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Abstract

In the present study, a nonlinear forcing singular vector (NFSV)-based data

assimilation approach is adopted to quantify the model errors of an intermedi-

ate coupled model (ICM) and their effects on El Niño predictions. Then, the

tendency errors of the NFSV structure (NFSV-TEs) that represent the com-

bined effect of different kinds of model errors are determined in terms of the

sea surface temperature (SST) anomaly component in the El Niño predictions.

The NFSV-TEs exhibit large values over the eastern equatorial Pacific and on

model boundaries, indicating that large model errors exist there. In addition,

two dominant NFSV-TEs are found: one is E-type that NFSV-TEs are mostly

located in the far eastern Pacific, and the other is the D-type that presents posi-

tive anomalies in the eastern equatorial Pacific (EQeast-TEs) and negative

anomalies in the central equatorial Pacific (EQcenter-TEs). The D-type NFSV-

TEs often occur during realistic predictions of El Niño events. Simulations

using the ICM equipped with the NFSV-TEs are then implemented to study

the effect of NFSV-TEs on the ENSO predictions. It is shown that the ICM

forced by the EQeast-TEs shows better performance in reducing prediction

errors and systematic bias, while the EQcenter-TEs forcings are superior to the

EQeast-TEs forcings in reproducing the horizontal distribution of the SST

anomaly, especially in identifying the difference between the central tropical

(CP) and eastern tropical (EP) El Niño. This is because EQcenter-TEs forcings

can adjust not only the wind but also the ocean processes to yield realistic air-

sea conditions favouring CP-El Niño formulations. Therefore, to make a better

prediction of CP-El Niño, the model uncertainties occurring in the central

tropical Pacific should be considered preferentially and finally removed in real-

istic predictions of El Niño diversity.
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1 | INTRODUCTION

The El Niño-Southern Oscillation (ENSO) is widely
known as a short-term climate phenomenon with high

global climate impacts (Philander, 1983). During El Niño
years, the anomalous warming sea surface temperature
(SST) in the tropical Pacific typically changes the atmo-
spheric circulation and redistributes precipitation
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(Ropelewski and Halpert, 1987), thereby tremendously
influencing the social economy (Hansen et al., 1998;
Shuai et al., 2013). The importance of understanding and
predicting ENSO phenomena is therefore self-evident
(Solow et al., 1998). Fortunately, since El Niño was first
successfully predicted by a dynamic model during the
1980s (Zebiak and Cane, 1987), an increasing number of
general coupled climate models with various complexities
have been developed to explore the Earth system and pre-
dict ENSO events (see website at https://iri.columbia.
edu/our-expertise/climate/forecasts/enso/current/).

Although great efforts have been made to perfect
ENSO-related climate models, unsatisfactory problems
still exist in realistic predictions of ENSO. One well-
known issue is the so-called ‘spring predictability barrier
(SPB)’, in which almost all models show the poorest
grades in ENSO predictions across boreal spring (Duan
and Mu, 2018). Previous studies projected the SPB prob-
lem onto the initial conditions and stochastic processes
that the climate models unsolved (Mu et al., 2007; Duan
and Hu, 2016; Hou et al., 2019; Tan et al., 2020). Hence,
advanced data assimilation approaches are widely
adopted to equip climate models to yield optimal initial
fields (Chen et al., 2004; Zheng et al., 2007; Gao et
al., 2016; O'Kane et al., 2019). By generating different
samples, the ensemble mean is usually performed to
remove unpredictable processes as well as the effect of
stochastic processes (Liu et al., 2019).

Since the former efforts are made at the level of the
individual model, the improvement of ENSO prediction
skill is largely controlled by the model itself. Although
intermediate coupled models capture the main processes
of ENSO and have skills in ENSO predictions, the
improvement of ENSO prediction is limited due to com-
plex model errors. For general coupled models, undeni-
able biases still exist in the simulation of climatology
with current models (Wang et al., 2014), which could
contaminate the interannual simulation, for example,
ENSO phenomena. For instance, the negative SST biases
that are evident along the central Pacific make models
hardly simulate the central tropical Pacific El Niño (CP-
El Niño) events in which the SST anomalies are centred
in the central tropical Pacific (Leloup et al., 2008; Ham
and Kug, 2012). Most models can describe only one varia-
tion of El Niño, that is, the eastern tropical Pacific El
Niño events (EP-El Niño), of which the warming peak is
located in the eastern equatorial Pacific. One possible
reason is that the climatological zonal SST gradient over
the western central tropical Pacific simulated by the
models is not as strong as in observations, giving rise to
weak zonal advection feedback (Feng et al., 2020). Note
that zonal advection feedback is an important ocean pro-
cess in central tropical Pacific warming, and the CP-El

Niño, therefore, fails to be present in the models with
weak zonal advection. It is conceivable that the predic-
tion of CP-El Niño is unsatisfactory using these models
(Xue et al., 2013; Ren et al., 2018). Thus, models usually
lose skills in predicting the type of El Niño that will occur
when the prediction time is larger than 3 months (Tao et
al., 2020). This is another issue in realistic predictions of
ENSO, save for the previously mentioned SPB
phenomena.

Compared with the initial condition errors, one that
should be highlighted is that the role of model errors is
equally even much more important in ENSO predictions
as the lead time increases (Zheng et al., 2009; Tao and
Duan, 2019). It is therefore crucial to study the relation-
ship between model errors and prediction error growth.
Focusing on the uncertainties in model parameters, Mu
et al. (2010) introduced a conditional nonlinear optimal
parametric perturbation (CNOP-P) approach to identify
the most unstable parametric perturbation in prediction.
It considers the nonlinearity of climate events and thus
has the ability to quantify the nonlinear effect of model
parameter uncertainties on error growth in prediction.
Based on the CNOP-P approach, subsequent studies
pointed out that the SPB issue is also attributable to the
uncertainties in the model parameters (Tao et al., 2019)
and thus theoretically proved the fact that optimizing the
model parameters can reduce the SPB phenomena and
prolong the valid prediction time (Wu et al., 2016).

Not just originated from the parameter errors, uncer-
tainties in models are of multiple origins and interacting
with each other. It is therefore unrealistic to study the
impacts of each source of model error. To better untangle
the model error effects, one feasible approach is to con-
sider the combined effect of model errors with various
sources (Zheng and Zhu, 2016). The nonlinear forcing
singular vector (NFSV) approach proposed by Duan and
Zhou (2013) is the method. The NFSV approach is used
to detect the most growing type of the model tendency
perturbation that can induce the largest prediction error
growth, where the model tendency perturbation takes all
responsibility that causes model uncertainties. The NFSV
approach has been successfully applied to weather and
climate events to study their predictability (Duan et
al., 2016; Tao and Duan, 2019; Tao et al., 2020; Yao et
al., 2021). For instance, with an ENSO model [i.e. devel-
oped by Zebiak and Cane, 1987], Duan et al. (2016) found
that NFSV-related model tendency perturbations (hereaf-
ter referred to as NFSV-TPs) of the SST model that pre-
sent negative values in the eastern equatorial Pacific and
positive values in the central Pacific could destroy the El
Niño prediction to the largest extent. The prediction
errors caused by those NFSV-TPs are of prominent sea-
sonality with the fastest error growth in spring, indicating
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that reducing NFSV-like model errors is the key to solv-
ing the SPB phenomena during ENSO prediction. NFSV-
TPs are often concentrated in a specific area (i.e. the cen-
tral-eastern tropical Pacific), which may suggest sensitive
areas of ENSO prediction associated with model tendency
errors. That is, the model tendency uncertainties in the cen-
tral-eastern tropical Pacific play dominant roles in ENSO
prediction errors as well as SPB-like error growth. The study
with the NFSV approach opens up a new path for improv-
ing ENSO predictions (e.g. Tao and Duan, 2019).

However, the shortcoming of the former study is that
the NFSV-TPs derived are inconstant and stem from an
idea experiment where the true state is generated by the
model alone. Whether this kind of NFSV-TP exists and
influences realistic predictions is still unknown. In addi-
tion, one may question whether the model tendency
errors in the central-eastern tropical Pacific are truly an
important source of prediction errors in practice, espe-
cially for different types of El Niño events. To this end, in
the present study, a series of sensitivity experiments
regarding ENSO were performed during the period from
1950 to 2010 to demonstrate the impacts of the tendency
errors. To quantify the model tendency errors in ENSO
realistic predictions, first, the NFSV-based assimilation
that deals with the model errors by assimilating observa-
tion data was adopted to obtain the tendency errors that
represent the total effect of model errors with various
sources (Duan et al., 2014; Tao et al., 2020). We find that
the tendency errors are usually located in the central and
eastern equatorial Pacific, of which type is quite similar
to the results from Duan et al. (2016). Then, the main sci-
entific issues that will be answered in the present study
are as follows: What are the model errors look like in
realistic predictions? What are the different effects of
local tendency errors on El Niño diversity prediction?
How do they influence the El Niño predictions?

The rest of this article is organized as follows. Sec-
tion 2 gives descriptions of the ENSO prediction model
and the NFSV-based assimilation approach. Section 3
illustrates the NFSV assimilation-determined tendency
errors (NFSV-TEs) with the ENSO model. In Section 4,
the impact of local tendency errors on the predictions of
the ENSO-related SST anomaly and different types of El
Niño events are demonstrated. Section 5 is narrowed
down to reveal the dynamics involved with the evolution
of the predicted CP-El Niño. The former results are con-
cluded and discussed in Section 6.

2 | MODELS AND METHODS

In this section, the ENSO prediction model used in this
study is first reviewed briefly. Then, the NFSV-based data

assimilation approach that is used to quantify the model
uncertainties in ENSO predictions is introduced.

2.1 | ENSO prediction model and
initialization scheme for ENSO prediction

The ENSO model adopted in the present study is an
intermediate complexity model (ICM) developed by
Zhang et al. (2003). It is an air–sea coupling regional
model that covers only the tropical Pacific. Three main
submodels make up the ICM: a dynamical intermediate
ocean model (IOM), an empirically determined wind
anomaly model, and an SST anomaly model. The wind
model is constructed based on the highly coupled SST
and wind fields (denoted as τ), which can be expressed as

τ=g xð Þ, ð1Þ

in which x is the SST anomaly and g denotes the empiri-
cal relationship between the SST anomaly and τ based on
historical data. The SST anomaly model representing the
thermodynamics over the surface mixed layer is a fully
nonlinear model, which can be symbolically written as

xt=F x0,m, tð Þ, ð2Þ

where m includes the dynamic ocean field (i.e. ocean cur-
rent in the mixed layer and sea level anomaly) from the
IOM and the wind anomalies derived from Equation (1),
and F denotes the nonlinear propagator of the govern-
ment equation. With the ocean current anomalies offered
by the IOM and the wind stress anomaly provided by the
wind model, the SST anomaly can be updated in each
step with the SST anomaly model. In the ICM, the simu-
lated SST anomaly evolutions can be well-explained by
the Bjerknes feedback and the charge–discharge mecha-
nisms. Therefore, the ICM has skills in ENSO prediction
in practice (Zhang and Gao, 2016). The ICM, termed
IOCAS ICM, has recently been included by the Interna-
tional Research Institute for Climate and Society (IRI) as
one member of real-time ENSO prediction products (see
website at https://iri.columbia.edu/our-expertise/climate/
forecasts/enso/current/). For convenience, more details
with regard to the IOM and ICM are provided in
Keenlyside and Kleeman (2002) and Zhang et al. (2005),
respectively.

In the experiments, we adopt the same initialization
scheme as Zhang et al. (2005) to initialize the ICM before
the prediction is made. First, the observed monthly SST
anomalies are utilized to generate the wind field by Equa-
tion (1) from 1854 to the time when the prediction is
started. Then, the reconstructed wind field forces the
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IOM and the SST anomaly model to generate the initial
conditions of the dynamic and thermodynamic fields.
Finally, the observed SST anomaly at the start time is
brought into the SST model to generate more realistic ini-
tial conditions. Since this procedure effectively avoids the
‘initial shock’ and balances the model and observations,
the ICM shows high performance in ENSO predictions
within several-month lead times (Zhang et al., 2005). In
the present study, the observed monthly SST field, from
the third version of the National Oceanic and Atmo-
spheric Administration (NOAA) Extended Reconstructed
SST (ERSSTv3; Smith et al., 2008), is the only data used
to initialize the ICM and estimate the prediction skills.

2.2 | NFSV-based assimilation and its
application to the ICM

2.2.1 | NFSV and NFSV-assimilation

The NFSV approach first proposed by Duan and
Zhou (2013) is a nonlinear extension of forcing singular
vector. The basic idea of NFSV is to search an optimal
tendency perturbation (referred to as NFSV-TP) that can
make the prediction depart the most from the reference
state in a nonlinear climate/weather system under the
assumption of the perfect initial condition. Mathemati-
cally, the calculation of NFSV-TP f � is equally to solving
the following maximum problems:

J f �ð Þ=max
f ϵΩ

M t x0, fð Þ−Mt x0,0ð Þk k, ð3Þ

where M t x0,0ð Þ is the reference states generated by the
original model without tendency perturbation at t inte-
gral time from initial field x0, and M t x0, fð Þ is the
perturbed result by the model tendency perturbation f ,
and f ϵΩ denotes the constraint condition of the tendency
perturbation; �k k is an L2 norm square to measure the
tendency perturbation-induced error growth. Then, the
object function J f �ð Þ quantifies the second predictability
of the climate/weather event and f � denotes the most
unstable tendency perturbation when Equation (3) is
satisfied.

In practice, the original model we used is an analogue
of the climate system that cannot completely describe the
earth system. Thus, model uncertainties exist in realistic
simulations and predictions. As mentioned in introduc-
tion, Duan et al. (2014) contributed all model errors to
the model tendency errors and proposed an optimal forc-
ing vector (OFV) approach to correct the model and
make the simulation closest to the observation. In short,
the OFV is obtained by solving the minimum problem:

J f �0, f
�
1,…f

�
t

� �
=min

X
t
M t x0, f tð Þ−xobsk k, ð4Þ

where xobs is the observation. When the object function J
is close to 0, the model with the tendency forcings
f �0,f

�
1,…f

�
t

� �
can simulate the evolution of the climate in

agreement with the observations. In this case, the
corrected model M t x0, f tð Þ can be a ‘perfect’ analogue of
the realistic climate system.

Clearly, the OFV approach is an extension application
of the NFSV, and is similar to the variational data assimi-
lation technique where the observations are assimilated
into the model to obtain the model tendency perturbation
and correct the model. In particular, the OFV is another
form of the NFSV in mathematics [see details in Tao and
Duan, 2019], which means that the Equation (4) can be
changed as a form of NFSV:

J f �0, f
�
1,…f

�
t

� �
=max

f ϵΩ

X
t
M t x0, f tð Þ−Mt x0,0ð Þk k, ð5Þ

where the tendency forcing is constraint in the space of

Ω¼ f �0, f
�
1,…f

�
t

� �jJ f �0, f
�
1,…f

�
t

� ��

¼ min
X

t
M t x0, f tð Þ−xobsk k

�
,

ð6Þ

Thus, for unity, the OFV approach is termed NFSV-
assimilation in Tao and Duan (2019). Physically, the
NFSV-assimilation is to search for a kind of tendency per-
turbation that is constrained by the observations and can
make the perturbed state departure from the reference
state at the greatest extent but be closest to the observation.

The computational procedure of the NFSV and
NFSV-assimilation are also quite similar. Figure 1 shows
the procedures of NFSV and NFSV-assimilation analyses.
As for the NFSV analysis, first, given the initial field x0,
we integrate the model and obtain the reference state
Mt x0,0ð Þ. In the meantime, we superimpose the first ten-
dency guess f that has been adjusted to satisfy the con-
straint condition of the tendency perturbation into the
tendency equation of the model, and forward integrate
the perturbed model with the initial field x0 to generate
the perturbed result Mt x0,fð Þ. Then, the object function
J is determined and is input into the optimization algo-
rithm (e.g. artificial intelligence, gradient descent method
related algorithm). If not meeting the requirement of
accuracy, a new tendency f is generated by the optimiza-
tion algorithm, which then enters the next loop to calcu-
late the object function again until satisfying the
accuracy or exceeding the numbers of pre-set iteration
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steps. As for the NFSV-assimilation analysis, the main dif-
ference from the NFSV analysis is that the reference state
is replaced by the observation. In addition, the optimiza-
tion algorithm is used to minimize the object function.

2.2.2 | ICM equipped with the NFSV-
assimilation

Section 2.1 shows that the ICM is an artificial system to
represent the ENSO-related climate system and depicts
only the interannual variability of SST in the tropical
Pacific. Thus, inevitable uncertainties exist in the model
itself during the prediction due to the high simplification.
Here, we apply the previously mentioned NFSV-based
assimilation approach to the ICM to determine the model
tendency errors in the hindcast of ENSO during the
period from 1950 to 2010.

According to the Equation (4), the NFSV-assimilation
can be mathematically written as a form of data assimila-
tion scheme:

J f �0, f
�
1,…f

�
t

� �
=min

X
t

Hx f t , tð Þ−xobs tð Þð ÞTR−1 Hx f t , tð Þ−xobs tð Þð Þ,

ð7Þ

in which H and R denote the observation operator and
observation error covariance, respectively. Here, the H
and R are identity operators for convenience.
x f t, tð Þ=Mt x0,f tð Þ is the predicted SST anomaly that is
the forward integral result of the model with the ten-
dency perturbation f t, which can also be written as:

x f t, tð Þ=Ft �xt−δt+f t � δt: ð8Þ
where Ft is the integral operator of the ICM. Clearly,
f �0, f

�
1,…f

�
t

� �
is a series of optimal perturbations that can

make the simulation closest to the observation when the
object function J is close to 0. If the initial condition is
perfect, these tendency perturbations f �0, f

�
1,…f

�
t

� �
there-

fore can describe the model unsolved processes revealed
in the tendency equation to some extent when simulating
the time series of the observation xobs tð Þ. In a sense, the
model with the optimized tendency perturbation, that is,
x f t, tð Þ=Ft �xt−δt+f �t � δt, can be assumed to be a nearly
‘perfect’ model. Then, from another approach, the nega-
tive f �0, f

�
1,…f

�
t

� �
can be regarded as the model tendency

errors when a prediction is made with the original model
without model tendency perturbation, that is,
x 0, tð Þ=Ft �xt−δt. For convenience, the NFSV assimila-
tion-optimized tendency perturbations are termed NFSV-
tendency errors (NFSV-TEs).

In the present study, the tendency perturbations of
the SST anomaly model are only considered since we
only focus on the SST prediction. It means that f t is only
added to the SST tendency equation. In addition, we
assume that the tendency errors are constant within
1month both to reduce the computational complexity
but also because our main purpose is related to the pre-
diction of the interannual variability. Within a 1-year
assimilation window, we can obtain 12 members of opti-
mal tendency forcings for 12 calendar months using the
NFSV-assimilation. In practice, these tendency forcings
are the mixed production of the initial and model errors.
To this end, we performed a composite analysis on these
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FIGURE 1 A schematic diagram illustrating the (a) NFSV and (b) NFSV-assimilation analyses
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tendency forcings whose months overlap in different
assimilation windows to filter the effect of initial errors
and obtain the ‘pure’ errors from the model. For exam-
ple, to obtain the NFSV-TEs in December 2000, the

NFSV-assimilations are implemented with various assim-
ilation windows (e.g. 2000.1–2000.12, 2000.2–2001.1, …,
2000.12–2001.11). Then the relative pure model errors,
that is, NFSV-TEs in December 2000, is obtained by a

(a)

(b) (c) (d)

30°N

15°N

15°S

30°S
140°E 140°W 100°W180°
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FIGURE 2 The standard deviation of the NFSV-TEs and corresponding three leading EOF modes

(a) (b) (c)

(d) (e) (f)

FIGURE 3 Power spectra of the principal components of the NFSV-TEs and their lag-correlations with the Niño indices. The green

dotted curves in upper panels indicate the 90% significance level. The black, blue and red curves in bottom panels are lag-correlations with

the Niño3.4, Niño3 and Niño4 indices, respectively
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composite of those optimal tendency forcings at the
same time.

Finally, by assimilating the ERSSTv3 data from 1950
to 2010, a total of 61×12 samples of the monthly NFSV-
TEs during this period can be obtained via the NFSV-
based assimilation approach (shown in Figure 2). The
acquired NFSV-TEs make sense in representing the total
effect of unsolved mechanisms or model errors while
depicting realistic SST evolution. When the NFSV-TEs
are added to the tendency equation of the SST model, the
NFSV-TEs-forced ICM can successfully reproduce the
ENSO evolution (Figure 4).

3 | NFSV-TES IN THE ICM

Figure 2a displays the standard deviation of the NFSV-
TEs during the assimilation periods from 1950 to 2010.
The NFSV-TEs of the ICM feature the largest errors in
the central and eastern tropical Pacific, indicating that
significant model uncertainties exist in the SST simula-
tion and prediction in these regions. In addition, large
values of the NFSV-TEs are also found over the northern
and southern boundaries of the ICM. This shortcoming
of the model probably lies in the fact that the ICM is a
regional model. Thus, the ICM fails to describe the SST
variability near the boundary of the model. The sources
of equatorial NFSV-TEs are complex and relate not only
to tropical thermodynamics but also originate from
extratropical processes that are indescribable in the ICM
(see the discussion section of the paper).

An empirical orthogonal function (EOF) is
implemented with the total NFSV-TEs to better show the
temporal and spatial variability of the NFSV-TEs. Results
are shown in Figure 2b–d. The first leading EOF mode of
the NFSV-TEs (denoted as EOF1; the second mode is
EOF2, and so on) that explains 47.7% of the variance is
mainly concentrated on the far eastern tropical Pacific
and extends to the central-eastern equatorial Pacific. The
pattern of EOF1 is quite similar to the E-type of El Niño
(Takahashi et al., 2011), which means that the ICM has
poor skills and large model uncertainties in SST predic-
tion in the far eastern tropical Pacific where the SST vari-
ability and predictability are dependent much on the
nonlinear processes (Takahashi and Dewitte, 2016; Ding
et al., 2018; Ying et al., 2019). Thus, here, the EOF1 is ter-
med as E-type NFSV-TEs. On the other hand, the EOF1
is of high frequency in time (less than 1-year, see
Figure 3a), indicating that the model errors of ICM are
also related to the poor performance in seasonal and sub-
seasonal processes. For the third leading mode of the
NFSV-TEs, EOF3 mainly describes the model uncer-
tainties near the model boundary and is of low frequency
in time (about 10-year, see Figure 3c). In contrast to
EOF1 and EOF3, EOF2 exhibits a strong signal both in
the subtropical Pacific and along the equator. In particu-
lar, from the lag-correlation between the principal com-
ponent of EOF modes and the Niño indices (Figure 3d–f),
the variability of EOF2 is noticeably related to the Niño
3.4 index. It is suggested that EOF2-type tendency errors
are usually prominent in realistic predictions of El Niño
and La Niña events. One can find that EOF2 of the
NFSV-TEs presents a dipole pattern along the equator
with a positive value in the eastern Pacific and a negative
value in the central tropical Pacific (referred to as D-
type), which is remarkably similar to the out-phase
NFSV-TPs from the ideal study by Duan et al. (2016).
This result exactly confirms the fact that NFSV-TPs exist
in realistic ENSO predictions. By adding the NFSV-TEs
to the tendency equation of the SST model, the forced
ICM can filter the NFSV-TPs-like model errors and limit
the model error-induced prediction errors so that it can
make a more realistic ENSO prediction.

To prove that the obtained NFSV-TEs can represent
the model uncertainties from various sources, two experi-
ments are performed during the period from 1950 to 2010
(Table 1): one is the control experiment where the experi-
ment is made using the ICM without NFSV-TEs, and the
other is using the ICM forced by the NFSV-TEs over the
whole model grids. As shown in Figure 4, the ICM does
have the ability to predict the SST anomaly over the Niño
3.4 region, while SST prediction errors are outstanding in
the eastern tropical Pacific and extend to the central trop-
ical Pacific as the lead time increases due to the model

TABLE 1 Control and four sets of sensitivity experiments

during 1950–2010

Experiments
Descriptions of the prediction
model used

Control ICM without tendency perturbation

Sensitivity experiments

NFSV-TEs ICM forced by the NFSV-TEs over the
whole model grids

EQ ICM forced by the NFSV-TEs over the
central and eastern tropical Pacific
(170�W–80�W, 10�S–10�N)

EQeast ICM forced by the NFSV-TEs over the
eastern tropical Pacific (120�W–
80�W, 10�S–10�N)

EQcenter ICM forced by the NFSV-TEs over the
central tropical Pacific (170�W–
120�W, 10�S–10�N)

Note: All experiments are started in January and performed to predict the
SST evolutions in the following 12 months. The sensitivity experiments,
denoting the prediction made with the ICM equipped with NFSV-TEs,

consist of NFSV-TEs, EQ, EQeast and EQcenter experiments.
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and initial condition errors. The NFSV-TEs forcings can
fix the ICM and filter the impact of model uncertainties
on the error growth to a large extent. In the experiment
with the NFSV-TEs perturbed, the root mean square
errors (RMSEs) of the SST anomaly are reduced to less
than 0.5�C, which is mainly linked to the initial condi-
tion errors. Based on the former results, the ICM forced
by the NFSV-TEs can be served as a ‘true’ climate model
to describe the realistic ENSO evolution. It is also demon-
strated that the NFSV-TEs can be regarded as the model
uncertainties of the original ICM in realistic prediction.

4 | EFFECTS OF THE
EQUATORIAL NFSV-TES ON ENSO
PREDICTION

The last section has shown the characteristics of NFSV-
TEs, which are representatives of model uncertainties.

Although the NFSV-TEs exhibit a large signal near the
boundaries of the ICM, their effects on the error growth
of the ENSO prediction are much weaker relative to the
NFSV-TEs along the equator (data not shown). Consider-
ing not only the characteristics of the NFSV-TEs (Fig-
ure 2) but also the crucial role of the equatorial NFSV-
TEs (Duan et al., 2016), in this section, we will confine
our attention to examining the impacts of the local
NFSV-TEs along the equator on the realistic prediction
of ENSO.

To better show the impacts of model errors on the
SST predictions, the simulation using the ICM with
NFSV-TEs is served as ‘observation’ (i.e. the experiment
with the whole NFSV-TEs perturbed), the original ICM
and that equipped with the equatorial component of the
NFSV-TEs are the prediction models and used to predict
the pseudo-true ‘observation’. We therefore perform
three additional sensitivity experiments using the ICM
equipped with the equatorial component of the NFSV-

(a)

(b)

(e) (f) (g)

(c) (d)

FIGURE 4 (a) Time series of the observed and predicted Niño 3.4 indices and prediction errors (unit: �C) in the (b–d) control and (e–g)
NFSV-TEs experiments at 4-, 8- and 12-month lead times. The red curves and blue curves in (a) are from the control and NFSV-TEs

experiments, respectively, and the black curve is the observation
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TEs (Table 1): EQ, EQeast, and EQcenter experiments.
The EQ experiment is performed using the ICM forced
by the NFSV-TEs over the central and eastern equatorial
Pacific. The EQeast (EQcenter) experiment is made by
the ICM with NFSV-TEs only over the eastern (central)
equatorial Pacific. All these experiments are initiated in
January of each year with a lead time ranging from 1 to
12 months. Note that the initial conditions are kept the
same among these experiments; the different experiments
are totally attributable to the imposed NFSV-TEs. Thus,
by comparing the prediction skills revealed by the control
and sensitivity experiments, we can study the impacts of
NFSV-TEs on ENSO predictions in terms of systematic
bias, interannual variability, and El Niño types.

4.1 | Systematic bias

The climate drift phenomenon is common among
coupled models, which induces a systematic bias even
larger than the SST variability (Schneider et al., 2003; Jin
et al., 2008). Although the systematic bias is smaller than
that in some general circulation models, it becomes large
as the prediction time is increased in the ICM

(Figure 5a). There are two paths leading to the increased
systematic bias: one originates from the eastward bias
from the western tropical Pacific, and the other relates to
the bias in the eastern tropical Pacific. In seasonality, the
systematic biases associated with both paths increase rap-
idly from March to June, which may favour the cause of
the SPB phenomenon during the ENSO predictions. In
the EQ experiment, forced by the NFSV-TEs along the
equator (hereafter termed EQ-TEs for convenience), the
bias propagation paths are so obscured that the system-
atic bias fails to develop, where the bias is less than 0.1�C
even at a 12-month lead time (Figure 5b). The demise of
systematic bias indicates that the systematic bias in the
ICM is mainly due to model tendency errors over the
equatorial Pacific. That is, a lower model uncertainty of
the model in the eastern and central equatorial Pacific
tends to exhibit a less systematic bias.

The western and eastern parts of the EQ-TEs (the for-
mer is referred to as EQcenter-TEs, and the latter are
EQeast-TEs) play distinct roles in weakening the system-
atic biases. As shown in Figure 5c,d, both EQcenter-TEs
and EQeast-TEs can reduce the systematic bias in the
local region where the NFSV-TEs are superimposed but
also in the region where the added NFSV-TEs are not

(a) (b)

(c) (d)

FIGURE 5 Systematic biases

along the equator in the (a) control,

(b) EQ, (c) EQcenter and (d) EQeast

experiments. The systematic biases

are defined as the mean deviations of

the annual mean from the

observation. The contour interval

is 0.1�C
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covered. However, EQeast-TEs show better performance
than EQcenter-TEs in the reduction of systematic bias.
For example, the bias in the EQcenter experiment is
larger than 0.4 in the central-eastern tropical Pacific,
while it fluctuates at approximately 0.3�C in the EQeast
experiment. This result suggests that the remote effect of
the EQeast-TEs on weakening the bias in the central-
eastern Pacific is equal to or better than the local effect of
the EQcenter-TEs. From this point, the model perfor-
mance in the eastern tropical Pacific should be improved
to effectively reduce the systematic bias.

4.2 | Interannual variability

The interannual variability is the standard deviation of
the monthly SST anomaly, which usually represents the
strength of the SST variability related to the ENSO.

Figure 6f shows the interannual variabilities of SST
anomalies from the observation and model experiments.
All hindcast experiments present high performance in
the strength and distribution of the interannual variabil-
ity that displays a strong variance in the eastern equato-
rial Pacific and the weakest variance in the west.
However, the seasonality of the SST variance derived
from the ICM is entirely different from the observations.
In the observations, the SST variability in the central-
eastern (near 130�W) tropical Pacific is strongest in win-
ter (from November to January) and weakest in spring,
while the SST variability near the coast of South America
(near 90�W) is strongest in spring (Figure 6a). In the con-
trol experiment, the predicted SST in the central and east-
ern tropical Pacific features the strongest variance during
late winter and early spring (from January to April) and
the weakest variance in summer (Figure 6b). In the EQ
experiment where the ICM is forced by the equatorial

(a) (b) (c)

(d) (e) (f)

FIGURE 6 The standard deviation of the observed and predicted SST anomalies along the equator. Results are calculated based on the

(a) observation, (b) control, (c) EQ, (d) EQcenter and (e) EQeast sensitivity experiments along the equator (meridionally averaged across

5�S–5�N) as a function of calendar month. Results in (f) is calculated without considering the seasonality. The contour interval is 0.2�C in

(a)–(e). In (f), the red line is from the control experiment; the green line is from the EQ experiment; the blue and yellow lines denote the

interannual variability of SST derived from the EQcenter and EQeast experiments, respectively
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NFSV-TEs (i.e. EQ-TEs), the SST variance is amplified
during October–December and reduced in spring, giving
rise to a much more realistic seasonality (Figure 6c).
When only the central parts of the equatorial NFSV-TEs
(i.e. EQcenter-TEs) are used to force the ICM, the season-
ality of the predicted SST variability is only corrected over
the central tropical Pacific (Figure 6d). By comparison,
the eastern parts of the equatorial NFSV-TEs (i.e. EQeast-
TEs) can improve the interannual variability in SST not
only over the eastern tropical Pacific but also over the
central tropical Pacific (Figure 6e). Hence, reducing the
model uncertainties in the eastern tropical Pacific is an
effective approach to enhance the seasonality of the SST
variance in the whole tropical Pacific during ENSO
prediction.

The impacts of the NFSV-TEs on the interannual var-
iability are also reflected in the SST prediction errors
(Figure 7). The prediction errors here are defined as the
RMSEs that measure the agreement in the amplitude of
the interannual variability of the SST. The weak SST vari-
ability in the ICM causes a large RMSE in the eastern
tropical Pacific that is up to 1.4�C. The prediction errors
can be largely reduced at the basin scale in the EQ and
EQeast experiments. For the EQcenter experiment,

although the model tendency errors are removed in the
central-eastern equatorial region, substantial prediction
errors exist due to the westward errors from the far east-
ern tropical Pacific (see Figure 7c after May). As for the
SPB phenomenon, the ICM also shows the largest error
growth in spring (i.e. February–May), where the error
growth is 0.84�C totally but 0.4�C during spring. With the
forcing of the NFSV-TEs, the error growth in spring is
much decreased. Not accidentally, this echoes the previ-
ous studies on the SPB phenomenon that SPB of ENSO
prediction is partly originated from the model errors (Mu
et al., 2007; Duan and Hu, 2016; Hou et al., 2019; Tan et
al., 2020).

From the above, reducing the model uncertainties in
the eastern equatorial Pacific is more important than
reducing those in the central equatorial Pacific in the
improvement of the ENSO predictions in terms of the
SST variability and RMSEs.

4.3 | CP- and EP-El Niño predictions

Predicting only the Niño index or the strength of the
ENSO cannot meet our needs since many evidences show

(a) (b)

(c) (d)

FIGURE 7 RMSEs of the SST

anomalies along the equator in the

(a) control, (b) EQ, (c) EQcenter and

(d) EQeast sensitivity experiments.

The ratio of error growth in FMAM

and the total error growth in

prediction period over the whole

tropical Pacific is noted in the top

right corner of each panel. The

contour interval is 0.2�C
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that ENSO-induced climate anomalies are critically
dependent on the horizontal distributions of the ENSO
themselves (Timmermann et al., 2018). Thus, this section
will examine the prediction skills with respect to the hor-
izontal distributions of the SST anomalies.

A spatial correlation coefficient (SCC) is defined to
quantify the pattern prediction skills, which is written as

SCC=

P
i, j
xi,j � yi,j

P
i, j
xi,j2 �

P
i, j
yi,j2

, ð9Þ

where xi,j and yi,j are the predicted and observed SST
anomalies in the model grid i, jð Þ. The pattern prediction
skills in different experiments are shown in Figure 8. The
ICM achieves poor grades in predicting the horizontal
characteristics of the SST anomalies in the tropical
Pacific, where the SCC is lower than 0.4 after one season.
When correcting the model tendency equation with the
EQ-TEs, the prediction skill towards the horizontal SST
anomalies is significantly improved with an SCC greater
than 0.6 within a 12-month lead time. The improvement
is reduced when only correcting the model in the central
equatorial Pacific (i.e. adding the EQcenter-TEs to the
tendency equation). The SCC remains at approximately
0.4 at a long lead time in the EQcenter experiment. Com-
pared to the EQcenter experiment, the EQeast experi-
ment obtains higher scores in SCC at all lead time
predictions.

Previous results have clearly shown the impact of the
local NFSV-TEs on the pattern prediction skills of all
ENSO events (including La Niña, El Niño, and neutral
events). We now turn to look at the events individually,
with a specific focus on the CP and EP-El Niño events. In

Figure 9, the SCCs of each event in December are shown
as a function of the observed Niño 3.4 index. There exists
some capability of spatial predictions for El Niño events
among all experiments. However, the SCC involved with
the neutral and La Niña event predictions are not as sat-
isfactory as the El Niño predictions using the ICM, where
the SCC is even close to −1 during La Niña predictions
(Figure 9a). Forced by the EQ-TEs or EQeast-TEs, the
predictions of the horizontal distributions of the neutral
and La Niña events are significantly improved. By com-
parison, the EQcenter-TEs have little effect on the
improvement of the La Niña predictions (Figure 9c), thus
leading to a lower mean SCC in the EQcenter experiment
than in the EQeast experiment (Figure 8).

For the two types of El Niño events, the EQcenter-
TEs are superior to the EQeast-TEs with respect to the
horizontal SST predictions. Figure 10 displays the com-
posites of the CP- and EP-El Niño events from the obser-
vation and sensitivity experiments, where the types of El
Niño events are classified based on the method proposed
by Ashok et al. (2007) (Table 2). In observation, the SST
anomaly of EP-El Niño peaks in the far eastern equato-
rial Pacific while the CP-El Niño peaks near 160�W
(Figure 10a1,b1). Thus, the difference between EP-El
Niño and CP-El Niño shows negative SST anomaly in the
central tropical Pacific and positive SST anomaly in the
eastern tropical Pacific (Figure 10c1). One can find that
the original model not only tends to predict a warm event
that is weaker than observations for both events but also
has no skill to predict the difference between CP- and
EP-El Niño events as the observation. For example, the
maximum SST anomalies that are predicted by the ICM
are both located near the 150�W for the EP- and CP-El
Niño predictions. In the EQ experiment, the ICM forced
by the EQ-TEs can capture the main difference of the El
Niño types, and successfully predict the locations of the
maximum SST anomaly for EP- and CP-El Niño. Only
forced by the eastern part of the EQ-TEs, the model
seems to not work well in reproducing the peak location
of the CP-El Niño event. As shown in Figure 10b4, we
can see that an EP-El Niño is usually produced during
the CP-El Niño prediction. The predicted SST anomalies
both for the EP- and CP-El Niño peak near 120�W. Thus,
the EQeast experiment fails to identify the type of El
Niño in advance. What is worse is that the prediction
results for the CP-El Niño events sometimes are worse in
the EQeast experiment than in the control experiment,
such as 1997, 1994 and 2004 CP-El Niño events (Figure 9).
Taking the CP-El Niño event that occurred in 1977 as an
example, the predicted SST pattern is opposite to the
observation with an SCC less than −0.3 in the EQeast
experiment. In contrast, a noticeable improvement in the
CP-El Niño prediction is seen in the EQcenter

1 2 3 4 5 6 7 8 9 10 11 12

Lead time (months)

0

0.2

0.4

0.6

0.8

S
p

a
ti
a

l 
c
o

rr
e

la
ti
o

n

Ctl.

EQ

EQeast

EQcenter

FIGURE 8 Spatial correlations between the observed and

predicted SST anomalies in the tropical Pacific as a function of

lead time
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experiment where the EQcenter-TEs are added to elimi-
nate the tendency uncertainties of the model over the
central equatorial Pacific (Figures 9c and 10b5). Same as
observations (Figure 10a1,b1), the predicted SST anoma-
lies for EP-El Niño and CP-El Niño peak near 120�W and
160�W, respectively (Figure 10a5,b5).

In addition, the EQcenter-TEs are also superior to the
EQeast-TEs in the prediction towards the strength of the
CP-El Niño event. Table 3 shows the strengths of EP- and
CP-El Niño in observation and model experiments. The
ICM usually underestimates the amplitudes of both EP-
and CP-El Niño. Both EQeast-TEs and EQcenter-TEs can
enhance the El Niño amplitudes but to varying degrees.
The EQeast-TEs can better improve the EP-El Niño pre-
diction while the EQcenter-TEs improve the CP-El Niño
better. Combining the effects of NFSV-TEs on the predic-
tions towards types and strengths of El Niño, it is con-
cluded that the model uncertainties both in the central
and eastern equatorial Pacific are vital to enhancing the
ENSO predictions, but fixing the east alone could lead to
worsen results for CP-El Nino predictions.

5 | DYNAMIC ROLES OF THE
NFSV-TES IN DIFFERENT REGIONS
IN CP-EL NIÑO PREDICTIONS

The previous section clearly demonstrates that the cen-
tral and eastern equatorial NFSV-TEs exhibit different

effects on the horizontal distribution of SST during the
CP-El Niño predictions. This naturally leads us to explore
their involved dynamics to answer the question of why
EQcenter-TEs are important in CP-El Niño predictions.
Here, a strong CP-El Niño event that occurred in 1994 is
chosen as a case study. Note that the following results are
similar to the predictions of other CP-El Niño events.

The evolutions of the CP-El Niño event in the obser-
vation and those predicted by the ICMs with parts of the
NFSV-TEs are shown in Figure 11. As indicated in
Figure 11a,d, the observed SST anomaly in the central
tropical Pacific is rapidly developed after spring, while
the strong positive SST anomaly in January decays unre-
alistically with time in the control experiment. As a
result, a neutral event of which the SST anomaly is less
than 0.5�C is incorrectly predicted, although the horizon-
tal pattern of the SST anomalies is similar to the observa-
tion where the SCC is approximately 0.5 (shown in
Figure 9a). The case is worse in the EQeast experiment.
In the EQeast experiment (Figure 11b,e), the predicted
negative SST anomaly in the eastern tropical Pacific does
present little departure from the observation, but the
predicted SST anomaly in the central tropical Pacific is
gradually different from the observation over time. This
is because the positive SST anomaly in the central tropi-
cal Pacific is gradually replaced by the westward negative
SST anomaly from the eastern tropical Pacific. Finally,
the EQeast-TEs make the ICM give a failed prediction
that a negative SST anomaly is predicted in the central
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FIGURE 9 Scatter plot of the

spatial correlations of the December

SST anomaly as a function of the

observed Niño 3.4 index in the (a)

control, (b) EQ, (c) EQcenter and (d)

EQeast experiments. The black
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tropical Pacific. When adding the NFSV-TEs to the SST
model over the central equatorial Pacific, an obvious
rapid warming in the central tropical Pacific in summer

can be reproduced in the EQcenter experiment (Figure
11c,f). A CP-El Niño is thus successfully predicted with a
strong positive SST anomaly in the central tropical Pacific
at the end of the year.

Figure 12 further demonstrates the validity of the
EQcenter-TEs from the perspective of air-sea interac-
tions. The air-sea states are basically the same among dif-
ferent sensitivity experiments at the beginning of the
year, although differences appear later in the year. As
seen in Figure 12a, for the experiment made by the ICM,
the demise of the SST anomaly is dynamically associated
with the decrease in the wind anomaly during spring and
summer. Without persistent atmospheric forcing on the
tropical ocean, the tilt of the thermocline indicated by
the sea level anomaly is difficult to maintain, thus show-
ing a weak air–sea coupling system in the control experi-
ment. In the EQeast experiment, the air-sea coupling is
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FIGURE 10 Composites of the (a) EP- and (b) CP-El Niño events and (c) their differences derived from the observation and sensitivity

experiments. The black solid circles over the left two columns indicate the location of the maximum SST anomaly along the equator

TABLE 2 La Niña years and El Niño years with respect to two

types

Events The year when the event peaks

EP El Niño 1951, 1969, 1972, 1976, 1982, 1986, 1987,
1997, 2006

CP El Niño 1953, 1957, 1963, 1965, 1968, 1977, 1991,
1994, 2002, 2004, 2009

La Nina 1954, 1955, 1964, 1970, 1971, 1973, 1974,
1975, 1983, 1984, 1988, 1995, 1998, 1999,
2000, 2005, 2007, 2008, 2010

Note: The type of El Niño is classified based on the method proposed by
Ashok et al. (2007).
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the same as that in the control experiment, and the west-
erly wind anomaly also decreases across spring. Due to
the strong effect of EQeast-TE forcing, the air–sea inter-
action gradually becomes strong over the eastern tropical
Pacific, as indicated by the strong sea level anomaly and
wind anomaly to the east of 140�W (Figure 12c,f). The
east wind anomaly interacts with the triggered Rossby
waves and therefore carries the negative SST anomaly
into the central tropical Pacific at the end of the year.
Therefore, the CP-El Niño is difficult to predict in the
EQeast experiment. When adding the EQcenter-TEs to
the SST tendency, the west wind anomaly does not disap-
pear across spring, which is accompanied by the east
wind anomaly in the eastern equatorial Pacific acting to
deepen the thermocline in the central tropical Pacific.
Heated by the subsurface, the positive SST anomaly in
turn feeds back to the atmosphere and tends to further
enlarge the westerly anomaly. Under the circumstances

of strong positive feedback in the central tropical Pacific,
a CP-El Niño is easily formulated in the EQcenter
experiment.

From the above, the key to predicting the CP-El Niño
is dependent on the model performance in predicting the
rapid warming from spring to summer and the conver-
gence wind anomaly. Both phenomena are captured in
the EQcenter experiment; thus, the horizontal distribu-
tion of CP-El Niño is successfully predicted. We know
that the differences in air-sea coupling among different
experiments are merely due to the differences in the pre-
diction models themselves. Obviously, EQcenter-TEs do
exert in the CP-El Niño prediction. Then, what roles do
EQcenter-TEs play in predicting the anomalous wind
convergence in spring and the subsequent rapid
warming?

A mathematical derivation of the effect of the NFSV-
TEs across spring shows that the change in the wind

TABLE 3 The strengths of

composite El Niño events in

observation and sensitivity simulations

Obs. Control EQ EQeast EQcenter

Strength of EP-El Niño 1.42 0.65 1.93 1.91 0.72

Strength of CP-El Niño 0.77 0.40 0.97 0.43 0.93

Note: The value of Niño3 and Niño4 indices are used to quantify the strengths of EP-El Niño and CP-El

Niño, respectively.
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FIGURE 11 (a–c) Horizontal distributions of the predicted SST anomalies in December 1994 and (d–f) evolutions of predicted SST

anomalies along with the equator during 1994. The shading is from the sensitivity experiments. The contoured lines with an interval of 0.5�C
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tendencies is a function of the superimposed NFSV-TEs
(see the derivation in the Appendix), which can be repre-
sented as

Δτ2
Δt

−
Δτ1
Δt

=G � f �part, ð10Þ

in which G is the derivative of the wind model indicated
by Equation (1), f �part denotes the part of the NFSV-TEs
(i.e. EQ-TEs, EQeast-TEs and EQcenter-TEs); Δτ2

Δt and Δτ2
Δt

present the wind tendencies from April to June in the
sensitivity and control experiments, respectively. That is,
NFSV-TEs can directly project onto the tendency of the
wind anomaly through the operator G, thereby influenc-
ing the wind anomaly simulation and the following evo-
lution of the SST anomaly in the tropical Pacific.

Figure 13 clearly shows the effect of the NFSV-TEs on
the changes in the wind tendencies. The equatorial

NFSV-TEs for the CP-El Niño prediction exhibit negative
values to the east and relatively weak positive values to
the west, which also implies that large positive model
errors exist in the ICM over the eastern tropical Pacific in
spring. As revealed in Figure 13a, the EQ-TEs can force
the ICM to yield the tendency changes of the zonal wind
towards the central equatorial Pacific during spring, the
condition of which is dynamically favoured to generate a
CP-El Niño event. When considering only the eastern
part of the EQ-TEs, one can find that the EQeast-TEs do
have a role in the changes in the meridional wind ten-
dencies but have little effect on the zonal wind tenden-
cies in the western and central equatorial Pacific
(Figure 13c). Therefore, the predicted zonal wind anoma-
lies in spring are almost identical among the control and
EQeast experiments (Figure 12a,c). In contrast, although
the strength of the EQcenter-TEs is weaker than that of
the EQeast-TEs, the former has the ability to change the
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FIGURE 12 Longitude-time sections of the predicted (top panels) zonal wind stress anomalies and (bottom panels) sea level anomalies.

The contour intervals in the top and bottom panels are 0.05 dyn�cm−2 and 4 cm, respectively
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zonal wind tendency and make the model tend to gener-
ate a westerly wind anomaly in the western tropical
Pacific and an easterly wind anomaly in the eastern tropi-
cal Pacific (Figure 13b).

In addition to the wind, the ocean processes are also
modified by the NFSV-TEs to make the predictions of
CP-El Niño different. As shown in Figure 14, the zonal
advection feedback term throughout 1994 features a posi-
tive value in the central tropical Pacific but with various

amplitudes among different experiments, hinting at dif-
ferent warming effects on the SST prediction. Comparing
the zonal advection term to the total tendency of the SST
in the individual experiments, one can find that the zonal
advection can explain the total SST tendency in the
EQcenter experiment only. In other sensitivity experi-
ments, the tendencies of the SST anomaly are unrelated
to the zonal advection feedback. This indicates that the
SST evolutions in the control and EQeast experiments are
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FIGURE 13 NFSV-TEs and

their induced changes in the wind

tendencies in the (a) EQ, (b)

EQcenter and (c) EQeast

experiments compared to the

control experiment
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FIGURE 14 Total SST tendency and zonal advection feedback from January 1994 to December 1994. The contour interval is 0.5�C/year
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not dominated by zonal advection feedback, but the SST
evolutions in the EQcenter experiment are. Note that pre-
vious studies have demonstrated the important role of
zonal advection feedback in the development of CP-El
Niño events; thus, we reveal in the present study that
EQeast-TEs have the ability to adjust ocean processes
more realistically and amplify the effect of zonal advec-
tion feedback so that CP-El Niño events can be success-
fully predicted.

6 | DISCUSSION AND
CONCLUSION

Prediction uncertainties for ENSO are attributed not only
to erroneous initial conditions but also to imperfect
models and inherent stochastic processes. Such predict-
ability issues are classified into two distinct problems by
Lorenz (1975): the first involves the initial error problem,
while the second involves the model uncertainty prob-
lem. In this article, focusing on the second predictability
problem, we investigate the impacts of the model uncer-
tainties on the predictions of ENSO by reducing the
model tendency errors in the SST model.

To quantify the model errors in realistic predictions,
the NFSV-based data assimilation is applied to an ENSO
forecasting model (i.e. ICM) to identify the optimal
model tendency error occurring in the ENSO hindcasts
during 1950–2010. By assimilating the SST data from
1950 to 2010, we obtain a total of 61×12 samples of the
monthly optimal tendency perturbations (i.e. NFSV-TEs)
that characterize the combined effect of the model uncer-
tainties with various sources such as the missing pro-
cesses from the extratropical Pacific, parameterizations,
and so forth. When these NFSV-TEs are re-added to the
tendency of the SST model and force the ICM, the histori-
cal evolution of the SST anomaly in the tropical Pacific
can be successfully simulated with much smaller errors
that can be attributed mainly to the initial condition
errors. Through analysis of the temporal and spatial
NFSV-TEs, it is found that the ICM presents large model
tendency errors over the eastern equatorial Pacific and
the model boundaries, as revealed by the NFSV-TEs con-
centrated in these regions. Two dominant NFSV-TEs are
found in the ICM (Figure 2): one is E-type that mostly
located in the far eastern Pacific, the other is the D-type
that shows a dipole pattern of the NFSV-TEs along the
equator. The D-type usually occurs during the predictions

(a) EQcenter versus SST (b) EQeast versus SST

(c) PC1 versus SST (d) PC1 versus SLP
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FIGURE 15 Correlations of the NFSV-TEs to the SST and SLP anomalies globally. Results in (a)–(c) are the SST correlations to the

EQcenter-TEs, EQeast-TEs and PC1 of NFSV-TEs, respectively. Results in (d) are the SLP correlations to the PC1 of NFSV-TEs, respectively.

The region that the SST model of the ICM covers is framed by the purple dashed lines. Dots are statistically significant at the 90%

significance level using the t-test
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of El Niño events, confirming the fact that NFSV-TPs
exist in realistic ENSO predictions. Thus, by adding the
NFSV-TEs to the model, we can effectively filter those
optimally growing patterns of the tendency errors (i.e.
NFSV-TPs) and limit the error growth induced by model
errors, thereby effectively reproducing the ENSO events.

For the large model tendency errors in the central
and eastern equatorial Pacific, the impact of the eastern
(i.e. EQeast-TEs) and central (i.e. EQcenter-TEs) parts of
the equatorial NFSV-TEs on the ENSO hindcasts are
examined in terms of the systematic bias, interannual
variability, and El Niño types. We find that the EQeast-
TEs show better performance than the EQcenter-TEs in
the reduction of the systematic bias and the prediction of
the seasonality of interannual variability. This is likely
because the large prediction errors in the eastern tropical
Pacific tend to propagate westward and contaminate the
prediction over the central tropical Pacific even though
EQcenter-TEs are added to the tendency of the ICM. It is
therefore suggested that the model performance in the
far eastern tropical Pacific should be improved to effec-
tively enhance the SST prediction at a basin scale.

However, the EQcenter-TEs are found to be superior
to the EQeast-TEs when reproducing the horizontal dis-
tribution of the sea surface temperature (SST) anomaly,
especially for the difference between the CP- and EP-El
Niño events. When using the ICM forced by the EQeast-
TEs to reproduce the CP- and EP-El Niño events, the hor-
izontal distributions of the reproduced SST anomalies are
the same, with the positive value concentrated on the
eastern tropical Pacific. The failure of reproducing CP-El
Niño is dynamically due to the simulation that fails to
capture the convergence of the wind anomaly in the cen-
tral tropical Pacific and the rapid SST warming from
spring to summer. When the EQcenter-TEs are sup-
erimposed on the SST tendency of the ICM, the
reproduced CP-El Niño can be well-identified since the
EQcenter-TEs effectively modify both the wind tendency
and the zonal advection feedback to yield a more realistic
air-sea condition that is favoured to the CP-El Niño
formulation.

One key hypothesis in the present study is that
NFSV-TEs are analogues of the combined effect of vari-
ous model errors on the SST tendency equation. NFSV-
TEs do make sense physically, even though they are
mathematical products. In practice, most models present
poorest skills in the far eastern equatorial Pacific as the
region is where the SST variability has strong non-
linearity (Takahashi and Dewitte, 2016; Ding et al., 2018;
Ying et al., 2019). Thus, the E-type NFSV-TEs here may
results from the underestimate nonlinearity processes in
the eastern tropical Pacific. Given the results of the differ-
ent impacts of EQeast-TEs and EQcenter-TEs, it is

therefore meaningful to study their sources. Hereon, cor-
relation analyses are performed between the focused
NFSV-TEs and SST anomalies in the globe to snoop on
the potential physical factors. As shown in Figure 15b,
the EQeast-TEs are significantly related to the SST in the
tropical Pacific and the Indian Ocean, implying that the
model uncertainties of the ICM over the eastern tropical
Pacific are due to the missed interaction between the
tropical Pacific and the Indian Ocean. Because the
EQeast-TEs almost explained the dominant mode of the
NFSV-TEs, the E-type NFSV-TEs are also significantly
related to the SST anomaly in the eastern tropical Pacific
(Figure 15c). The strong E-type NFSV-TEs tend to influ-
ence the basin-scale zonal circulation and lead to a dipole
error pattern of sea level pressure (SLP) over the tropical
Pacific, as revealed in the correlation map between the
PC of E-type and SLP anomaly (Figure 15d). The sources
of the EQcenter-TEs are slightly more involved than
those of EQeast-TEs (Figure 15a). The EQcenter-TEs are
more likely associated with the teleconnection of the
extratropical Pacific. For example, the EQcenter-TEs are
significantly related to the SST anomalies in the North
Pacific, where the correlation map presents a Victoria
Mode (VM)-like pattern (Bond et al., 2003). In a sense,
the model uncertainties in the central-eastern tropical
Pacific are a result of the effect of the VM. Combined
with previous studies of the VM (Ding et al., 2015; Chen
et al., 2021), we conclude that improving the simulation
of the VM is effective in reducing the model uncertainties
in the central-eastern tropical Pacific to effectively
improve the predictions concerning two types of El Niño
events.
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APPENDIX

For an air–sea coupling system, a relationship exists
between wind and SST, which can be represented as

τ=g xð Þ, ðA1Þ

in which x and τ are the SST anomaly and wind anom-
aly, respectively. The SST anomaly x is controlled by a
type of partial differential equation (i.e. SST model) that
can be symbolically written as

∂x
∂t

=F xð Þ, ðA2Þ

where F is the nonlinear operator of the SST model.
Adding a perturbation of SST anomaly, we have

τ+Δτ=g x+Δxð Þ: ðA3Þ

When the Δx is small enough, with Equation (A1) and
Equation (A3), we obtain

Δτ=g x+Δxð Þ−g xð Þ
=
∂g
∂x

�Δx+O Δx2
� �

≈
∂g
∂x

�Δx
: ðA4Þ

Given the time interval, we then have
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Δτ
Δt

=G �Δx
Δt

, ðA5Þ

where G= ∂g
∂x. That is, the relationship between the ten-

dencies of the wind and SST anomalies is determined
by G.

When a forcing vector f is added to Equation (A2), a
new SST model can be obtained as

∂xn
∂t

=F xnð Þ+f : ðA6Þ

Since the SST-wind relationship is not changed, the ten-
dency relationship in SST and wind is also the same as
Equation (A5), here denoted as

Δτn
Δt

=G �Δxn
Δt

: ðA7Þ

Subtracting Equation (A7) from Equation (A5), finally
we get

Δτn
Δt

−
Δτ
Δt

≈G � f : ðA8Þ

This indicates that, for a small perturbation of the SST
anomaly, the tendency difference of the wind anomaly is
approximately related to the forcing vector f , where the
relationship is determined by the derivative of the wind
model (i.e. G).
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