉〈Ti11,Ti11〉
√ : (3.5)

It represents the lagged autocorrelation of T (i.e., persistence
of T). Similarly, according to Eq. (3.4), b can be derived as

b � 〈Ti11,Hi〉
〈Hi,Hi〉

� 〈Ti11,Hi〉��������������������������〈Hi,Hi〉〈Ti11,Ti11〉
√ : (3.6)

It represents the lagged cross correlation between H and T
(H leads T). Note here b is also the parameter of ENSO lin-
ear periodicity; that is, a larger b represents a shortened
ENSO period and a higher cross correlation at the early
lead times (e.g., one time step).

We then link a and b with the ACC in the framework of
perfect model forecasting. According to Eq. (3.1), when the
ensemble number is infinite [as in Jin et al. (2018)], the en-
semble mean of the forecast at the next time step (T

f
i11) can

be written as

T
f
i11 � aTi 1 bHi: (3.7)

As such, the ACC of the forecast at the next step can be de-
rived as

ACCi11 �
〈Tf

i11,Ti11〉�������������������������������
〈Tf

i11,T
f
i11〉〈Ti11,Ti11〉

√

� 〈aTi 1 bHi, aTi 1 bHi 1 j〉�����������������������������������������������〈aTi 1 bHi, aTi 1 bHi〉〈Ti11,Ti11〉
√ �

�����������
a2 1 b2

√
:

(3.8)

According to Eq. (3.8), the prediction skill of T is related to
the persistence of T and the cross correlation betweenH and T.
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When b tends to be zero, the recharge oscillator model is re-
duced to the AR1 model, and the prediction skill is equal to the
persistence of T, which is the persistence–skill rule identified in
Jin et al. (2018). According to Eq. (3.8), a higher persistence
(i.e., a larger a) can be related to a higher ACC when b is cons-
tant. However, when a lower persistence occurs (i.e., a is small),
the prediction skill may not be lower if b is larger (a larger cross
correlation betweenH and T).

b. The numerical solution of ACC in the ROM

In this subsection, we will show the relationship between
persistence and ACC numerically as a confirmation of the an-
alytical solution of Eq. (3.8).

The positive relationship between persistence and ACC
occurs when the damping rate [k in Eq. (2.1)] modulates.
When k = 0.1 month21, the persistence decays from 1 to
0.4 after about 6 months (black dashed line in Fig. 1a). The
ACC of this case (more details about forecasting can be
checked in section 2a) is still about 0.6 when forecast
length is 10 months (black solid line in Fig. 1a). The differ-
ence between persistence and ACC is caused by the infor-
mation provided by the subsurface. When the damping rate
is increased to 0.2 month21 (the system is more damping), the
persistence decays to 0.4 after 4 months (red dashed line in
Fig. 1a), which is shorter than the previous case. This is
straightforward to understand as the system damps more
quickly. Meanwhile, ACC decays to about 0.4 after 10 months
(red solid line in Fig. 1a), which is also lower than the previous
case. This is consistent with the persistence–skill rule (Jin et al.
2018); when the persistence of “truth” is lower, the prediction
skill tends to be smaller. This relationship is also indicated by
Eq. (3.8).

This positive relationship between persistence and ACC
turns out to be negative when the ENSO period changes [v0 in
Eq. (2.1), which can be employed to control the cross correla-
tion between H and T]. When ENSO’s linear period is 4 years
[v0 = (p/24) month21], the persistence is 0.4 at 6 months lead
time (black dashed line in Fig. 1b). The ACC of this case at the
same lead time is 0.6, which is higher than persistence (black
solid vs dashed line in Fig. 1b). For the case when the ENSO
period is 2.5 years [v0 = (p/24) month21], the persistence is
lower than the case of 4 years (red dashed line vs black dashed
line in Fig. 1b), on the other hand, ACC is about 0.7 when fore-
cast length is 6 months, which is higher. A lower persistence
is accompanied with a higher ACC, which is also suggested in
Eq. (3.8). Note here that when damping rate increases from
0.1 to 0.15 month21, this effect of prediction will be cancelled
out roughly when ENSO period decreases from 4 to 3 years.

The different relationships between persistence and ACC
are further identified in Fig. 2. For a forecast length of
5 months, when the damping rate linearly decreases from
0.25 to 0.05 month21, the persistence increases and so does
the ACC. The red line in Fig. 2a indicates this positive rela-
tionship between persistence and ACC. However, when
ENSO’s period is shortened from 5 to 2.5 years, the persis-
tence is decreased while ACC is increased (blue line in Fig. 2a).
The blue line shows a distinct negative relationship between
persistence and ACC, which is opposite to the damping rate
cases. The situation is similar when forecast month is length-
ened (Figs. 2b,c).

In this section, we demonstrate that the predictability
comes from the persistence and the cross correlation with the
subsurface in the framework of the recharge oscillator. We
demonstrate analytically and numerically that although the

FIG. 2. The persistence and ACC relationship for different damping rates and ENSO periods. (a) The relationship
at 5 months’ forecast length. The red arrow indicates that the damping rate ranges from 0.25 to 0.05 month21 (red circle).
The difference is calculated relative to the case when the damping rate is 0.15 month21 and the ENSO period is 4 years.
The blue symbols are same as the red ones, except that the blue arrow indicates that the ENSO period ranges from 5 to
2.5 years. (b),(c) As in (a), but for forecast lengths of 7 and 9 months, respectively.
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persistence is lower, the final prediction skill may be higher
because of the subsurface (i.e., OHC). Particularly, in damp-
ing rate cases, a stronger PB is identical to a stronger PD.
However, when the ENSO period varies, a stronger PB is ac-
companied with a weaker PD. As such, a stronger PB may not
indicate a stronger PD, which is further discussed in section 4.

4. The relationship between spring PB and PD in the
seasonally varying ROM

We first discuss the relationship between spring PB and PD
when the damping rate changes. Note that seasonal cycle of
the damping rate (k) is the cause of spring PB (Levine and

McPhaden 2015). Here we set k (t) = k0 [1 1 A sin(vAt)],
with vA = (2p/12) month21 as the annual frequency and
A = 1.7 month21 (Jin et al. 2021). Previous studies have shown
that annual mean damping rate (i.e., k0) plays an important
role in spring PB strength (Liu et al. 2019; Jin et al. 2020). As
such, we vary k0 to see the relationship between spring PB
and PD. When k0 = 0.1 month21, a distinct spring PB can be
seen in Fig. 3a. Meanwhile, the ACCmap shows a clear spring
PD (Fig. 3b). The major difference between the ACC map
and the persistence map is the higher prediction skill at the
longer lead time for ACC (Fig. 3c). A strong cross-correlation
between the surface and subsurface at longer lead times may
help improve the prediction skill (Jin et al. 2021), especially

FIG. 3. The persistence and ACC map relationship for different damping rates. ENSO period is 4 years (constant). (a),(b) The persis-
tence map and ACC map, respectively, when k0 = 0.1 month21. (c) The difference (b) 2 (a). (d)–(f) As in (a)–(c), respectively, except
when k0 = 0.2 month21. (g) The difference (a)2 (d). (h) The difference (b)2 (e).
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when the initial month is in spring. The additional informa-
tion from the subsurface helps across the spring PD, which is
consistent with McPhaden (2003). When we further increase
k0 to 0.2 month21 such that the system is more damping, a
stronger spring PB associated with a stronger spring PD
(Figs. 3d,e) can be found. A similar role of the subsurface in
ENSO prediction can be seen in Fig. 3f, which is consistent
with Fig. 3c. The role of k0 in ENSO spring PB and PD can be
further checked in Figs. 3g and 3h. When we increase k0, a
stronger spring PB (Fig. 3g) and spring PD (Fig. 3h) are
found, which suggests a positive relationship: a stronger
spring PB is accompanied with a stronger spring PD. This is
consistent with Fig. 1a (or red line in Fig. 2).

This positive relationship between spring PB and PD turns
out to be negative when the ENSO period varies. When
ENSO’s linear period is 2.5 years [v0 = (p/24) month21], a
very strong spring PB and low persistence (e.g., at about
8 months’ lead time) can be found in Fig. 4a. However, a
weak spring PD is associated with higher prediction skill at
the same lead time (Fig. 4b). The major difference between
the ACC and persistence maps is in the large lead time
(Fig. 4c). The subsurface information strongly increases
ACC because of this short ENSO period. In particular, a
strong cross-correlation between the surface and subsurface
of the tropical Pacific can help increase ACC (e.g., 6 months’
lead time), which is controlled by the ENSO period. For

FIG. 4. The persistence and ACC map relationship for different ENSO periods; k0 = 0.15 month21 (constant). (a),(b) The persistence
map and ACC map, respectively, when the ENSO period is 2.5 years. (c) The difference (b) 2 (a). (d)–(f) As in (a)–(c), respectively, but
when the ENSO period is 4 years. (g) The difference (a)2 (d). (h) The difference (b)2 (e).
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v0 = (p/24) month21 (when the ENSO period is 4 years), a
much weaker spring PB (Fig. 4d) occurs compared with a
shortened ENSO period. On the other hand, the ACC map
(Fig. 4e) indicates that a relatively stronger PD compared with
Fig. 4b. This point can also be identified in Figs. 4g and 4h.
When the ENSO period decreases from 4 to 2.5 years, persis-
tence map shows a clearly stronger PB (Fig. 4g) while the ACC
map indicates a weaker spring PD (Fig. 4h). This can be under-
stood using Eq. (3.8). Although the persistence is lower, the in-
formation from the subsurface also supports a larger ACC.
Note here that in addition to the strength of the PB and PD,
Fig. 4 also suggests that PB is shifted a month earlier for the
2.5-yr period compared to the 4-yr period. By using the analyti-
cal solution of ROM, Jin and Liu (2021) [their Eqs. (3.11) and
(3.12)] demonstrates that a shortened ENSO period is accom-
panied with an earlier timing of PB.

The different relationships between spring PB and PD can
be further identified in Fig. 5. At the first month lead time, a
weaker PB is associated with a weaker PD, which can be
found in the damping cases (k0 is decreased from 0.3 to
0.1 month21) when the initial season is in the spring (red
circles in Fig. 5a). When lead time increases to 4 or 7 months,
this positive relationship can still be identified (red circles in
Figs. 5b,c). This is consistent with Fig. 3 when we vary damp-
ing rates. Meanwhile, at 4 months’ lead time, a smaller PD
can be found for the period cases (the ENSO period de-
creases from 5 to 2.5 years) when the initial month is in the
spring. When lead time increases to 4 or 7 months, a stronger
PB accompanied with a smaller PD can be found (blue circles
in Fig. 5c), which is consistent with Fig. 4 when we vary
ENSO periods. Here for damping cases, we use 4 years as the

baseline because generally the ENSO period is 4 years. In
ENSO period cases, we use 5 years as the baseline such that
the difference of ACC or persistence can be in the same direc-
tion when we range the ENSO period from 5 to 2.5 years.

In this section, we show that a stronger PB may not always
correspond to a stronger PD. The information from the subsur-
face can also lead to a higher predictability such that a weaker
PD occurs when the persistence map shows a stronger PB.

5. The explanation of interdecadal modulation of ENSO
prediction skill in the observations

In this section, we will explain the interdecadal modulation
of ENSO prediction skill in the observations in light of our
analytical and numerical solutions in the ROM.

ENSO prediction skill exhibits interdecadal modulation.
Forecast skill is evaluated retrospectively by using Eq. (2.3).
Retrospective forecasts start at every month from January 1910
to January 2010 (more details can be seen in section 2) with a
20-yr moving window. The ACC exhibits a distinct interdeca-
dal modulation (red line in Fig. 6a), with one significant fea-
ture being the higher ACC after about 1960, which is similar to
Weisheimer et al. (2020, their Fig. 4c) or Weisheimer et al.
(2022) and to Liu et al. (2021; blue or red line in their Fig. 5)
through the coupled general circulation models forecasting.
This feature also exists when the forecast length is 8 months
(red line in Fig. 6b). Here it exhibits some differences in ACC
at different forecast lead times that may be caused by the role
of the subsurface. The role of the subsurface in forecasting
is different at different lead times (Jin et al. 2021). The large
difference between persistence and predictability occurs after

FIG. 5. As in Fig. 2, but the initial season is spring (averaged from March to May). (a) The relationship at 1 month
forecast length. The red arrow indicates that damping rate ranges from 0.3 to 0.1 month21 (red circles). The difference
is calculated relative to the case when damping rate is 0.3 month21 and ENSO period is 4 years. The blue symbols are
the same as the red ones, except that the ENSO period ranges from 5 to 2.5 years and the difference is calculated rela-
tive to the case when the damping rate is 0.15 month21 and ENSO period is 5 years. (b),(c) As in (a), but for forecast
lengths of 4 and 7 months, respectively.
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1960, which may be caused by the interdecadal modulation
of the system. According to our analytical solution of ACC
[Eq. (3.8)], this difference is caused by the lead relationship
between the subsurface and surface in the tropical Pacific.
Previous studies have shown that this lead relationship is
related to the ENSO period (Jin et al. 2021). A shortened
ENSO period will lead to a larger lead relationship and a
higher ACC at the lead times. As such, the ENSO period
may play a role in the difference between persistence and
ACC. Figure 6c demonstrates the ENSO period modulation
during 1910–2010. It is suggested that the ENSO period is
shortened after 1960, which is consistent with the timing of
a higher ACC. Accordingly, we suggest that a shortened
ENSO period is a key cause for a higher ENSO ACC after
1960. Note here that a stronger thermocline feedback may

cause a shortened ENSO period (Jin 1997), and the rela-
tionship between the multidecadal variation of ENSO pre-
diction skill and thermocline feedback requires further
study. It should be pointed out that a lower prediction skill
around 1920 is also accompanied by the shortened period.
It may be related to the stronger damping of the system
(green line in Fig. 6d; Deng and Tang 2009).

We also demonstrate that including subsurface information
may lead to a weaker spring PD (McPhaden 2003). A strong
spring PB occurs during the year 1980–2010 (Fig. 7a). Through
the retrospective forecasts using AR2 model, a spring PD is
also found (Fig. 7b). This explains that a spring PB is always
associated with a PD. However, a higher ACC is found at the
large lead time (about 5–10 months) when the initial month is
in the spring, which suggests the role of the subsurface. This

FIG. 6. The persistence (black) and ACC (red) for ENSO from 1910 to 2010 with 20-yr moving window at (a) 4 and
(b) 8 months’ forecast length, respectively. (c) ENSO periodicity is calculated as the ratio between ENSO SST spec-
tral energy in the 3–8-yr band and that in the 1–3-yr band, as in Lu et al. (2018). (d) The interdecadal variation of
AR2 model parameters [a: green line; b: yellow line in Eq. (2.3)] fitted by observations.
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point can be further identified in Fig. 7c. It is demonstrated
that the main role of the subsurface is in the spring, which
weakens the PD. As such, a strong PB may not correspond to
a strong PD as the existence of the subsurface ocean heat
content.

The role of the subsurface in significantly reducing spring
PD occurs after 1960, which is related to the interdecadal
modulation of ENSO period. Before 1960, the difference
between persistence and ACC is small for different initial
seasons (black line vs red line, and blue line vs brown line in
Fig. 8a) at 4 months’ lead time. After 1960, although the per-
sistence and ACC also exhibit small differences when the ini-
tial season is autumn, they show a distinct difference when
the initial season is spring. The situation is similar when lead
time is lengthened (Fig. 8b). Here we suggest that it is caused
by the interdecadal modulation of the ENSO period. When
the ENSO period is longer (before 1960; Fig. 6c), the cross
correlation is small at the short lead time (Jin et al. 2021). As
such, ACC is close to the persistence, which is according to
our analytical solution [Eq. (3.8)]. When the ENSO period is
shortened (after 1960), the cross correlation is large and ACC
is higher than persistence. As the subsurface information plays

a main role in the spring, which is shown in Fig. 7c, the large dif-
ference between ACC and persistence can be seen when the
initial season is spring (red line vs black line in Figs. 8a,b).

6. Summary and discussion

This paper attempts to understand the relationship between
ENSO’s spring persistence barrier and predictability barrier
both analytically and numerically and apply it to explain the
interdecadal modulation of ENSO prediction skill. The rela-
tionship between ACC and persistence is obtained in the
framework of the recharge oscillator. According to the analyt-
ical solution of SST ACC, it is suggested that ACC is the sum
of persistence and cross correlation between SST and the sub-
surface in the tropical Pacific. Unlike the persistence–skill
rule identified by Jin et al. (2018) using an AR1 model, which
suggests that large persistence will cause a high ACC, this the-
ory indicates the role of the subsurface. Both analytical and
numerical solution demonstrate that a small growth rate (or a
large damping rate) will lead to a low persistence and small
predictability; on the other hand, a shortened ENSO period
will cause a small persistence and a large cross correlation,

FIG. 7. The (a) persistence map and (b) ACC map using 1980–2010 data. (c) The difference (b)2 (a).
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and thus the final predictability is not low. Accordingly, persis-
tence is not identical to predictability and the spring persistence
barrier may also not be identical to the spring predictability
barrier. Further numerical solutions show that when the growth
rate is smaller, a stronger persistence barrier associated with a
stronger predictability barrier is found. When the ENSO pe-
riod is shortened, a stronger persistence barrier accompanied
with a weaker predictability barrier is identified. We then apply
our theory to explain the interdecadal modulation of ENSO
prediction skill. A larger difference between persistence and
ACC is found after 1960, especially when the initial month is
spring. It is suggested that this large difference may be related
to the shortened ENSO period after 1960. A shortened ENSO
period can lead to a stronger cross-correlation between the
surface and subsurface of the tropical Pacific (Jin et al.
2021), which can help increase ACC at different lead times
(e.g., 6 months).

Our solution may give an example to explain the interdeca-
dal modulation of ENSO prediction skill with the climate sys-
tem. It should be noted here other factors like data assimilation
or the quality of observation data are of great importance in
ENSO prediction. Here we give another view using the modula-
tion of climate system in the tropical Pacific. It is consistent with
Weisheimer et al. (2020), who also found that the interdecadal
modulation of ENSO prediction skill may related to intrinsic
changes of the coupled system. Our solutions suggest the
role of ENSO period, but what causes the interdecadal mod-
ulation of ENSO period after 1960 still needs further study.

ENSO variability (or amplitude) can also play an important
role in ENSO prediction. Generally, a larger SST intensity (or
ENSO amplitude) may correspond to a higher prediction skill
(e.g., Jin et al. 2008; see their Fig. 11c). A stronger growth of
the ENSO signal can lead to a larger ENSO amplitude and,

accordingly, higher prediction skill. In fact, this can be identi-
fied through the analytical solutions of the ROM [Eqs. (2.1)
and (2.2)]. By using the perturbation method (Jin et al. 2021;
their appendix B), the variance of T (i.e., ENSO variability)
can be derived analytically (not shown). It is found that the
variance of T is only related to damping rate and forcing vari-
ance (or noise variance) instead of ENSO linear frequency.
When the damping rate is smaller (i.e., the growth rate is
larger), ENSO variability is larger and the prediction skill is
higher according to the analytical/numerical solutions in this
paper. This may explain the relationship between ENSO vari-
ability and prediction skill. On the other hand, ENSO linear
frequency has no relationship with variability. Note here that
white noise forcing plays a less important role in ENSO pre-
diction [Eq. (3.8); it can also be identified in Liu et al. (2019)].
Therefore, the discussion of the relationship between noise
forcing and ENSO amplitude is beyond the scope of this paper.

Note that our result of the relationship between persistence
barrier and predictability barrier in a simple model is similar
to previous studies using the fully coupled models (Hou et al.
2019). Duan and Hu (2015) suggested that a predictability bar-
rier occurs when the ENSO-associated SST anomalies yield a
persistence barrier. In other words, only a specific type of per-
sistence barrier can lead to a predictability barrier. Here we
suggest that this relationship can be influenced by the informa-
tion from the subsurface of the tropical Pacific.

Our solution does not indicate that the persistence–skill rule
pointed out by Jin et al. (2018) is wrong. The persistence–skill
rule is derived in the AR1 model, which represents a system
that is purely damping (i.e., no periodicity). Many areas like
the North Pacific exhibit this process (Liu et al. 2019). Our so-
lution here is obtained as ENSO has its own frequency and
may give some implications for other periodic climate systems

FIG. 8. (a) The persistence and ACC for ENSO from 1910 to 2010 with 20-yr moving window at 4 months; the black
and red lines are persistence and ACC respectively when the initial month is in the spring; the brown and blue lines
are same as the black and red lines, respectively, except the initial season is in the autumn. (b) As in (a), but for the
forecast length is 8 months.
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(e.g., Pacific decadal oscillation). When the ENSO period
tends to be infinitely long, our solutions are reduced to the
persistence–skill rule.

Determining what causes lower ENSO prediction skill after
the twenty-first century may require deep thought. According
to Jin et al. (2021), the shortened ENSO period leads to a
stronger spring persistence barrier and thus may cause a lower
prediction skill after the twenty-first century through the
ROM. However, our solutions here find that a shortened
ENSO period may lead to a higher prediction skill at the early
lead times (e.g., less than 12 months) and a weaker spring pre-
dictability barrier. Accordingly, the stronger damping system
of tropical Pacific after twenty-first century may be a reason
for lower ENSO prediction skill (Jin et al. 2020).

We should also bear in mind that other climate systems
may also affect the predictability and predictability barrier of
ENSO. Our solution is derived in the recharge oscillator
framework. Many other factors may also contribute to ENSO
development and thus its predictability. For example, the
northern meridional mode may be an important role in trig-
gering ENSO in the spring and may reduce the spring predict-
ability barrier (Chang et al. 2007). How to consider these effects
still needs further work.
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APPENDIX

The Relationship Between the AR2 Model and
Recharge Oscillator

According to the finite difference of Eqs. (3.1) and (3.2),
the recharge oscillator can be written as

Ti11 � aTi 1 bHi 1 j, (A.1)

Hi11 � Hi 2 bTi: (A.2)

Taking Eq. (A.2) to Eq. (A.1), we can obtain

Ti11 � aTi 1 b(Hi21 2 bTi21) 1 j1: (A.3)

Meanwhile, Ti can be written as

Ti � aTi21 1 bHi21 1 j2: (A.4)

To eliminate H, taking Eq. (A.4) to Eq. (A.3),

Ti11 � aTi 1 bTi21 1 z, (A.5)

where a = (1 1 a), b = 2(a 1 b2), and z is the noise term.
Equation (A.5) suggests that the recharge oscillator is one
special form of AR2 model.
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