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Abstract
This paper investigates the optimal observational array for improving the El Niño-Southern Oscillation (ENSO) prediction 
by exploring sensitive areas for target observations of two types of El Niño events in the whole Pacific. A target observa-
tion method based on the particle filter and pre-industrial control runs from six coupled model outputs in Coupled Model 
Intercomparison Project Phase 5 (CMIP5) experiments are used to quantify the relative importance of the initial accuracy of 
sea surface temperature (SST) in different Pacific areas. The initial accuracy of the tropical Pacific, subtropical Pacific, and 
extratropical Pacific can all exert influences on both types of El Niño predictions. The relative importance of different areas 
changes along with different lead times of predictions. Tropical Pacific observations are crucial for decreasing the root mean 
square error of predictions of all lead times. Subtropical and extratropical observations play an important role in decreasing 
the prediction uncertainty, especially when the prediction is made before and throughout the boreal spring. To consider differ-
ent El Niño types and different start months for predictions, a quantitative frequency method based on frequency distribution 
is applied to determine the optimal observations of ENSO predictions. The final optimal observational array contains 31 grid 
points, including 21 grid points in the equatorial Pacific and 10 grid points in the North Pacific, suggesting the importance 
of the initial SST conditions for ENSO predictions not only in the tropical Pacific but also in the area outside the tropics. 
Furthermore, the predictions made by assimilating SST in sensitive areas have better prediction skills in the verification 
experiment, which can indicate the validity of the optimal observational array designed in this study.
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1  Introduction

The El Niño-Southern Oscillation (ENSO) is the dominant 
mode of interannual climate variability on Earth, alternat-
ing between warm (El Niño) and cold (La Niña) conditions, 
which are centered in the central and eastern equatorial 

Pacific (Bjerknes 1969; Philander 1983; Webster and Yang 
1992). It has long been a focus of exploration because of 
its profound influences on the tropical climate and even the 
global climate (Alexander et al. 2002; Andrews et al. 2004; 
Hoell et al. 2018; Wu et al. 2018; Zhang et al. 2016a). In 
theory, the self-sustaining nature of the ENSO is conducive 
to its potential predictability up to two years in advance (Liu 
2021; Tang et al. 2018). However, most current real-time 
ENSO predictions, made by the existing dynamical and sta-
tistical models, can only provide useful skills two or three 
seasons in advance (Barnston et al. 2012; Jin et al. 2008; 
Liu 2021). More interestingly, even though the models are 
constantly improving, the El Niño prediction skill during 
2002–2011 is the lowest for the 1981–2010 period (Barn-
ston et al. 2012). In addition, most models substantially 
overestimated the amplitude of warming for the 2014/2015 
event when the prediction was initialized around June 2014 
(McPhaden 2015). It is notable that although much progress 
has been made in understanding the ENSO mechanism and 
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improving the physical parameterizations in models in 
recent decades, El Niño prediction is only beyond a certain 
lead time (Tang et al. 2018).

ENSO diversity is certainly a crucial factor that hampers 
the skill of the ENSO prediction. Since the 1990s, a new 
flavor of El Niño (denoted as CP-El Niño) has occurred more 
frequently (Yu and Kao 2007). Different from the canonical 
El Niño (denoted as EP-El Niño), the largest warming SST 
anomalies (SSTA) center of CP-El Niño during peak time 
is located in the central tropical Pacific, instead of in the 
eastern tropical Pacific (Kao and Yu 2009; Kug et al. 2009). 
The spatial differences in the two types of El Niño events 
increase the difficulty of the ENSO prediction regarding both 
structure and intensity. Moreover, the difference between 
these two types of El Niño events is also reflected in other 
aspects, including the formation mechanism, evolutionary 
process, and climate influence (Ashok et al. 2007; Capo-
tondi et al. 2015; Chen et al. 2015; Fang and Mu 2018; Guo 
et al. 2021; Ren and Jin 2013; Weng et al. 2007; Zhang et al. 
2011, 2016b). Considering these differences, it is necessary 
to discern which type of El Niño will occur while making El 
Niño predictions. Indeed, machine learning (ML) techniques 
show remarkable progress in seasonal predictions, which 
can beat the traditional models (Dijkstra et al. 2019; Ham 
et al. 2019; Liu 2021). For example, Ham et al. 2019 found 
that the convolutional neural network (CNN) model can dis-
tinguish the types of El Niño 12 months in advance with 
high skill. Compared to ML models, the current classical 
statistical and dynamical models still have a large room for 
improvement in predicting the types of the El Niño events 
(Ren et al. 2018).

Great efforts have been made to obtain skillful predic-
tions of two types of El Niño events. From the perspec-
tive of ENSO predictability dynamics, one effective way 
to improve ENSO prediction is to decrease the error of the 
initial condition, which is related to the first kind of predict-
ability problem (Lorenz 1975). It has been acknowledged 
that the accuracy of the initial condition is of great impor-
tance to ENSO prediction (Chen et al. 1995, 2004; Duan 
and Hu 2016; Gao et al. 2016; Moore and Kleeman 1996; 
Tao et al. 2017, 2018). Thus, observations are crucial not 
only for understanding the ENSO mechanism but also for 
improving prediction skills. However, launching a large and 
intensive observation network is costly. Therefore, the best 
approach is to employ optimal observations in some “key 
areas” or “sensitive areas”, which exert the largest influences 
on ENSO prediction (Mu et al. 2015). The question is how 
to detect and locate these sensitive areas.

Usually, two approaches are utilized to determine the 
optimal observation locations. One approach seeks the 
largest growth of initial errors, which are mostly assumed 
to affect the prediction. This approach includes methods 
such as singular vector (SV; Palmer et  al. 1998; Tang 

et al. 2006), breeding vector (BV; Toth and Kalnay 1997), 
adjoint sensitivity (Bergot 1999), conditional nonlinear 
optimal perturbation (CNOP; Mu et al. 2003; Duan et al. 
2018b) and other uncertainty analysis approaches of pre-
diction (Hou et al. 2019; Zhang et al. 2015). By focus-
ing on the error growth, these methods help locate the 
most sensitive area where the initial errors grow the most 
dramatically and unavoidably interfere with the predic-
tion. Most research on detecting ENSO optimal observa-
tional arrays uses this kind of method. In particular, Duan 
et al. (2018b) designed an optimal observational array for 
ENSO prediction in the tropical Pacific by using the CNOP 
method. The other kind of approach is based on assimila-
tion methods, including the ensemble transform (Bishop 
and Toth 1999), ensemble transform Kalman filter (ETKF; 
Bishop et al. 2001), and ensemble Kalman filter (EnKF; 
Liu and Kalnay 2008; Wu et  al. 2020). However, the 
EnKF and its variants assume that both the model errors 
and observation errors are Gaussian. The Kalman filter, 
which is the fundamental basis of EnKF, is only applied 
to linear state-space systems. As such, a new assimilation 
method referred to as the particle filter (PF; Gordon et al. 
1993; Van Leeuwen 2009; Shen et al. 2017) has recently 
attracted broad attention and is appropriate for any non-
Gaussian and nonlinear system.

By using an offline numerically efficient method, Kramer 
and Dijkstra (2013; hereafter referred to as KD13) applied 
the PF to explore the predictability barrier for two types of 
El Niño events in the tropical Pacific domain (also see Duan 
et al. 2018a). By performing an identical twin approach, they 
proposed an offline approach without model forward integra-
tion to update the weights of particles (ensemble members). 
In this way, they discovered that the initial accuracy of the 
SST in the tropical Pacific near the Niño3 and Niño4 areas 
is very significant for ENSO predictions.

The aforementioned studies on the target observations for 
ENSO predictions applied the PF but were limited within 
the tropical Pacific area. However, numerous recent studies 
have indicated that the subtropical Pacific is also important 
to ENSO formation and its predictability (Chang et al. 2007; 
Lin et al. 2015; Lu et al. 2017; Zhang et al. 1998). Specifi-
cally, the North Pacific Meridional Mode (NPMM) is more 
closely related to the formation of CP-El Niño events while 
the South Pacific Meridional Mode (SPMM) has a greater 
effect on EP-El Niño events (Ding et al. 2015, 2017; Min 
et al. 2017; Vimont et al. 2014; Yu et al. 2010). Further-
more, Hou et al. (2019) and Qi et al. (2021) investigated the 
impact of the initial accuracy of the tropical and extratropi-
cal ocean temperatures in the Pacific on ENSO predictions 
from the perspective of error growth. They showed that the 
accuracy of the extratropical Pacific temperature also exerts 
large influences on the ENSO prediction, especially on the 
prediction of El Niño types.
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As previously discussed, the most effective way to 
improve the ENSO prediction is to increase the number of 
observations and assimilate them into the model prediction 
system. The initial accuracy of the temperature in the whole 
Pacific, including the tropical Pacific, subtropical Pacific, 
and extratropical Pacific, may all be important for distin-
guishing El Niño types. Under these circumstances, it is 
urgent to address several major issues to improve the skill 
of the two types of El Niño predictions. First, to what extent 
does the initial accuracy of the extratropical Pacific matter 
to the two types of El Niño predictions, and is its importance 
comparable to that of the tropical Pacific? Second, whether 
and how does the sensitive area change with lead times and 
initial condition of predictions? Third, how do we determine 
an optimal observational array position that is little depend-
ent on the model, the lead time, and the initial condition of 
prediction, to ensure that the practical oceanic buoy observa-
tion is long-time standing and robust?

In this study, we utilized the PF method in KD13 to 
seek the optimal observational locations through the whole 
Pacific for ENSO type predictions. The paper is organ-
ized as follows: In Sect. 2, datasets and the PF method are 
described. In Sect. 3, the assimilation experiments carried 
out in this study are depicted clearly. In Sects. 4 and 5, the 
core of the paper, we quantify the relative importance of the 
observations in the different Pacific areas for two types of El 
Niño predictions. In Sect. 6, we design the array of the opti-
mal observational array for ENSO predictions. In Sect. 7, the 
results of the verification experiments are shown. Finally, in 
Sect. 8, we present our summary and discussion.

2 � Datasets and PF assimilation 
methodology

Coupled Model Intercomparison Project Phase 5 (CMIP5) 
provides abundant global coupled model data resources. 
In this study, we use outputs from CMIP5 preindustrial 
control (piControl) experiments, in which the models are 
driven for at least 500 years after spin-up running under 

a constant external forcing (greenhouse gas, solar radia-
tion, aerosol, land use, etc.) at the level of the year 1850. 
Thus, the integration results in piControl experiments only 
include signals of internal variability. Massive analysis of 
the ENSO simulation ability of the CMIP5 models has been 
conducted (Bellenger et al. 2014; Ham and Kug 2012; Ren 
et al. 2016). A consensus has been reached that only some 
CMIP5 models can capture the main features of both flavors 
of El Niño events, especially the CP-El Niño. Referring to 
Kim and Yu (2012), six models that can reasonably simu-
late two types of El Niño events were chosen in our work. 
Specific model configurations and affiliations are listed in 
Table 1. SST data are obtained from the output datasets of 
the six coupled models. It is noted that models have differ-
ent integration times and different spatial resolutions. To 
simplify the calculations, we choose the first 500 years of the 
integration in each model. The variable is interpolated onto 
the same grids with a resolution of 2.5° × 2.5° by using the 
bilinear interpolation method. All anomalies are computed 
by removing their monthly climatological mean.

To assimilate observations into the prediction ensem-
ble, we use the PF method in KD13. The PF method is a 
sequential Monte Carlo method using particles (samples) 
to estimate the probability density functions (PDFs). The 
core of this assimilation method is to change the weight of 
each particle by assimilating observation data. Specifically, 
the mathematical expression, based on Kramer et al. (2012) 
and KD13, is presented as follows: The starting point is an 
ensemble of size N of model states Xi

k
 , referred to as parti-

cles, that represent the prior PDF pN
(
Xk

)
 , as.

Herein, �(∙) is the Dirac delta function over real num-
bers, whose value is zero anywhere except at zero and 
whose integral over the entire real line is equal to one. 
The PDF of state vector Xk is estimated by “particles”, 
i.e., ensemble members, Xi

k
(i = 1, 2,…, N), multiplied by 

weights wi
k
 of these particles. At the beginning ( k = 0) , the 

(1)pN
(
Xk

)
≈

N∑

i=1

wi
k
�
(
Xk − X

i
k

)

Table 1   List of models from 
the IPCC AR5 analyzed in this 
study

(All the datasets are available online at https://​esgf-​node.​llnl.​gov/​search/​cmip5/, and expansions of acro-
nyms are available online at http://​www.​amets​oc.​org/​PubsA​crony​mList)

Model Institute/country Resolution (lon × lat, vertical)

Atmosphere Ocean

CCSM4 NCAR/USA 288 × 192, L26 320 × 384, L60
CESM1-BGC NSF-DOE-NCAR/USA 288 × 192, L26 320 × 384, L60
CMCC-CMS CMCC/Italy 192 × 96, L95 182 × 149, L31
CNRM-CM5 CNRM-CERFACS/France 256 × 128, L31 362 × 292, L42
GFDL-CM3 NOAA GFDL/USA 144 × 90, L24 360 × 200, L50
GISS-E2-R NASA GISS/USA 144 × 90, L24 288 × 180, L32

https://esgf-node.llnl.gov/search/cmip5/
http://www.ametsoc.org/PubsAcronymList
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wi
0
 of each particle is identical, which is equal to 1/N. An 

observation Yk then becomes available at timet = tk , which 
can be assimilated to obtain the posterior PDF pN

(
Xk|Yk

)
 

by Bayes’ Theorem:

By using Eq. (1) and (2), we can update the weight at 
tk , which is

In Eq.  (3), p(Yk|Xi
k
) is the PDF of the observations 

Yk given the model state Xi
k
 , and p

(
Yk

)
 is the PDF of 

the observation. Noted that p
(
Yk

)
 can be regarded as a 

normalization factor, which ensures that the sum of the 
weights is equal to one. p(Yk|Xi

k
) is directly related to 

the (known) probability distribution of the observation 
error. If the observations are measured univariately with 
a Gaussian distribution for the measurement error, with 
variance Σ , then.

Here, H is the observation operator, which can be cal-
culated by simply selecting the model equivalents from 
the full state vector. The weight wi

k
 can be calculated from 

Eqs. (3) and (4). Also, if several observations at differ-
ent grids are assimilated simultaneously, the weight wi

k
 is 

updated as follows:

The abovementioned method of weight updating is 
known as the sequential importance sampling (SIS) 
method, which is a useful PF algorithm for designing 
experiments in our work. However, the major problem of 
SIS is that after assimilating the observations at t = tk , the 
weight is concentrated on only a small number of parti-
cles, which is referred to as the degeneracy of the parti-
cles. A strongly degenerated ensemble, where only a few 
ensemble members have weights, cannot yield a reason-
able prediction ensemble for the predicted variable, such 
as the Niño3 and Niño4 SSTAs. A basic solution to avoid 
degeneracy is to perform resampling. Namely, the particles 
with high weight will be duplicated, and particles with low 
weight will be discarded. In addition, setting the proper 
magnitude of the error covariance is also important to 

(2)pN
(
Xk|Yk

)
=

p(Yk|Xk)pN
(
Xk|Yk−1

)

p
(
Yk

)

(3)wi
k
=

p(Yk|Xi
k
)

p
(
Yk
) wi

k−1

(4)
p
(
Yk|Xi

k

)
∼ ��p[−

1

2

(
Yk − H

(
X
i
k

))T
Σ−1

(
Yk − H

(
X
i
k

))
]

(5)

wi
k ∼ exp

[

−1
2

m
∑

j=1

(

Yk − H
(

Xi
k
))TΣ−1(Yk − H

(

Xi
k
))

]

for j = 1, 2,…m

avoid degeneracy. If the observation error is set too small, 
only particles that are close to the observation remain, 
which will cause large degeneracy. However, it will be 
unrealistic if we set observation errors that are too large. 
In this study, after performing tuning experiments, we set 
the observational error to 0.3 �T , where �T is the standard 
deviation of SST.

The increase in prediction utility by assimilation observa-
tions can be evaluated by the predictive power (PP; Schnei-
der and Griffies 1999) and root mean square error (RMSE). 
Herein, PP is defined by

where IE
Xinit

 and IE
Xnew

 are the information entropy of the 
prediction before assimilating observations and after assimi-
lating observations, respectively. The information entropy 
can be estimated by using the PDF of the ensemble in the 
following manner:

here, p(X) is the PDF of the prediction ensemble, which 
is obtained by using the PF method following Eq. (1). To 
calculate the entropy, p(X) could be cut into a bins, which 
are represented by pa(X) . The entropy can be calculated if 
we choose a proper a . In this study, we set a =

√
N + 1 . 

Thus, by calculating the entropy of the initial ensemble IE
Xinit

 
and the new ensemble IE

Xnew
 after assimilation, PP can be 

calculated from Eq. (6). The information entropy measures 
the uncertainty level of the ensemble. Therefore, PP pre-
sents a decrease in uncertainty due to the assimilation of 
observations. The larger the PP is, the greater the decrease 
in the uncertainty of the ensemble prediction. In addition, 
the RMSE, a commonly used measure, is also calculated to 
assess the assimilation performance, which is defined by.

here, d denotes the grid index and z is the total number of 
grid points of the entire computational domain.

As previously illustrated, the core of the PF method is to 
change the weight of each ensemble member according to 
the observation information. Thus, this assimilation method 
can be applied not only to model forward integrations but 
also to offline model ensemble prediction datasets. In this 
paper, all assimilation experiments are conducted by using 
offline model datasets from CMIP5. In this way, several 
models can be involved comprehensively to obtain a model-
independent result. The details of the assimilation experi-
ments for detecting the sensitive area for ENSO prediction 
are introduced in the following section.

(6)PP = 1 − exp(IE
Xnew

− IE
Xinit

)

(7)IE
X
= −

∑
a
pa(X)lnpa(X)

(8)RMSE =

√√√√1

z

z∑

d=1

(
Xd − Yd

)2

for d = 1, 2,… z
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3 � Experiment design

To identify the most sensitive area in terms of the improve-
ment in the ENSO intensity prediction skill in its mature 
phase, we opt to use Niño indices of the boreal winter as 
the major prediction targets. The definitions of two types of 
El Niño events, defined by Kug et al. (2010), are employed 
here. Namely, we use Niño3 and Niño4 SSTA [i.e., the 
SST anomaly averaged over the Niño3 area and the Niño4 
area] to represent the EP- and CP-El Niño events and their 
intensities. An El Niño event occurs if at least one of the 
two SSTAs exceeds 0.5 °C in the boreal winter (November, 
December, and January in the next year). Then, if the Niño3 
(Niño4) SSTA is greater than the Niño4 (Niño3) SSTA, it 
is considered as an EP- (CP-) El Niño event. In this way, 
13 typical EP- El Niño events and 13 typical CP- El Niño 
events are chosen from each of the six models. The spa-
tial and temporal characteristics of these El Niño events are 
shown in Fig. 1. The spatial patterns of El Niño are similar 
in the six models. The Niño indices of all the typical El Niño 
events first increase gradually until the mature phase and 
then decrease in the next year.

All assimilation experiments are conducted in the frame-
work of the identical twin experiment by utilizing the piCon-
trol model outputs from CMIP5. As illustrated in KD13, the 
synthetic truth is selected from one model realization, and 
the observations are produced by adding a normal-distrib-
uted observation random noise. We use the same approach 
to fabricate the observation data. Specifically, we divide the 
500-year integration into 500 one-year segments and choose 
a single one-year period (e.g., from January to December) of 
a typical EP- or CP-El Niño year as a truth run, from which 
the “observation” is made by adding a normally distributed 
observation error to the truth. The other 499 1-year integra-
tions can all be regarded as its “predictions” up to a lead 
time of 11 months. These predictions altogether compose 
a prediction ensemble for this specific EP- or CP-El Niño 
event. These ensemble members are assumed to be inde-
pendent, although there is a correlation between one year 
and the next year. However, if we leave the odd years out, the 
ensemble member will be only half of the entire ensemble, 
which hinders sample diversity. We have to choose larger 
sample numbers instead of better sample independence. 
In addition, choosing segments less than one year is also 
inadvisable because ENSO dynamics are very seasonally 
dependent. Therefore, it is reasonable to obtain the observa-
tion and the prediction ensemble in this way.

The PF method is used to conduct offline assimilation 
experiments via Eq. (4). The basic principle here is to assim-
ilate only one observation data, such as SSTA, in one single 
grid among the Pacific in one experiment. After assimila-
tion, the improvement in the prediction utility is calculated 

to evaluate the importance of this observation. The next 
assimilation is conducted by using another grid observa-
tion. In this way, the assimilation process is repeated until all 
observations in the Pacific are evaluated. The most sensitive 
area targeting ENSO prediction improvement can be located 
by comparing the improvement in the prediction skill among 
all assimilation experiments. In addition, assimilation exper-
iments are conducted repeatedly by using different assimila-
tion times from January to December because we also want 
to address the question of whether and how the sensitive 
areas change with different prediction lead times.

4 � Impact of observations for monitoring 
CP‑El Niño events

To obtain a less model-dependent result, the assimilation 
experiments are conducted by using 78 (6 models*13 events) 
CP-El Niño events as observations, and then the assessment 
is performed by making a composite of all results. Two 
important metrics, PP and RMSE decrease, are employed 
to determine the optimal observations. Our main purpose 
is to improve the El Niño prediction in its mature phase. 
Thus, the evaluation target is the improvement in the predic-
tion skill only in December. Specifically, the weights of 499 
ensemble members are updated by assimilating SST in Janu-
ary (or other months), and then the weights are multiplied 
by the ensemble of the December Niño4 index to generate 
the prediction of CP-El Niño in December, with a lead time 
of 11 months (or other leads).

The spatial pattern of the averaged PP over 78 CP-El Niño 
cases is shown in Fig. 2, obtained by assimilating obser-
vations at different times from January to November. For 
example, Fig. 2a indicates the PP value of December Niño4 
SST index prediction by assimilating January SST, whereas 
Fig. 2k is the PP value of December Niño4 SST index pre-
diction by assimilating November SST. It should be noted 
that the PP value at one grid in Fig. 2 is the resultant PP 
value of the Niño4 SSTA contributed by the assimilation 
of this grid’s observation. Thus, the location with a high 
PP indicates that its observation has a high impact on the 
prediction of the December Niño4 SSTA. Therefore, the 
regions with high PP can be determined as optimal observa-
tion locations. It is obvious in Fig. 2 that the signal changes 
along with the assimilation time. Centers of large PP values 
are mainly located in three areas, including the equatorial 
Pacific, the North Pacific, and the South Pacific. Signals 
continually gather around the Niño3 and Niño4 areas. How-
ever, the largest PP is located first in the Niño3 area and 
then moves to the Niño4 area after July. The value of PP 
in the equatorial Pacific decreases from January to April 
and then increases after May. It seems natural and intuitive 
for the PP value to increase as the lead time decreases in 
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the equatorial Pacific from July to November, as shown in 
Fig. 2, in that the observation can offer more information 
and stronger predictable signals as it is closer to the predic-
tion. However, the opposite situation could also occur when 
some key teleconnection processes contribute to predictable 
signals, for example, a delayed impact of the western Pacific 
Ocean on the ENSO, as described by the delayed-oscillator 

mechanism. This may explain why the PP value decreases 
from January to April, as shown in Fig. 2.

In terms of the PP in the North Pacific area, one large 
center is located at approximately 40° N in the northwest 
Pacific near the Kuroshio Extension. The value there 
increases from January, peaks near August, and then starts to 
decrease. Another large center is observed over the northeast 

Fig. 1   The spatial and temporal composite pattern of the chosen 13 
typical EP- and CP-El Niño events in six CMIP5 models. The truth 
field of SSTA (units: ℃) in the boreal winter of 13 EP- and CP-El 
Niño events are given in the first and the third column. The evolution 
of SSTA (units: ℃) in Niño3 and Niño4 areas of EP- and CP-El Niño 

events are shown in the second and the fourth column. On the X-axis, 
month (0) represents the month of El Niño attaining peak year, and 
month (1) represents the month of decaying the El Niño year. Differ-
ent rows correspond to different models
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Fig. 2   The spatial pattern of the predictive power, PP(NINO4), averaged over 78 CP-El Niño cases, obtained by assimilating observation for a 
given location as a function of assimilation time from a January to l December
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Pacific, which has a similar spatial pattern to the NPMM 
near Baja California in Mexico. This pattern is clearly seen 
from March to June. There are two large centers of PP in 
the South Pacific. One is located over the extratropical 
Pacific and is centered at approximately 130° W–140° W, 
50° S–60° S. The other is located at approximately 30° S 
and has a similar spatial pattern to SPMM. The former fades 
from January to September and rises in October. The latter 
emerges in June and matures in November and December. 
The PP spatial pattern here shows agreement with the error 
pattern of SST, which interferes with CP-El Niño predic-
tions, as shown in Fig. 7 by Hou et al. (2019). The impor-
tance of the initial accuracy in the extratropical Pacific to 
CP-El Niño predictions is also emphasized by Hou et al. 
(2019).

The PP pattern shown in Fig. 2 is a composite of all the 
cases and models. Composites for the cases of each model 
were also calculated (not shown), and all bear great resem-
blances to the composite of all models. That is, there are 
five apparent large centers of PP related to the Decem-
ber CP-El Niño predictions, including the tropical Pacific 
(TP; 120° E–80° W, 23.5° S–23.5° N), subtropical North 
Pacific (SNP; 23.5° N–40° N), subtropical South Pacific 
(SSP; 23.5° S–40° S), extratropical North Pacific (ENP; 
40°  N–66.5°  N) and extratropical South Pacific (ESP; 
40° S–66.5° S).

To quantify the importance of target observations in these 
five areas, we calculated the area averages of PP, as shown 
in Fig. 3. Here, the signal evolution in different areas is well 
illustrated by PP (NINO4) in Fig. 3. It is shown that the 
observations in the TP are essential after August compared 
with those in other areas (Fig. 3f). The PP average value 
over the TP starts to increase dramatically after late spring 
or early summer and peaks in October (Fig. 3a) in almost all 
cases, which may be related to the spring persistence barrier 
for ENSO prediction. The spring persistence barrier is a phe-
nomenon in which the persistence of the ENSO SSTA drops 
significantly in late spring, which can lead to the ENSO pre-
dictability barrier in spring. Herein, the PP value can be 
considered as a precursor signal of ENSO events. Thus, it 
is reasonable that the signal in the tropical area is indeed 
much smaller before boreal spring than that after summer 
in Fig. 3a. However, the signal outside the tropical area is 
slightly larger in the first half-year. In terms of the PP aver-
aged over the SSP and ESP, the PP value peaks in the boreal 
winter and is larger than that of TP before May. For the PP 
averaged over the SNP and ENP, the PP value peaks in the 
boreal summer and is larger than that of TP before July. As 
suggested early, PP is closely related to the change in the 
uncertainty of the ensemble prediction. Thus, Figs. 2 and 3 
imply that when predicting CP-El Niño events before boreal 
spring, the initial conditions of SST outside the tropical area 

Fig. 3   Area average of PP(NINO4) over a tropical Pacific, b subtropi-
cal south Pacific, c subtropical North Pacific, d extratropical South 
Pacific, and e extratropical North Pacific as a function of assimilation 
time (X-axis). Different colors represent different model cases. All 

colorful lines represent the results of 78 CP-El Niño prediction cases. 
The black lines represent the average of all cases. And all the black 
lines in a–e are replotted in f with different colors
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in the Pacific are important and will help reduce the uncer-
tainty of the prediction.

In the previous discussions, the PP measures the result-
ant decrease in prediction uncertainty from the decrease in 
initial errors by assimilation of observations. It is a metric of 
potential predictability in theory and could produce spurious 
results in an ill-designed overconfidence ensemble system, 
for example, a small ensemble spread and a far-from-truth 
ensemble mean. Thus, an actual prediction skill measure 
should be applied to evaluate the impact of potential obser-
vations on prediction. Here, we use RMSE for this purpose. 
Figure 4 shows the change in the RMSE of the Niño4 SSTA 
prediction due to assimilation, where the red areas repre-
sent the improvement in prediction skill after assimilating 
observations in these locations. Unlike the PP value, the 
large center of the RMSE decreases resulting from the SST 
observations is always in the tropical Pacific. The largest 
value is first located in the central equatorial Pacific, then 
moves eastwards in boreal spring, and finally moves back to 
the central equatorial Pacific. The spring persistence barrier 
still interferes with the prediction as shown in Fig. 4d since 
the background value is lowest in April. Observations in the 
South Pacific become more useful in the latter half of the 
year but still cannot be comparable to those in the equato-
rial Pacific. Furthermore, to check the result of all cases 
besides the composite result, we add up the number of the 
cases that give the same result (RMSE decreasing/increas-
ing) as the composite one. The purple (or black) dots on the 
panels in Fig. 4 indicate that there are more than two-thirds 
(or three-fourths) of all cases in which the RMSE decreases 
after assimilating observations at that location, just the same 
as the composite result. It is noteworthy that there are some 
purple dots in the North and South Pacific regions from 
January to April, but the decrease in RMSE is not as large 
as that in the equatorial Pacific. Hence, assimilating observa-
tions in these North or South Pacific regions in late winter 
and early spring does improve the deterministic forecast skill 
of the CP-El Niño, but the improvement is quite limited.

5 � Impact of observations for monitoring 
EP‑El Niño events

Similar assimilation experiments are conducted by using 78 
EP-El Niño synthetic observations. The spatial pattern of PP 
(NINO3), averaged over these 78 cases, is shown in Fig. 5. 
The spatial pattern of PP (NINO3) is similar to that of PP 
(NINO4) in the previous section. In the tropical Pacific, the 
optimal location for predicting the Niño3 index in December 
is more restricted to the eastern Pacific. During the begin-
ning of the year, from January to March, the signal in the 
tropical Pacific is not as strong as that in the extratropical 
Pacific. The prediction of Niño3 suffers from a severe spring 

predictability barrier, and south extratropical signals in Janu-
ary and north extratropical signals in JFMA can provide 
more predictability than the tropical Pacific. In this case, 
adding optimal observations in the extratropical Pacific and 
assimilating them into the model may attenuate the predict-
ability barrier of EP-El Niño prediction.

The area average of PP (NINO3) is also analyzed, as illus-
trated in Fig. 6. It shows that the observations in the tropical 
Pacific after August are significant because the PP average 
of all cases increases from June to September (Fig. 6f). How-
ever, in the first half-year, the signals outside the tropical 
area are important for the prediction of the Niño3 index. 
By comparing Figs. 5 and 6 with Figs. 2 and 3, we can ana-
lyze the difference between the predictions of the two types 
of El Niño events. It seems that the seasonal predictability 
barrier is more severe in EP-El Niño predictions since the 
background value of PP in Fig. 5a–d is slightly less than 
that in Fig. 2a–d. Additionally, there are some spatial dif-
ferences between PP (NINO4) and PP(NINO3) in the North 
and South Pacific. The PP (NINO3) in the northeast Pacific 
is quite small during the whole year compared with PP 
(NINO4) in the northeast Pacific (Fig. 5). The SPMM-like 
spatial pattern is stronger and persists longer in Fig. 5h–l 
than in Fig. 2h–l, which is in agreement with the notion 
that the SPMM is more related to the development of EP-El 
Niño events (Min et al. 2017) through the wind-evaporation-
SST feedback (Xie and Philander 1994). Overall, this finding 
implies that extratropical SST initial conditions can affect 
the prediction of both types of El Niño events, but the extent 
of the effect can be different depending on the lead time of 
the prediction.

Similar to the assessment of the CP-El Niño assimila-
tion experiments, the deterministic prediction skill is also 
evaluated by calculating the RMSE. Figure 7 shows that 
the signal in the tropical Pacific is the most significant at 
all times. There are some large centers outside 30 degrees 
latitude, but they are not as large as those in the tropical area. 
It is also noteworthy that the optimal observations for the 
most effectively improved Niño3 index predictions are found 
at approximately 170° W, 10° N in May (Fig. 7c). Similar 
patterns in the tropical Pacific, as shown in the CP-El Niño 
experiments, can be identified while comparing Fig. 7c–e 
with Fig. 4c–e, both of which bear some resemblances to 
NPMM. Thus, the observations in the NPMM-like region 
during spring are important for predictions of both EP- and 
CP-El Niño events.

6 � Sensitive area for target observations

The previous sections evaluated the relative importance of 
the tropical, subtropical, and extratropical Pacific for two 
types of El Niño predictions at different lead times. We then 
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Fig. 4   As in Fig. 2, but for the results of the decrease in the RMSE 
of the prediction of Niño4 SSTA in December (units: ℃). The area 
with purple dots means that the RMSE of the prediction decreases 

(increases) in more than 2/3 of prediction cases while the compos-
ite results of all cases also decrease (increase) after assimilating the 
observation here. Similarly, the black dots mean greater than 3/4
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Fig. 5   As in Fig. 2, but for the results of PP (NINO3) targeting at EP-El Niño predictions
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attempted to locate the optimal observations of SST for 
ENSO prediction considering these. As shown in the previ-
ous sections, the signals change with different lead times, 
which means that the optimal observations for ENSO pre-
diction should be considered as a function of the start time 
of the prediction. In addition, it is unknown what type of El 
Niño events will occur when issuing a prediction; thus, the 
sensitive area should cover both types of El Niño events. 
Hence, we propose to locate optimal observations case by 
case, as in the general operations adopted in the target obser-
vation for ENSO in Duan et al. (2018b).

The main idea is to sort PP values. The details of the idea 
are illustrated as follows: First, we visit all the 156 predic-
tion cases (78 CP-El Niño events and 78 EP-El Niño events) 
as previously mentioned and only select the spatial grid 
points with decreases in the RMSE. These selected spatial 
grid points are further sorted in descending order accord-
ing to their PP value, and the top 15 grids, which are called 
PP max points hereafter, are identified. As a result, we can 
obtain a 12*156 (12 months and 156 cases) series of 15 PP 
max points. Second, we split these series into 4 groups, each 
containing 3*156 series (3 months and 156 cases), to use 
different months (January, April, July, and October) to start 
the prediction. Third, from each group of 3*156 samples, we 
compute the frequency of PP max that occurred for each grid 
point across the Pacific domain. To express this procedure 
more clearly, we use a formula to show the calculation of 
frequency, which is denoted by F, as follows:

where t = 1, 2, 3, and 4, represent different groups; ct
i,j

 is the 
number of the grid points (i, j) being the PP max points in 
the 3*156 series in the t group; and L is the “3*156” series. 
Finally, we choose grids with the first 10 (largest) F values 
as the optimal observation area for two flavors of El Niño 
predictions. The spatial distributions of the F value in dif-
ferent seasons are shown in Fig. 8, where the red dots repre-
sent the sensitive areas.

As shown in Fig. 8, the optimal observations in JFM are 
all located in the North Pacific, with 8 grid points in the 
extratropical Pacific near the Kuroshio Extension region 
and 2 grid points along the west coast of North America. 
In AMJ, the sensitive area contains 3 grid points in the 
northwest Pacific and 7 grid points on the equator in the 
eastern Pacific. In JAS and OND, all optimal observations 
are located on the equator. To obtain a long-time standing 
observational position and to consider all the seasons to start 
predictions, we propose combining the sensitive areas in dif-
ferent seasons to get an array with 31 grid points, as shown 
in Fig. 9, which includes 21 grid points in the equatorial 
Pacific and 10 grid points in the North Pacific.

The optimal observational array identified here implies 
the importance of the uncertainties of SST outside the tropi-
cal Pacific, especially the North Pacific, to both types of El 
Niño predictions. Several recent studies have shed light on 

(9)Ft
i,j
=

ct
i,j

L
× 100%

Fig. 6   As in Fig. 3, but for the results of PP (NINO3) targeting at EP-El Niño predictions
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Fig. 7   As in Fig. 4, but for the results of the decrease in the RMSE of the prediction of Niño3 SSTA in December (units: ℃)
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the mechanism of the extratropical and tropical interaction, 
which support our findings (Alexander et al. 2010; Amaya 
2019; Ding et al. 2015; Hou et al. 2019; Jin 1997; Vimont 
et al. 2003). Specifically, it is believed that the abnormal 
atmospheric status associated with the North Pacific Oscil-
lation (NPO) forces the SST in mid-latitudes and leaves a 
“footprint” in the boreal winter (Vimont et al. 2003). Thus, 
the optimal observational array detected in JFM is mainly 
located in the large center of the NPO-forced SSTA area. In 
boreal spring, the NPO-forced SSTA variability maintains 

and propagates into the tropics southwestwards through 
interaction between the SSTAs, surface wind anomalies, 
and latent heat flux anomalies, which is known as WES 
feedback (Xie and Philander 1994), corresponding to the 
increase of the F value in the eastern North Pacific near Baja 
California as shown in Fig. 9b. In terms of ocean circulation, 
off-equatorial wind stress curl anomalies help transport the 
water mass meridionally, which can charge or discharge the 
heat content in the equatorial Pacific (Anderson et al. 2013). 
In addition, the propagation and reflection of ocean Rossby 

Fig. 8   The F indices (units: %) computed based on the Predictive Power and the decrease in RMSE in all assimilation experiments in a JFM, b 
AMJ, c JAS, d OND. The red dots represent the top 10 sensitive grid points determined by the F indices
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waves triggered by the thermocline perturbation in verti-
cal and their corresponding Kelvin waves help bring up the 
SSTA from the western equatorial subsurface Pacific to the 
eastern equatorial surface Pacific (Alexander et al. 2010). 
Under these circumstances, the F value in the equatorial 
Pacific becomes larger after late spring.

7 � Verification experiments

After designing the optimal observational array, we per-
form a verification test to verify that the optimal obser-
vational array can efficiently improve ENSO predictions. 
We still use the PF method to be consistent with the previ-
ous experiments. However, the challenge here is that the 
ensemble will degenerate dramatically if the observations 
on the optimal observational array are assimilated simul-
taneously. To mitigate the degeneration, a large ensemble 
is created by combining the ensembles of the 6 models, 
containing 3000 (6 models * 500 years) one-year predic-
tion ensemble members. For this circumstance, we use the 
real observation dataset instead of the fabricated observa-
tions because the model errors will be involved anyway. 
Thus, 21 El Niño events from 1950 to 2020 are chosen as 
observations by using the monthly mean oceanic dataset 
from the Extended Reconstructed Sea Surface Temper-
ature (ERSST) version 5 data. The assimilation experi-
ments are conducted using the PF method, as explained in 
Eq. (5), in the sensitive area for three months to calculate 
the weights of 3000 members and use the same weights in 
the following months to give predictions. In addition, the 
observation error is set to 0.6 �T  to diminish the degen-
eracy of particles.

The ensemble prediction of the Niño3 index for the 21 
El Niño events, which are obtained by assimilating optimal 
observation data from April to June, is shown in Fig. 10. It 
is shown that the spread of the Niño3 ensemble decreases 
significantly when simultaneously assimilating several 
optimal observation data from April to June. However, 
the spread gradually increases with a longer lead time. 
Although the spread of the prediction is large in Decem-
ber, the ensemble members for most cases are distributed 
on both sides of the observation, and the ensemble mean 
is closer to the truth in most cases (Fig. 10). Similar pre-
dictions are also conducted for the Niño4 SSTA index for 
different seasons (JFM, JAS, and OND), showing simi-
lar results (not shown). In summary, though interfering 
with model errors, most of the ENSO predictions improve 
after assimilating target observation data in all seasons, 
especially when the predictions are made after June, and 
the warm phase in December is correctly predicted for all 
events.

A further examination is conducted using a random 
experimental strategy. We randomly choose 31 grid points 
in the whole Pacific as a random array 100 times and repeat 
the PF assimilation procedure and ensemble prediction. 
Figure 11 shows the prediction errors from the random 
experiment against the same errors from the assimilation 
of the above optimal observations. The prediction errors 
from the assimilation of optimal observations are smaller 
than those from random cases for both the Niño3 index and 
Niño4 index. Moreover, the result from the optimal obser-
vational array is superior to that from 98% (95%) of the 
randomly selected arrays in terms of the Niño3 (Niño4) 
indices through significant examinations. In addition, the 
effective sample size at the last assimilation step in all cases 
is calculated. It is worth mentioning that the assimilation of 
randomly chosen observations shows a more severe degen-
eracy than that of optimal observations. For the former, the 
average effective sample size is only about 2 in contrast to 
15 for the optimal observation assimilation. This may be 
due to different observation samples and also the involved 
model error. However, stochastic universal resampling (Van 
Leeuwen 2015) steps are taken after the assimilation step, 
which can alleviate degeneracy in all cases. However, a resa-
mpling strategy is taken after the assimilation step in all 
cases to increase the effective sample size, which prevents 
all cases from the most severe degeneracy. Overall, these 
results indicate that the improvement in prediction skills by 
optimal observation is effective and significant.

Fig. 9   Stable optimal observational array for two types of El Niño 
predictions
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Fig. 10   Ensemble prediction of Niño3 index (units: ℃) in model 
ensembles: a the origin ensemble forecast before assimilation; b–v 
new ensemble predictions after assimilating optimal observed ocean 

temperature during April, May, and June. Red lines represent the 
observations; green lines represent the ensemble mean forecast after 
assimilation; the areas shaded in gray represent the probability
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8 � Conclusion and discussion

In this study, we quantify the relative importance of the SST 
observations in different areas of the Pacific for two types of 
El Niño predictions and explore the sensitive areas for target 
observations for CP- and EP-El Niño events by using the PF. 
Two measures, PP and RMSE, are used to describe the rela-
tive importance of observations in different areas. The initial 
uncertainty of the SST in the tropical Pacific, subtropical 
Pacific, and extratropical Pacific can exert influences on both 
CP-El Niño predictions and EP-El Niño predictions. The 
relative importance of different areas changes with the lead 
times of predictions. The tropical Pacific is the most sensi-
tive area during the latter half-year. During spring, the extra-
tropical signals cannot be disregarded and can even surpass 
the tropical signals, especially in the North Pacific. Subtropi-
cal and extratropical observations do play important roles in 
decreasing the prediction uncertainty, although their impact 
on the decrease in the RMSE of predictions is limited. A 
quantitative method based on frequency distribution is used 
to determine the optimal observations of El Niño predictions 
with the consideration of different measurements, different 
El Niño types, and different start months of predictions. Four 
optimal observational arrays are designed concerning four 
start months of predictions. The optimal observations move 
from the extratropical Pacific Ocean to the tropical Pacific 
Ocean with the start month of the prediction set before and 
after summer. Moreover, a robust and long-time standing 
optimal observational array for ENSO prediction is designed 
by combining these four optimal observational arrays. The 
final optimal observational array contains 21 grid points in 
the equatorial Pacific and 10 grid points in the North Pacific. 
It is shown that the optimal observational array can achieve 
more improvement in the El Niño prediction than almost all 
randomly chosen arrays.

The predictability of the two types of El Niño events has 
been explored for years. By using the Zebiak-Cane model, 
Duan et al. (2018b) designed an array of target observa-
tions to improve two types of ENSO predictions. The spa-
tial pattern of the F indices in JAS, as shown in Fig. 8c, 
presents a pattern similar to that in Fig. 6a of Duan et al. 
(2018b), emphasizing the importance of the SSTA in the 
central equatorial Pacific and the eastern tropical Pacific. 
By using the intermediate coupled model (ICM) and CNOP 
method, Tao et al. (2017) and Mu et al. (2019) found that the 
CNOP-related initial errors that affect the ENSO prediction 
show seasonal dependence. We had similar findings of the 
spatial pattern of PP changing with lead times of predic-
tions. However, due to the limitation of the ZC model and 
the ICM, they could only consider the tropical Pacific. In 
addition, our finding of the spatial structure of predictive 
power in the tropical pacific is in agreement with the spatial 
structures of optimal SST precursors in Fig. 8 by Mu et al. 
(2019). By using the PF method, KD13 found that the ini-
tial errors at Niño3 and Niño4 areas are the most sensitive 
for the prediction of the EP- and CP-El Niño events at the 
lead time of three months, respectively. Utilizing the same 
assimilation method, we have similar findings. However, we 
extend their work in three aspects. First, we focused on the 
whole Pacific instead of only the tropical Pacific in KD13, 
finding that the initial errors in the extratropical Pacific 
should not be ignored in ENSO predictions; Second, we use 
two measures, not only potential skill (predictive power) but 
also deterministic skill to detect the sensitive areas. Third, 
we consider the optimal sensitivity areas as a function of 
lead time, allowing us to explore the continuous evolution of 
optimal error growth with the lead time of prediction from 
one month to 12 months.

The PF-based target observation method can detect the 
signal of El Niño events in different lead times. Hence, this 

Fig. 11   The bar charts of the skills of the “hindcast” forecast when 
data assimilations were made in the sensitive area (SA, black bars) 
and the other 100 randomly selected arrays (R100, white bars). a 
Average prediction errors of Niño3 SSTA in December (units: ℃); b 

average prediction error of the Niño4 SSTA in December (units: ℃) 
among all 84 prediction cases. Grey bars denote the prediction errors 
of the climatology predictions. Red lines denote the standard devia-
tion among all 100 random cases
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research also helps to understand the ENSO mechanism 
in its developing phase. The NPMM-like signal peaks in 
spring, while the SPMM-like signal peaks in late fall in both 
types of El Niño events, and their signal strengths are not as 
strong as that of the tropical signal. This finding indicates 
that the tropical Pacific Ocean is always crucial to the forma-
tion of both types of El Niño events, while the subtropical 
and extratropical Pacific can help adjust the zonal maximum 
SST center and the amplitude of the El Niño events during 
their developing stages. This is in agreement with Fan et al. 
(2020), who indicated that the NPMM can be a modulator, 
rather than a generator for ENSO.

The PF assimilation method applied in this paper has 
advantages, including easy operation, offline implemen-
tation, and less model dependence. The drawback of this 
method is the degeneracy of particles, which prevents us 
from using a sequential assimilation-based approach because 
only a few members will remain if too many observations 
are assimilated. Thus, some techniques including adding 
localization can be considered and employed to ameliorate 
the target observation method in the future. If the degen-
eracy problem can be solved, a sequential assimilation-based 
approach and multiple variables including sea ocean tem-
perature and sea surface wind can all be considered when 
detecting target observations in future studies.
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