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Abstract

This paper investigates the optimal observational array for improving the El Nifio-Southern Oscillation (ENSO) prediction
by exploring sensitive areas for target observations of two types of El Nifio events in the whole Pacific. A target observa-
tion method based on the particle filter and pre-industrial control runs from six coupled model outputs in Coupled Model
Intercomparison Project Phase 5 (CMIP5) experiments are used to quantify the relative importance of the initial accuracy of
sea surface temperature (SST) in different Pacific areas. The initial accuracy of the tropical Pacific, subtropical Pacific, and
extratropical Pacific can all exert influences on both types of El Nifio predictions. The relative importance of different areas
changes along with different lead times of predictions. Tropical Pacific observations are crucial for decreasing the root mean
square error of predictions of all lead times. Subtropical and extratropical observations play an important role in decreasing
the prediction uncertainty, especially when the prediction is made before and throughout the boreal spring. To consider differ-
ent El Nifio types and different start months for predictions, a quantitative frequency method based on frequency distribution
is applied to determine the optimal observations of ENSO predictions. The final optimal observational array contains 31 grid
points, including 21 grid points in the equatorial Pacific and 10 grid points in the North Pacific, suggesting the importance
of the initial SST conditions for ENSO predictions not only in the tropical Pacific but also in the area outside the tropics.
Furthermore, the predictions made by assimilating SST in sensitive areas have better prediction skills in the verification
experiment, which can indicate the validity of the optimal observational array designed in this study.
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1 Introduction

The EI Nifio-Southern Oscillation (ENSO) is the dominant
mode of interannual climate variability on Earth, alternat-
ing between warm (El Nifio) and cold (La Nifia) conditions,
which are centered in the central and eastern equatorial
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Pacific (Bjerknes 1969; Philander 1983; Webster and Yang
1992). It has long been a focus of exploration because of
its profound influences on the tropical climate and even the
global climate (Alexander et al. 2002; Andrews et al. 2004;
Hoell et al. 2018; Wu et al. 2018; Zhang et al. 2016a). In
theory, the self-sustaining nature of the ENSO is conducive
to its potential predictability up to two years in advance (Liu
2021; Tang et al. 2018). However, most current real-time
ENSO predictions, made by the existing dynamical and sta-
tistical models, can only provide useful skills two or three
seasons in advance (Barnston et al. 2012; Jin et al. 2008;
Liu 2021). More interestingly, even though the models are
constantly improving, the El Nifio prediction skill during
2002-2011 is the lowest for the 1981-2010 period (Barn-
ston et al. 2012). In addition, most models substantially
overestimated the amplitude of warming for the 2014/2015
event when the prediction was initialized around June 2014
(McPhaden 2015). It is notable that although much progress
has been made in understanding the ENSO mechanism and
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improving the physical parameterizations in models in
recent decades, El Nifio prediction is only beyond a certain
lead time (Tang et al. 2018).

ENSO diversity is certainly a crucial factor that hampers
the skill of the ENSO prediction. Since the 1990s, a new
flavor of El Nifio (denoted as CP-El Nifio) has occurred more
frequently (Yu and Kao 2007). Different from the canonical
El Nifio (denoted as EP-EI Nifio), the largest warming SST
anomalies (SSTA) center of CP-El Nifio during peak time
is located in the central tropical Pacific, instead of in the
eastern tropical Pacific (Kao and Yu 2009; Kug et al. 2009).
The spatial differences in the two types of El Nifio events
increase the difficulty of the ENSO prediction regarding both
structure and intensity. Moreover, the difference between
these two types of El Nifio events is also reflected in other
aspects, including the formation mechanism, evolutionary
process, and climate influence (Ashok et al. 2007; Capo-
tondi et al. 2015; Chen et al. 2015; Fang and Mu 2018; Guo
et al. 2021; Ren and Jin 2013; Weng et al. 2007; Zhang et al.
2011, 2016b). Considering these differences, it is necessary
to discern which type of El Nifio will occur while making El
Nifio predictions. Indeed, machine learning (ML) techniques
show remarkable progress in seasonal predictions, which
can beat the traditional models (Dijkstra et al. 2019; Ham
et al. 2019; Liu 2021). For example, Ham et al. 2019 found
that the convolutional neural network (CNN) model can dis-
tinguish the types of El Nifio 12 months in advance with
high skill. Compared to ML models, the current classical
statistical and dynamical models still have a large room for
improvement in predicting the types of the El Nifio events
(Ren et al. 2018).

Great efforts have been made to obtain skillful predic-
tions of two types of El Nifio events. From the perspec-
tive of ENSO predictability dynamics, one effective way
to improve ENSO prediction is to decrease the error of the
initial condition, which is related to the first kind of predict-
ability problem (Lorenz 1975). It has been acknowledged
that the accuracy of the initial condition is of great impor-
tance to ENSO prediction (Chen et al. 1995, 2004; Duan
and Hu 2016; Gao et al. 2016; Moore and Kleeman 1996;
Tao et al. 2017, 2018). Thus, observations are crucial not
only for understanding the ENSO mechanism but also for
improving prediction skills. However, launching a large and
intensive observation network is costly. Therefore, the best
approach is to employ optimal observations in some “key
areas” or “‘sensitive areas”, which exert the largest influences
on ENSO prediction (Mu et al. 2015). The question is how
to detect and locate these sensitive areas.

Usually, two approaches are utilized to determine the
optimal observation locations. One approach seeks the
largest growth of initial errors, which are mostly assumed
to affect the prediction. This approach includes methods
such as singular vector (SV; Palmer et al. 1998; Tang
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et al. 2006), breeding vector (BV; Toth and Kalnay 1997),
adjoint sensitivity (Bergot 1999), conditional nonlinear
optimal perturbation (CNOP; Mu et al. 2003; Duan et al.
2018b) and other uncertainty analysis approaches of pre-
diction (Hou et al. 2019; Zhang et al. 2015). By focus-
ing on the error growth, these methods help locate the
most sensitive area where the initial errors grow the most
dramatically and unavoidably interfere with the predic-
tion. Most research on detecting ENSO optimal observa-
tional arrays uses this kind of method. In particular, Duan
et al. (2018b) designed an optimal observational array for
ENSO prediction in the tropical Pacific by using the CNOP
method. The other kind of approach is based on assimila-
tion methods, including the ensemble transform (Bishop
and Toth 1999), ensemble transform Kalman filter (ETKF;
Bishop et al. 2001), and ensemble Kalman filter (EnKF;
Liu and Kalnay 2008; Wu et al. 2020). However, the
EnKF and its variants assume that both the model errors
and observation errors are Gaussian. The Kalman filter,
which is the fundamental basis of EnKF, is only applied
to linear state-space systems. As such, a new assimilation
method referred to as the particle filter (PF; Gordon et al.
1993; Van Leeuwen 2009; Shen et al. 2017) has recently
attracted broad attention and is appropriate for any non-
Gaussian and nonlinear system.

By using an offline numerically efficient method, Kramer
and Dijkstra (2013; hereafter referred to as KD13) applied
the PF to explore the predictability barrier for two types of
El Nifio events in the tropical Pacific domain (also see Duan
et al. 2018a). By performing an identical twin approach, they
proposed an offline approach without model forward integra-
tion to update the weights of particles (ensemble members).
In this way, they discovered that the initial accuracy of the
SST in the tropical Pacific near the Nifio3 and Nifio4 areas
is very significant for ENSO predictions.

The aforementioned studies on the target observations for
ENSO predictions applied the PF but were limited within
the tropical Pacific area. However, numerous recent studies
have indicated that the subtropical Pacific is also important
to ENSO formation and its predictability (Chang et al. 2007;
Lin et al. 2015; Lu et al. 2017; Zhang et al. 1998). Specifi-
cally, the North Pacific Meridional Mode (NPMM) is more
closely related to the formation of CP-EI Nifio events while
the South Pacific Meridional Mode (SPMM) has a greater
effect on EP-El Nifio events (Ding et al. 2015, 2017; Min
et al. 2017; Vimont et al. 2014; Yu et al. 2010). Further-
more, Hou et al. (2019) and Qi et al. (2021) investigated the
impact of the initial accuracy of the tropical and extratropi-
cal ocean temperatures in the Pacific on ENSO predictions
from the perspective of error growth. They showed that the
accuracy of the extratropical Pacific temperature also exerts
large influences on the ENSO prediction, especially on the
prediction of El Nifio types.
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As previously discussed, the most effective way to
improve the ENSO prediction is to increase the number of
observations and assimilate them into the model prediction
system. The initial accuracy of the temperature in the whole
Pacific, including the tropical Pacific, subtropical Pacific,
and extratropical Pacific, may all be important for distin-
guishing El Nifio types. Under these circumstances, it is
urgent to address several major issues to improve the skill
of the two types of El Nifio predictions. First, to what extent
does the initial accuracy of the extratropical Pacific matter
to the two types of El Nifio predictions, and is its importance
comparable to that of the tropical Pacific? Second, whether
and how does the sensitive area change with lead times and
initial condition of predictions? Third, how do we determine
an optimal observational array position that is little depend-
ent on the model, the lead time, and the initial condition of
prediction, to ensure that the practical oceanic buoy observa-
tion is long-time standing and robust?

In this study, we utilized the PF method in KD13 to
seek the optimal observational locations through the whole
Pacific for ENSO type predictions. The paper is organ-
ized as follows: In Sect. 2, datasets and the PF method are
described. In Sect. 3, the assimilation experiments carried
out in this study are depicted clearly. In Sects. 4 and 5, the
core of the paper, we quantify the relative importance of the
observations in the different Pacific areas for two types of El
Nifio predictions. In Sect. 6, we design the array of the opti-
mal observational array for ENSO predictions. In Sect. 7, the
results of the verification experiments are shown. Finally, in
Sect. 8, we present our summary and discussion.

2 Datasets and PF assimilation
methodology

Coupled Model Intercomparison Project Phase 5 (CMIPS)
provides abundant global coupled model data resources.
In this study, we use outputs from CMIP5 preindustrial
control (piControl) experiments, in which the models are
driven for at least 500 years after spin-up running under

a constant external forcing (greenhouse gas, solar radia-
tion, aerosol, land use, etc.) at the level of the year 1850.
Thus, the integration results in piControl experiments only
include signals of internal variability. Massive analysis of
the ENSO simulation ability of the CMIP5 models has been
conducted (Bellenger et al. 2014; Ham and Kug 2012; Ren
et al. 2016). A consensus has been reached that only some
CMIPS5 models can capture the main features of both flavors
of El Nifio events, especially the CP-El Nifio. Referring to
Kim and Yu (2012), six models that can reasonably simu-
late two types of El Nifio events were chosen in our work.
Specific model configurations and affiliations are listed in
Table 1. SST data are obtained from the output datasets of
the six coupled models. It is noted that models have differ-
ent integration times and different spatial resolutions. To
simplify the calculations, we choose the first 500 years of the
integration in each model. The variable is interpolated onto
the same grids with a resolution of 2.5° X 2.5° by using the
bilinear interpolation method. All anomalies are computed
by removing their monthly climatological mean.

To assimilate observations into the prediction ensem-
ble, we use the PF method in KD13. The PF method is a
sequential Monte Carlo method using particles (samples)
to estimate the probability density functions (PDFs). The
core of this assimilation method is to change the weight of
each particle by assimilating observation data. Specifically,
the mathematical expression, based on Kramer et al. (2012)
and KD13, is presented as follows: The starting point is an
ensemble of size N of model states Xi’ referred to as parti-
cles, that represent the prior PDF py (X, ), as.

N
pu(X) » ) wis(X, — X}) (1)
i=1

Herein, 6() is the Dirac delta function over real num-
bers, whose value is zero anywhere except at zero and
whose integral over the entire real line is equal to one.
The PDF of state vector X, is estimated by “particles”,
i.e., ensemble members, Xj;(i =1, 2,..., N), multiplied by
weights w; of these particles. At the beginning (k = 0), the

Table 1 List of models from

o Model Institute/country Resolution (lon X lat, vertical)

the IPCC ARS analyzed in this

study Atmosphere Ocean
CCSM4 NCAR/USA 288x192,L.26 320384, L60
CESM1-BGC NSF-DOE-NCAR/USA 288x192,L.26 320384, L60
CMCC-CMS CMCC/ltaly 192 %96, L95 182149, L31
CNRM-CM5 CNRM-CERFACS/France 256x 128, L31 362x292, 142
GFDL-CM3 NOAA GFDL/USA 144 %90, L24 360x%200, L50
GISS-E2-R NASA GISS/USA 144x90, L24 288 %180, L32

(All the datasets are available online at https://esgf-node.llnl.gov/search/cmip5/, and expansions of acro-
nyms are available online at http://www.ametsoc.org/PubsAcronymList)
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wf) of each particle is identical, which is equal to 1/N. An
observation Y, then becomes available at timet = #;, which
can be assimilated to obtain the posterior PDF py (X, |Y,)
by Bayes’ Theorem:

Y, |X X, |Y,_
pN<Xk|Yk) =P( k k)PN( ol Y 1) o)
P(Yk)

By using Eq. (1) and (2), we can update the weight at
t,, which is

i P(Yk|X,i<) i
P(Yk) k—1

In Eq. (3), p(YkIXj() is the PDF of the observations
Y, given the model state Xj(, and p(Yk) is the PDF of
the observation. Noted that p(Yk) can be regarded as a
normalization factor, which ensures that the sum of the
weights is equal to one. p(YkIX;;) is directly related to
the (known) probability distribution of the observation
error. If the observations are measured univariately with
a Gaussian distribution for the measurement error, with

variance X, then.

3

P(Y,IXL) ~ expl—3 (¥, = H(X})) =7 (¥, - H(X}))]
“
Here, H is the observation operator, which can be cal-
culated by simply selecting the model equivalents from
the full state vector. The weight wfc can be calculated from
Eqgs. (3) and (4). Also, if several observations at differ-
ent grids are assimilated simultaneously, the weight wj( is
updated as follows:

Wi~ e | =3 3 (v = H(X}) =7 (Y, - H(X)
=1
for j= 1,2,..J.m
&)
The abovementioned method of weight updating is
known as the sequential importance sampling (SIS)
method, which is a useful PF algorithm for designing
experiments in our work. However, the major problem of
SIS is that after assimilating the observations at ¢t = #,, the
weight is concentrated on only a small number of parti-
cles, which is referred to as the degeneracy of the parti-
cles. A strongly degenerated ensemble, where only a few
ensemble members have weights, cannot yield a reason-
able prediction ensemble for the predicted variable, such
as the Nifio3 and Nifio4 SSTAs. A basic solution to avoid
degeneracy is to perform resampling. Namely, the particles
with high weight will be duplicated, and particles with low
weight will be discarded. In addition, setting the proper
magnitude of the error covariance is also important to
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avoid degeneracy. If the observation error is set too small,
only particles that are close to the observation remain,
which will cause large degeneracy. However, it will be
unrealistic if we set observation errors that are too large.
In this study, after performing tuning experiments, we set
the observational error to 0.3 §;, where 6 is the standard
deviation of SST.

The increase in prediction utility by assimilation observa-
tions can be evaluated by the predictive power (PP; Schnei-
der and Griffies 1999) and root mean square error (RMSE).
Herein, PP is defined by
PP=1-expEx —IEx ) (6)
where [Ey and [Ey are the information entropy of the
prediction before assirﬁilating observations and after assimi-
lating observations, respectively. The information entropy
can be estimated by using the PDF of the ensemble in the
following manner:

IEy ==Y, p,(Xlnp,(X) 7

here, p(X) is the PDF of the prediction ensemble, which
is obtained by using the PF method following Eq. (1). To
calculate the entropy, p(X) could be cut into a bins, which
are represented by p,(X). The entropy can be calculated if
we choose a proper a. In this study, we set a = \/ﬁ + 1.
Thus, by calculating the entropy of the initial ensemble /Ey
and the new ensemble IEXW after assimilation, PP can be
calculated from Eq. (6). The information entropy measures
the uncertainty level of the ensemble. Therefore, PP pre-
sents a decrease in uncertainty due to the assimilation of
observations. The larger the PP is, the greater the decrease
in the uncertainty of the ensemble prediction. In addition,
the RMSE, a commonly used measure, is also calculated to
assess the assimilation performance, which is defined by.

LI 2
RMSE = 1Z<Xd—yd> for d=12,...z (8
2=

here, d denotes the grid index and z is the total number of
grid points of the entire computational domain.

As previously illustrated, the core of the PF method is to
change the weight of each ensemble member according to
the observation information. Thus, this assimilation method
can be applied not only to model forward integrations but
also to offline model ensemble prediction datasets. In this
paper, all assimilation experiments are conducted by using
offline model datasets from CMIP5. In this way, several
models can be involved comprehensively to obtain a model-
independent result. The details of the assimilation experi-
ments for detecting the sensitive area for ENSO prediction
are introduced in the following section.
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3 Experiment design

To identify the most sensitive area in terms of the improve-
ment in the ENSO intensity prediction skill in its mature
phase, we opt to use Nifio indices of the boreal winter as
the major prediction targets. The definitions of two types of
El Nifio events, defined by Kug et al. (2010), are employed
here. Namely, we use Nifio3 and Nifio4 SSTA [i.e., the
SST anomaly averaged over the Nifio3 area and the Nifio4
area] to represent the EP- and CP-El Nifio events and their
intensities. An El Nifio event occurs if at least one of the
two SSTAs exceeds 0.5 °C in the boreal winter (November,
December, and January in the next year). Then, if the Nifio3
(Nifio4) SSTA is greater than the Nifio4 (Nifio3) SSTA, it
is considered as an EP- (CP-) El Nifio event. In this way,
13 typical EP- El Nifio events and 13 typical CP- El Nifio
events are chosen from each of the six models. The spa-
tial and temporal characteristics of these El Nifio events are
shown in Fig. 1. The spatial patterns of El Nifio are similar
in the six models. The Nifio indices of all the typical El Nifio
events first increase gradually until the mature phase and
then decrease in the next year.

All assimilation experiments are conducted in the frame-
work of the identical twin experiment by utilizing the piCon-
trol model outputs from CMIP5. As illustrated in KD13, the
synthetic truth is selected from one model realization, and
the observations are produced by adding a normal-distrib-
uted observation random noise. We use the same approach
to fabricate the observation data. Specifically, we divide the
500-year integration into 500 one-year segments and choose
a single one-year period (e.g., from January to December) of
a typical EP- or CP-El Nifio year as a truth run, from which
the “observation” is made by adding a normally distributed
observation error to the truth. The other 499 1-year integra-
tions can all be regarded as its “predictions” up to a lead
time of 11 months. These predictions altogether compose
a prediction ensemble for this specific EP- or CP-El Nifio
event. These ensemble members are assumed to be inde-
pendent, although there is a correlation between one year
and the next year. However, if we leave the odd years out, the
ensemble member will be only half of the entire ensemble,
which hinders sample diversity. We have to choose larger
sample numbers instead of better sample independence.
In addition, choosing segments less than one year is also
inadvisable because ENSO dynamics are very seasonally
dependent. Therefore, it is reasonable to obtain the observa-
tion and the prediction ensemble in this way.

The PF method is used to conduct offline assimilation
experiments via Eq. (4). The basic principle here is to assim-
ilate only one observation data, such as SSTA, in one single
grid among the Pacific in one experiment. After assimila-
tion, the improvement in the prediction utility is calculated

to evaluate the importance of this observation. The next
assimilation is conducted by using another grid observa-
tion. In this way, the assimilation process is repeated until all
observations in the Pacific are evaluated. The most sensitive
area targeting ENSO prediction improvement can be located
by comparing the improvement in the prediction skill among
all assimilation experiments. In addition, assimilation exper-
iments are conducted repeatedly by using different assimila-
tion times from January to December because we also want
to address the question of whether and how the sensitive
areas change with different prediction lead times.

4 Impact of observations for monitoring
CP-El Nifno events

To obtain a less model-dependent result, the assimilation
experiments are conducted by using 78 (6 models*13 events)
CP-El Niiflo events as observations, and then the assessment
is performed by making a composite of all results. Two
important metrics, PP and RMSE decrease, are employed
to determine the optimal observations. Our main purpose
is to improve the El Nifio prediction in its mature phase.
Thus, the evaluation target is the improvement in the predic-
tion skill only in December. Specifically, the weights of 499
ensemble members are updated by assimilating SST in Janu-
ary (or other months), and then the weights are multiplied
by the ensemble of the December Nifio4 index to generate
the prediction of CP-El Nifio in December, with a lead time
of 11 months (or other leads).

The spatial pattern of the averaged PP over 78 CP-El Nifio
cases is shown in Fig. 2, obtained by assimilating obser-
vations at different times from January to November. For
example, Fig. 2a indicates the PP value of December Nifio4
SST index prediction by assimilating January SST, whereas
Fig. 2k is the PP value of December Nifio4 SST index pre-
diction by assimilating November SST. It should be noted
that the PP value at one grid in Fig. 2 is the resultant PP
value of the Nifio4 SSTA contributed by the assimilation
of this grid’s observation. Thus, the location with a high
PP indicates that its observation has a high impact on the
prediction of the December Nifio4 SSTA. Therefore, the
regions with high PP can be determined as optimal observa-
tion locations. It is obvious in Fig. 2 that the signal changes
along with the assimilation time. Centers of large PP values
are mainly located in three areas, including the equatorial
Pacific, the North Pacific, and the South Pacific. Signals
continually gather around the Nifio3 and Nifo4 areas. How-
ever, the largest PP is located first in the Nifio3 area and
then moves to the Nifio4 area after July. The value of PP
in the equatorial Pacific decreases from January to April
and then increases after May. It seems natural and intuitive
for the PP value to increase as the lead time decreases in
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Fig. 1 The spatial and temporal composite pattern of the chosen 13
typical EP- and CP-El Nifio events in six CMIP5 models. The truth
field of SSTA (units: ‘C) in the boreal winter of 13 EP- and CP-EIl
Niflo events are given in the first and the third column. The evolution
of SSTA (units: °C) in Nifio3 and Nifio4 areas of EP- and CP-El Nifio

the equatorial Pacific from July to November, as shown in
Fig. 2, in that the observation can offer more information
and stronger predictable signals as it is closer to the predic-
tion. However, the opposite situation could also occur when
some key teleconnection processes contribute to predictable
signals, for example, a delayed impact of the western Pacific
Ocean on the ENSO, as described by the delayed-oscillator
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events are shown in the second and the fourth column. On the X-axis,
month (0) represents the month of El Nifio attaining peak year, and
month (1) represents the month of decaying the El Nifio year. Differ-
ent rows correspond to different models

mechanism. This may explain why the PP value decreases
from January to April, as shown in Fig. 2.

In terms of the PP in the North Pacific area, one large
center is located at approximately 40° N in the northwest
Pacific near the Kuroshio Extension. The value there
increases from January, peaks near August, and then starts to
decrease. Another large center is observed over the northeast
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Fig.2 The spatial pattern of the predictive power, PP(NINO4), averaged over 78 CP-EI Nifio cases, obtained by assimilating observation for a
given location as a function of assimilation time from a January to 1 December
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Pacific, which has a similar spatial pattern to the NPMM
near Baja California in Mexico. This pattern is clearly seen
from March to June. There are two large centers of PP in
the South Pacific. One is located over the extratropical
Pacific and is centered at approximately 130° W—140° W,
50° S—60° S. The other is located at approximately 30° S
and has a similar spatial pattern to SPMM. The former fades
from January to September and rises in October. The latter
emerges in June and matures in November and December.
The PP spatial pattern here shows agreement with the error
pattern of SST, which interferes with CP-EI Nifio predic-
tions, as shown in Fig. 7 by Hou et al. (2019). The impor-
tance of the initial accuracy in the extratropical Pacific to
CP-El Nifio predictions is also emphasized by Hou et al.
(2019).

The PP pattern shown in Fig. 2 is a composite of all the
cases and models. Composites for the cases of each model
were also calculated (not shown), and all bear great resem-
blances to the composite of all models. That is, there are
five apparent large centers of PP related to the Decem-
ber CP-El Nifio predictions, including the tropical Pacific
(TP; 120° E-80° W, 23.5° S-23.5° N), subtropical North
Pacific (SNP; 23.5° N-40° N), subtropical South Pacific
(SSP; 23.5° S-40° S), extratropical North Pacific (ENP;
40° N-66.5° N) and extratropical South Pacific (ESP;
40° S-66.5° S).

To quantify the importance of target observations in these
five areas, we calculated the area averages of PP, as shown
in Fig. 3. Here, the signal evolution in different areas is well
illustrated by PP (NINO4) in Fig. 3. It is shown that the
observations in the TP are essential after August compared
with those in other areas (Fig. 3f). The PP average value
over the TP starts to increase dramatically after late spring
or early summer and peaks in October (Fig. 3a) in almost all
cases, which may be related to the spring persistence barrier
for ENSO prediction. The spring persistence barrier is a phe-
nomenon in which the persistence of the ENSO SSTA drops
significantly in late spring, which can lead to the ENSO pre-
dictability barrier in spring. Herein, the PP value can be
considered as a precursor signal of ENSO events. Thus, it
is reasonable that the signal in the tropical area is indeed
much smaller before boreal spring than that after summer
in Fig. 3a. However, the signal outside the tropical area is
slightly larger in the first half-year. In terms of the PP aver-
aged over the SSP and ESP, the PP value peaks in the boreal
winter and is larger than that of TP before May. For the PP
averaged over the SNP and ENP, the PP value peaks in the
boreal summer and is larger than that of TP before July. As
suggested early, PP is closely related to the change in the
uncertainty of the ensemble prediction. Thus, Figs. 2 and 3
imply that when predicting CP-EI Nifio events before boreal
spring, the initial conditions of SST outside the tropical area
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Fig.3 Area average of PP(NINO4) over a tropical Pacific, b subtropi-
cal south Pacific, ¢ subtropical North Pacific, d extratropical South
Pacific, and e extratropical North Pacific as a function of assimilation
time (X-axis). Different colors represent different model cases. All
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colorful lines represent the results of 78 CP-El Nifio prediction cases.
The black lines represent the average of all cases. And all the black
lines in a—e are replotted in f with different colors
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in the Pacific are important and will help reduce the uncer-
tainty of the prediction.

In the previous discussions, the PP measures the result-
ant decrease in prediction uncertainty from the decrease in
initial errors by assimilation of observations. It is a metric of
potential predictability in theory and could produce spurious
results in an ill-designed overconfidence ensemble system,
for example, a small ensemble spread and a far-from-truth
ensemble mean. Thus, an actual prediction skill measure
should be applied to evaluate the impact of potential obser-
vations on prediction. Here, we use RMSE for this purpose.
Figure 4 shows the change in the RMSE of the Nifio4 SSTA
prediction due to assimilation, where the red areas repre-
sent the improvement in prediction skill after assimilating
observations in these locations. Unlike the PP value, the
large center of the RMSE decreases resulting from the SST
observations is always in the tropical Pacific. The largest
value is first located in the central equatorial Pacific, then
moves eastwards in boreal spring, and finally moves back to
the central equatorial Pacific. The spring persistence barrier
still interferes with the prediction as shown in Fig. 4d since
the background value is lowest in April. Observations in the
South Pacific become more useful in the latter half of the
year but still cannot be comparable to those in the equato-
rial Pacific. Furthermore, to check the result of all cases
besides the composite result, we add up the number of the
cases that give the same result (RMSE decreasing/increas-
ing) as the composite one. The purple (or black) dots on the
panels in Fig. 4 indicate that there are more than two-thirds
(or three-fourths) of all cases in which the RMSE decreases
after assimilating observations at that location, just the same
as the composite result. It is noteworthy that there are some
purple dots in the North and South Pacific regions from
January to April, but the decrease in RMSE is not as large
as that in the equatorial Pacific. Hence, assimilating observa-
tions in these North or South Pacific regions in late winter
and early spring does improve the deterministic forecast skill
of the CP-EIl Nifio, but the improvement is quite limited.

5 Impact of observations for monitoring
EP-El Nifio events

Similar assimilation experiments are conducted by using 78
EP-El Nifio synthetic observations. The spatial pattern of PP
(NINO3), averaged over these 78 cases, is shown in Fig. 5.
The spatial pattern of PP (NINO3) is similar to that of PP
(NINO4) in the previous section. In the tropical Pacific, the
optimal location for predicting the Nifio3 index in December
is more restricted to the eastern Pacific. During the begin-
ning of the year, from January to March, the signal in the
tropical Pacific is not as strong as that in the extratropical
Pacific. The prediction of Nifio3 suffers from a severe spring

predictability barrier, and south extratropical signals in Janu-
ary and north extratropical signals in JFMA can provide
more predictability than the tropical Pacific. In this case,
adding optimal observations in the extratropical Pacific and
assimilating them into the model may attenuate the predict-
ability barrier of EP-EIl Nifio prediction.

The area average of PP (NINO3) is also analyzed, as illus-
trated in Fig. 6. It shows that the observations in the tropical
Pacific after August are significant because the PP average
of all cases increases from June to September (Fig. 6f). How-
ever, in the first half-year, the signals outside the tropical
area are important for the prediction of the Nifio3 index.
By comparing Figs. 5 and 6 with Figs. 2 and 3, we can ana-
lyze the difference between the predictions of the two types
of El Niflo events. It seems that the seasonal predictability
barrier is more severe in EP-El Nifio predictions since the
background value of PP in Fig. 5a—d is slightly less than
that in Fig. 2a—d. Additionally, there are some spatial dif-
ferences between PP (NINO4) and PP(NINO3) in the North
and South Pacific. The PP (NINO3) in the northeast Pacific
is quite small during the whole year compared with PP
(NINO4) in the northeast Pacific (Fig. 5). The SPMM-like
spatial pattern is stronger and persists longer in Fig. Sh-1
than in Fig. 2h-1, which is in agreement with the notion
that the SPMM is more related to the development of EP-EI
Nifo events (Min et al. 2017) through the wind-evaporation-
SST feedback (Xie and Philander 1994). Overall, this finding
implies that extratropical SST initial conditions can affect
the prediction of both types of El Nifio events, but the extent
of the effect can be different depending on the lead time of
the prediction.

Similar to the assessment of the CP-El Nifio assimila-
tion experiments, the deterministic prediction skill is also
evaluated by calculating the RMSE. Figure 7 shows that
the signal in the tropical Pacific is the most significant at
all times. There are some large centers outside 30 degrees
latitude, but they are not as large as those in the tropical area.
It is also noteworthy that the optimal observations for the
most effectively improved Nifio3 index predictions are found
at approximately 170° W, 10° N in May (Fig. 7c). Similar
patterns in the tropical Pacific, as shown in the CP-El Nifio
experiments, can be identified while comparing Fig. 7c—e
with Fig. 4c—e, both of which bear some resemblances to
NPMM. Thus, the observations in the NPMM-like region
during spring are important for predictions of both EP- and
CP-EI Nifio events.

6 Sensitive area for target observations
The previous sections evaluated the relative importance of

the tropical, subtropical, and extratropical Pacific for two
types of El Nifio predictions at different lead times. We then
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Fig.6 As in Fig. 3, but for the results of PP (NINO3) targeting at EP-EI Nifio predictions

attempted to locate the optimal observations of SST for
ENSO prediction considering these. As shown in the previ-
ous sections, the signals change with different lead times,
which means that the optimal observations for ENSO pre-
diction should be considered as a function of the start time
of the prediction. In addition, it is unknown what type of El
Nifio events will occur when issuing a prediction; thus, the
sensitive area should cover both types of El Nifio events.
Hence, we propose to locate optimal observations case by
case, as in the general operations adopted in the target obser-
vation for ENSO in Duan et al. (2018b).

The main idea is to sort PP values. The details of the idea
are illustrated as follows: First, we visit all the 156 predic-
tion cases (78 CP-El Nifio events and 78 EP-EIl Nifio events)
as previously mentioned and only select the spatial grid
points with decreases in the RMSE. These selected spatial
grid points are further sorted in descending order accord-
ing to their PP value, and the top 15 grids, which are called
PP max points hereafter, are identified. As a result, we can
obtain a 12*156 (12 months and 156 cases) series of 15 PP
max points. Second, we split these series into 4 groups, each
containing 3*%156 series (3 months and 156 cases), to use
different months (January, April, July, and October) to start
the prediction. Third, from each group of 3*156 samples, we
compute the frequency of PP max that occurred for each grid
point across the Pacific domain. To express this procedure
more clearly, we use a formula to show the calculation of
frequency, which is denoted by F, as follows:
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where r=1, 2, 3, and 4, represent different groups; ci]. is the
number of the grid points (i, j) being the PP max points in
the 3*156 series in the ¢ group; and L is the “3*156” series.
Finally, we choose grids with the first 10 (largest) F values
as the optimal observation area for two flavors of El Nifio
predictions. The spatial distributions of the F value in dif-
ferent seasons are shown in Fig. 8, where the red dots repre-
sent the sensitive areas.

As shown in Fig. 8, the optimal observations in JFM are
all located in the North Pacific, with 8 grid points in the
extratropical Pacific near the Kuroshio Extension region
and 2 grid points along the west coast of North America.
In AMJ, the sensitive area contains 3 grid points in the
northwest Pacific and 7 grid points on the equator in the
eastern Pacific. In JAS and OND, all optimal observations
are located on the equator. To obtain a long-time standing
observational position and to consider all the seasons to start
predictions, we propose combining the sensitive areas in dif-
ferent seasons to get an array with 31 grid points, as shown
in Fig. 9, which includes 21 grid points in the equatorial
Pacific and 10 grid points in the North Pacific.

The optimal observational array identified here implies
the importance of the uncertainties of SST outside the tropi-
cal Pacific, especially the North Pacific, to both types of El
Nifio predictions. Several recent studies have shed light on
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the mechanism of the extratropical and tropical interaction,
which support our findings (Alexander et al. 2010; Amaya
2019; Ding et al. 2015; Hou et al. 2019; Jin 1997; Vimont
et al. 2003). Specifically, it is believed that the abnormal
atmospheric status associated with the North Pacific Oscil-
lation (NPO) forces the SST in mid-latitudes and leaves a
“footprint” in the boreal winter (Vimont et al. 2003). Thus,
the optimal observational array detected in JFM is mainly
located in the large center of the NPO-forced SSTA area. In
boreal spring, the NPO-forced SSTA variability maintains
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and propagates into the tropics southwestwards through
interaction between the SSTAs, surface wind anomalies,
and latent heat flux anomalies, which is known as WES
feedback (Xie and Philander 1994), corresponding to the
increase of the F value in the eastern North Pacific near Baja
California as shown in Fig. 9b. In terms of ocean circulation,
off-equatorial wind stress curl anomalies help transport the
water mass meridionally, which can charge or discharge the
heat content in the equatorial Pacific (Anderson et al. 2013).
In addition, the propagation and reflection of ocean Rossby
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Fig.9 Stable optimal observational array for two types of El Nifio
predictions

waves triggered by the thermocline perturbation in verti-
cal and their corresponding Kelvin waves help bring up the
SSTA from the western equatorial subsurface Pacific to the
eastern equatorial surface Pacific (Alexander et al. 2010).
Under these circumstances, the F value in the equatorial
Pacific becomes larger after late spring.

7 Verification experiments

After designing the optimal observational array, we per-
form a verification test to verify that the optimal obser-
vational array can efficiently improve ENSO predictions.
We still use the PF method to be consistent with the previ-
ous experiments. However, the challenge here is that the
ensemble will degenerate dramatically if the observations
on the optimal observational array are assimilated simul-
taneously. To mitigate the degeneration, a large ensemble
is created by combining the ensembles of the 6 models,
containing 3000 (6 models * 500 years) one-year predic-
tion ensemble members. For this circumstance, we use the
real observation dataset instead of the fabricated observa-
tions because the model errors will be involved anyway.
Thus, 21 El Nifio events from 1950 to 2020 are chosen as
observations by using the monthly mean oceanic dataset
from the Extended Reconstructed Sea Surface Temper-
ature (ERSST) version 5 data. The assimilation experi-
ments are conducted using the PF method, as explained in
Eq. (5), in the sensitive area for three months to calculate
the weights of 3000 members and use the same weights in
the following months to give predictions. In addition, the
observation error is set to 0.6 6, to diminish the degen-
eracy of particles.

The ensemble prediction of the Nifio3 index for the 21
El Nifio events, which are obtained by assimilating optimal
observation data from April to June, is shown in Fig. 10. It
is shown that the spread of the Nifio3 ensemble decreases
significantly when simultaneously assimilating several
optimal observation data from April to June. However,
the spread gradually increases with a longer lead time.
Although the spread of the prediction is large in Decem-
ber, the ensemble members for most cases are distributed
on both sides of the observation, and the ensemble mean
is closer to the truth in most cases (Fig. 10). Similar pre-
dictions are also conducted for the Nifio4 SSTA index for
different seasons (JFM, JAS, and OND), showing simi-
lar results (not shown). In summary, though interfering
with model errors, most of the ENSO predictions improve
after assimilating target observation data in all seasons,
especially when the predictions are made after June, and
the warm phase in December is correctly predicted for all
events.

A further examination is conducted using a random
experimental strategy. We randomly choose 31 grid points
in the whole Pacific as a random array 100 times and repeat
the PF assimilation procedure and ensemble prediction.
Figure 11 shows the prediction errors from the random
experiment against the same errors from the assimilation
of the above optimal observations. The prediction errors
from the assimilation of optimal observations are smaller
than those from random cases for both the Nifio3 index and
Nifio4 index. Moreover, the result from the optimal obser-
vational array is superior to that from 98% (95%) of the
randomly selected arrays in terms of the Nifio3 (Nifio4)
indices through significant examinations. In addition, the
effective sample size at the last assimilation step in all cases
is calculated. It is worth mentioning that the assimilation of
randomly chosen observations shows a more severe degen-
eracy than that of optimal observations. For the former, the
average effective sample size is only about 2 in contrast to
15 for the optimal observation assimilation. This may be
due to different observation samples and also the involved
model error. However, stochastic universal resampling (Van
Leeuwen 2015) steps are taken after the assimilation step,
which can alleviate degeneracy in all cases. However, a resa-
mpling strategy is taken after the assimilation step in all
cases to increase the effective sample size, which prevents
all cases from the most severe degeneracy. Overall, these
results indicate that the improvement in prediction skills by
optimal observation is effective and significant.

@ Springer



M. Hou et al.

a before assimilation 1951 1958 o 1957
20f(a) 2 f(b) o f(c) 20 §(d)
10 10 — —| 10 — | 10 i e W
8 o j——————— N —_— = P
.0 1.0 1.0 = 1.0
0 DD D e DO D ot DD 24 B B
EESISEISEFFE  FETISFIISFFE  BESIPFILEFFT SIS
3.0 1963 3.0 1965 3.0 1968 a0 1969
20 (9) 20 (f) 20 (g) 20 (h)
10 — 10 — = 10 10 — E —
0 | —— — — | [ 0| — — [ — — ]
-1.0 -1.0 1.0 -1.0
2.0 e, 2.0 S 20 i -20 e
BESISRELLFFE  FEFIPILLFET  REFIPISELIFT I aESFT
an 1972 1976 .. 1977 . 1982
o [ (1) o [ () 2 [ (k) ;';// PP
10 G 10 — 10 10 e
0 ;m_:_:,_\_ 0 — 0 | —_— 0 =
1.0 1.0 1.0 1.0
>2‘0 o e >2l° —_— e e >20 S SR S N 2.0 R -
EEFIFFISSFFE T IPEISSFFE EEIISFILFFE e8I sadeFiY
i 1986 1987 1991 1994
20 (M) 20 f(nN) —— —] 20 (0) 20f§(p)
10 10 ﬁ 1.0 — = 10
o -a_é; 0 [ ——= 0 ﬁ-@
10 = 1.0 1.0 10 ——
2.0 2.0 20 2.0
QITIFETLEFFT QST IFIISSFFF ST ISRISSFFF 8T8 FFY
1997 2002 2004 2006
3.0 m— 30 3.0 30
o |(a) ] w0 |(1) = [(s) [ (1)
1.0 1.0 1.0 10
o Féi 4 A o -h@!_ o hﬁé:
-1.0 -1.0 1.0 1.0
-20 o e -2.0 —_ e e ‘20 o SR S N ‘20 R -
EFFISESIFFF S EEFIPEISFFFSF EFSTFESISFFS EFIISETESFFF
. 2009
2 | (u) 20 ~ gnsemble mean
1.0 1.0
o [} — model
-1 1.0
e i T —— observation
S ISFISSFFF ST FFISSFFF

Fig. 10 Ensemble prediction of Nifio3 index (units: ‘C) in model
ensembles: a the origin ensemble forecast before assimilation; b-v
new ensemble predictions after assimilating optimal observed ocean
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temperature during April, May, and June. Red lines represent the
observations; green lines represent the ensemble mean forecast after
assimilation; the areas shaded in gray represent the probability
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Fig. 11 The bar charts of the skills of the “hindcast” forecast when
data assimilations were made in the sensitive area (SA, black bars)
and the other 100 randomly selected arrays (R100, white bars). a
Average prediction errors of Nifio3 SSTA in December (units: C); b

8 Conclusion and discussion

In this study, we quantify the relative importance of the SST
observations in different areas of the Pacific for two types of
El Nifio predictions and explore the sensitive areas for target
observations for CP- and EP-EI Nifio events by using the PF.
Two measures, PP and RMSE, are used to describe the rela-
tive importance of observations in different areas. The initial
uncertainty of the SST in the tropical Pacific, subtropical
Pacific, and extratropical Pacific can exert influences on both
CP-El Nifio predictions and EP-EIl Nifio predictions. The
relative importance of different areas changes with the lead
times of predictions. The tropical Pacific is the most sensi-
tive area during the latter half-year. During spring, the extra-
tropical signals cannot be disregarded and can even surpass
the tropical signals, especially in the North Pacific. Subtropi-
cal and extratropical observations do play important roles in
decreasing the prediction uncertainty, although their impact
on the decrease in the RMSE of predictions is limited. A
quantitative method based on frequency distribution is used
to determine the optimal observations of El Nifio predictions
with the consideration of different measurements, different
El Nifio types, and different start months of predictions. Four
optimal observational arrays are designed concerning four
start months of predictions. The optimal observations move
from the extratropical Pacific Ocean to the tropical Pacific
Ocean with the start month of the prediction set before and
after summer. Moreover, a robust and long-time standing
optimal observational array for ENSO prediction is designed
by combining these four optimal observational arrays. The
final optimal observational array contains 21 grid points in
the equatorial Pacific and 10 grid points in the North Pacific.
It is shown that the optimal observational array can achieve
more improvement in the El Nifio prediction than almost all
randomly chosen arrays.

0.80 ] ] ]
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average prediction error of the Nifio4 SSTA in December (units: ‘C)
among all 84 prediction cases. Grey bars denote the prediction errors
of the climatology predictions. Red lines denote the standard devia-
tion among all 100 random cases

The predictability of the two types of El Niflo events has
been explored for years. By using the Zebiak-Cane model,
Duan et al. (2018b) designed an array of target observa-
tions to improve two types of ENSO predictions. The spa-
tial pattern of the F indices in JAS, as shown in Fig. 8c,
presents a pattern similar to that in Fig. 6a of Duan et al.
(2018b), emphasizing the importance of the SSTA in the
central equatorial Pacific and the eastern tropical Pacific.
By using the intermediate coupled model (ICM) and CNOP
method, Tao et al. (2017) and Mu et al. (2019) found that the
CNOP-related initial errors that affect the ENSO prediction
show seasonal dependence. We had similar findings of the
spatial pattern of PP changing with lead times of predic-
tions. However, due to the limitation of the ZC model and
the ICM, they could only consider the tropical Pacific. In
addition, our finding of the spatial structure of predictive
power in the tropical pacific is in agreement with the spatial
structures of optimal SST precursors in Fig. 8 by Mu et al.
(2019). By using the PF method, KD13 found that the ini-
tial errors at Nifio3 and Nifio4 areas are the most sensitive
for the prediction of the EP- and CP-El Nifio events at the
lead time of three months, respectively. Utilizing the same
assimilation method, we have similar findings. However, we
extend their work in three aspects. First, we focused on the
whole Pacific instead of only the tropical Pacific in KD13,
finding that the initial errors in the extratropical Pacific
should not be ignored in ENSO predictions; Second, we use
two measures, not only potential skill (predictive power) but
also deterministic skill to detect the sensitive areas. Third,
we consider the optimal sensitivity areas as a function of
lead time, allowing us to explore the continuous evolution of
optimal error growth with the lead time of prediction from
one month to 12 months.

The PF-based target observation method can detect the
signal of El Nifio events in different lead times. Hence, this
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research also helps to understand the ENSO mechanism
in its developing phase. The NPMM-like signal peaks in
spring, while the SPMM-like signal peaks in late fall in both
types of El Nifio events, and their signal strengths are not as
strong as that of the tropical signal. This finding indicates
that the tropical Pacific Ocean is always crucial to the forma-
tion of both types of El Nifio events, while the subtropical
and extratropical Pacific can help adjust the zonal maximum
SST center and the amplitude of the El Nifio events during
their developing stages. This is in agreement with Fan et al.
(2020), who indicated that the NPMM can be a modulator,
rather than a generator for ENSO.

The PF assimilation method applied in this paper has
advantages, including easy operation, offline implemen-
tation, and less model dependence. The drawback of this
method is the degeneracy of particles, which prevents us
from using a sequential assimilation-based approach because
only a few members will remain if too many observations
are assimilated. Thus, some techniques including adding
localization can be considered and employed to ameliorate
the target observation method in the future. If the degen-
eracy problem can be solved, a sequential assimilation-based
approach and multiple variables including sea ocean tem-
perature and sea surface wind can all be considered when
detecting target observations in future studies.
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