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ABSTRACT: We used the conditional nonlinear optimal perturbation (CNOP) approach to investigate the most sensitive
initial error of sea surface height anomaly (SSHA) forecasts by using a two-layer quasigeostrophic model and revealed the
importance of mesoscale eddies in initialization of the SSHA forecasts. Then, the CNOP-type initial errors for individual
mesoscale eddies were calculated, revealing that the errors tend to occur in locations where the eddies present a clear high-
to low-velocity gradient along the eddy rotation and the errors often have a shear SSHA structure present. Physically, we
interpreted the rationality of the particular location and shear structure of the CNOP-type errors by barotropic instability
from the perspective of the Lagrange expression of fluid motions. Numerically, we examined the sensitivity of the CNOP-
type errors by using observing system simulation experiments (OSSEs). We concluded that if additional observations are
preferentially implemented in the location where CNOP-type errors occur, especially with a particular array indicated by
their shear structure, the forecast ability of the SSHA can be significantly improved. These results provide scientific guid-
ance for the target observation of mesoscale eddies and therefore are very instructive for improving ocean state SSHA
forecasts.
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1. Introduction

Ocean mesoscale eddies are known as coherent rotating
vortices of water, with radii ranging from tens to hundreds of
kilometers and lifespans ranging from dozens to hundreds of
days (Chelton et al. 2007; Faghmous et al. 2015). They occupy
approximately 25% of the global ocean surface area at any
given time and are a ubiquitous feature of ocean basins
(Gaube et al. 2014). Mesoscale eddies are strongly con-
strained by Earth’s rotation and ocean stratification, such that
their motions can be an approximation to the geostrophic bal-
ance (Zhang et al. 2013). Mesoscale eddies are energetically
dominant and significantly influence oceanic dynamics and
ocean mixing, having the ability to transport momentum,
heat, salt, and biogeochemical tracers along their trajectories
(Villas Bôas et al. 2015). Mesoscale eddies play a critical role
in the dynamics of major oceanic current systems, such as the
Antarctic Circumpolar Current, the Kuroshio, and the Gulf
Stream (Hallberg 2013). They have also been shown to influ-
ence the overlying atmosphere, such as winds, clouds, precipi-
tation, and typhoons, etc. (Chelton 2013). Thus, knowledge of
mesoscale eddies and their motions has important implica-
tions for depicting future ocean states and associated biologi-
cal, chemical, and geological oceanography (Robinson 1983),
as well as depicting future atmospheric conditions (Frenger
et al. 2013).

Ocean circulation can be regarded as a turbulent system
full of vortices (Morrow and Le Traon 2012). Babiano et al.
(1994) demonstrated that such a vortex-dominated turbulence
system is significantly controlled by the chaotic motion of the

vortices. From this perspective, Weiss and Grooms (2017)
showed that accurate initialization of mesoscale eddies leads
to improved estimates and forecasts of the future sea surface
height (SSH) by using a two-layer quasigeostrophic model. In
particular, they found that assimilating a subset of observa-
tions on regular and equally spaced grids covering the entirety
of the model scope is less effective than assimilating observa-
tions taken over mesoscale eddies. In their work, the assi-
milation strategy of mesoscale eddies was to assimilate
observations on evenly distributed regular grids over eddies.
However, mesoscale eddies are irregular in shape and asym-
metric in the flow field, which reduces the stability of the vor-
tex structure and enhances the energy conversion, which
presents a highly nonlinear nature (Tang et al. 2020). There-
fore, there may be a much more effective assimilating strategy
for the initialization of irregular eddies than that suggested by
Weiss and Grooms (2017). Inferentially, there should exist an
area over the mesoscale eddies, where evenly distributed reg-
ular grid observations should be preferentially rearranged to
adapt to irregular eddies and then assimilated to achieve a
much larger improvement in the SSH forecasting ability.
Addressing this problem can also inform us of which area
should be given priority to implement additional observations
for mesoscale eddies associated with the SSH forecasts. Such
questions are generally related to an observational strategy
entitled “target observation” (Snyder 1996).

The target observation mainly serves the demand of fore-
casts on observations (Snyder 1996), which is different from
traditional observation strategies, that is, to recognize the
phenomenon and understand its mechanism. The so-called
target observation strategy was developed in the 1990s. The
idea is described as follows: to better predict an event at a
future time t2 (i.e., verification time) in a focused area (i.e.,Corresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn
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verification area), additional observations are deployed at a
future time t1 (i.e., target time; t1 , t2) in some key areas
(i.e., sensitive areas) where additional observations are
expected to have a large contribution to reducing the pre-
diction errors in the verification area (Snyder 1996; Mu et al.
2015). These additional observations are incorporated by a
data assimilation system to form a more reliable initial
state, which would be supplied to the model for a more
accurate prediction (Mu et al. 2015). A series of encourag-
ing results have been achieved in theoretical research and
related field experiments of target observations for high-
impact weather and climate event forecasting. In particular,
The Observing Systems Research and Predictability Exper-
iment (THORPEX), a global atmospheric research pro-
gram organized by the World Meteorological Organization
from 2005 to 2014, used the target observation strategy to
reveal the important role of the additional observations in
sensitive areas in improving the forecasting ability of
typhoon tracks. Since 2003, the program of Dropwindsonde
Observation for Typhoon Surveillance near the Taiwan
Region (DOTSTAR), one of its most critical objectives just
is target observations, has been conducted under the sup-
port of the National Science Council (NSC) in Taiwan and
has obtained many valuable data for operational forecast-
ing (Wu et al. 2007, 2009). However, THORPEX and DOT-
STAR mainly adopted methods of linear approximation to
determine the sensitive area of target observations, which is
not allowed to adequately investigate the nonlinear evolu-
tion of the initial errors and may cause the resulting sensi-
tive area to deviate from the real one of high-impact
weather and climate event forecasts, thus suppressing the
operational effect of the target observations (Yu et al.
2017). To fully take nonlinearity into account, Mu et al.
(2003) proposed a nonlinear technique of target observa-
tion, i.e., the approach of conditional nonlinear optimal
perturbation (CNOP; see also Mu et al. 2003, 2009). The
so-called CNOP represents the initial perturbation that
belongs to a certain physical constraint and causes the larg-
est perturbation growth at a determined future time and
acts as the most sensitive initial perturbation in a nonlinear
model, therefore having potential for identifying sensitive
areas for targeting observations (Mu et al. 2009). Practi-
cally, the CNOP has been applied to the studies of targeting
observations associated with El Niño–Southern Oscillation
(ENSO), the Indian Ocean dipole (IOD), tropical cyclones
(TCs), and the Kuroshio large meander (KLM) (Duan et al.
2018; Mu et al. 2017; Qin et al. 2013; Li et al. 2014; Wang
et al. 2013) and identified their respective optimal locations
for targeting observations (Mu et al. 2015).

As reviewed above, the initialization of oceanic mesoscale
eddies can determine the accuracy of future ocean state
forecasts. Furthermore, it is known that targeted observa-
tions play a critical role in improving the initialization of
numerical forecasts. For mesoscale eddies, satellite observa-
tions of the SSH/SSHA can be obtained to depict mesoscale
eddies; however, they still cause considerable uncertainty in
the real-time forecasts, which requires a higher time sam-
pling rate of observations (Cotton and Menard 2006). In

particular, observations for disclosing the subsurface struc-
tures of eddies are still avoided, which is very important for
exploring eddy dynamics and evaluating eddy-induced
water mass transport (Roemmich and Gilson 2001). In this
scenario, field observations are a useful complement (Zhang
et al. 2019). However, field observations of mesoscale eddies
are very expensive, especially for mesoscale eddies in
regions far away from continents (Dickey et al. 2008; Zhang
et al. 2019). Therefore, we suggest that one should consider
using the economic target observation strategy to obtain a
limited number of the most effective additional observa-
tions for improving the initialization of mesoscale eddies. In
fact, even if satellite observations and field observations are
sufficient, one should also consider which observations
should be preferentially assimilated to the model initial
fields to achieve much higher forecasting skill of relevant
ocean states, as doing in Weiss and Grooms (2017). There-
fore, in any case, we should identify the sensitive areas for
target observations, where observations should be preferen-
tially assimilated to the model initial field to improve the
forecasting ability of the concerned state variables.

In the present study, we investigated the optimal locations
(i.e., sensitive area) for target observations of mesoscale
eddies, and to facilitate a comparison, a two-equal-layer qua-
sigeostrophic (QG) model (Grooms and Majda 2014), simi-
larly to that in Weiss and Grooms (2017), was adopted except
that this model is a perturbation model of potential vorticity
and then the forecasts here are made for the ocean state sea
surface height anomaly (SSHA). The CNOP, due to it fully
considering nonlinear effects, has shown great potential in
identifying the optimal locations for targeting observations
associated with high-impact weather and climate event fore-
casts. Thus, considering the highly nonlinear nature of meso-
scale eddies, we can reasonably adopt the CNOP approach
for identifying the sensitive area of the SSHA forecasts.

The rest of the article is organized as follows. The two-layer
quasigeostrophic model is introduced in section 2, and the
CNOP approach is briefly reviewed in section 3. Section 4
explores the CNOPs of the SSHA forecasts and reveals the
importance of the initialization of mesoscale eddies in
improving the SSHA forecasts. In section 5, sensitivity to the
CNOP superimposed on initial eddies are examined, and in
section 6 observing system simulation experiments are con-
ducted to confirm the rationality of the sensitive area for tar-
get observations identified by CNOP associated with SSHA
forecasts. Finally, a summary and discussion are presented in
section 7.

2. The two-layer quasigeostrophic model

The two-equal-layer quasigeostrophic (QG) model is estab-
lished on an f plane, which describes a doubly periodic flow
with a rigid lid boundary and is forced by an imposed, baro-
clinically unstable, horizontally uniform and vertically sheared
zonal flow. An instantaneous flow field can be decomposed
into a mean field and a perturbation field. With this decompo-
sition of the flow field, the nondimensional governing
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equations of the perturbation evolution derived by the two-
layer QG model can be written as follows:

­tq1 �2U1 · =q1 2 ­xq1 2 y1 2 n=8q1, (1)

­tq2 �2U2 · =q2 1 ­xq2 1 y2

2cd ·= 3 U2| |U2( ) 2 n=8q2, (2)

q1 � =2c1 1
1
2

c2 2 c1( ), (3)

q2 � =2c2 2
1
2

c2 2 c1( ), (4)

where qi and ci (i =1, 2 represent the upper and lower layers)
denote the potential vorticity and streamfunction, ui = 2­yci,
yi = 2­xci are the zonal and meridional velocities and consti-
tute the two-dimensional vector Ui, and cd (=0.1) and
n (=5 3 1027) denote the standard quadratic drag coefficient
and hyperviscosity coefficient, respectively. The model config-
uration follows that used in Weiss and Grooms (2017). The
equations, as mentioned above, are nondimensional, where
the imposed zonal velocity and the deformation radius are
adopted as the velocity scale and length scale, respectively.
Specifically, the model domain is a square and has a nondi-
mensional width 32p; the nondimensional grid size is 0.39,
which can include more than two grid points per deformation
radius and is sufficient for eddy-resolving computations of this
kind; with a nondimensional time step of 0.01. According to
Weiss and Grooms (2017), a dimensional value of 15 km was
assigned to the spatial grid size and a dimensional value of
0.01 m s21 to the velocity; thus, the dimensional deformation
radius was 38.2 km, the dimensional domain width was
3840 km, and the dimensional time scale was approximately
42 days (i.e., 6 weeks). The numerical solutions of the model
were computed using 256 3 256 nonzero Fourier modes and a
fourth-order semi-implicit Runge–Kutta scheme.

3. Conditional nonlinear optimal perturbation

The CNOP describes the initial perturbation that satisfies
a certain physical constraint and has the largest nonlinear
evolution at a given prediction time (Mu et al. 2003). Similar
optimal perturbation approaches were also subsequently
suggested in the fields of fluid mechanics (see Pringle and
Kerswell 2010; Kerswell et al. 2014). They are often formu-
lated as follows.

Assume that the model governing the motions of the fluid
is defined as follows:

­U

­t
1 F U( ) � 0

U t�0 � U0,|

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (5)

where t is the time, F is a nonlinear partial differential opera-
tor,U is the state vector, andU0 is its initial state. With differ-
ent initial states of U0 and U0 1 u0, they evolve into UT and
UT 1 uT at the prediction time T in Eq. (5). Then, we have
Eq. (6) as follows:

UT � MT U0( ), UT 1 uT � MT U0 1 u0( ), (6)

where MT is a nonlinear propagator that takes an initial value
to the prediction time T, so uT describes the evolution of the
initial perturbation u0 of the reference state UT (U0 is its ini-
tial value).

The initial perturbation u0d is called a CNOP if and only if

J u0d( ) � max
u0∈Cd

J u0( ), (7)

where J(u0) = ||MT(U0 1 u0) 2 MT(U0)|| is the cost function
that evaluates the nonlinear evolution of the initial perturba-
tion u0 at time T in terms of a norm and Cd constrains the
scope of the initial perturbations. Mathematically, CNOP is
the global maximum of J(u0) over the constraint Cd. A specific
CNOP does not depend on u0 in Cd; however, it could change
for different prediction times T. For a constraint condition
defined by a L2 norm, CNOP has been theoretically proved
to locate on the boundary of the domain of the constraint con-
dition. For more details, readers are referred to Duan and Mu
(2009) for a review of CNOP.

In predictability studies, the CNOP represents the initial
error that causes the largest prediction error at prediction
time (Mu et al. 2003; Duan and Mu 2009). Therefore, for a
prediction system, if one computes the CNOP-type errors of
the predictions for historical states represented by a set of
observations and estimates the prediction errors caused by
them and if these prediction errors are still smaller than
allowable prediction error, then the predictions to the
future states made by this prediction system are most likely
to be reliable and confident (Duan and Mu 2009). That is to
say, the CNOP approach can be in this way to estimate a
confidence level in predictions. In addition, the CNOP can
also be used to yield initial perturbations in ensemble fore-
cast and estimate the prediction uncertainties, then evaluat-
ing the confidence level of predictions (Duan and Huo
2016). The present study would use the CNOP approach to
identify the sensitive area for target observation associated
with SSHA forecasts and indicate the importance of meso-
scale eddy initialization by using the two-layer QG model in
section 2.

For the two-layer QG model, the SSHA was forecasted, and
the CNOPs of the initial SSHA was calculated, where the SSHA
was represented by the c1 (i.e., the streamfunction in the upper
layer; see section 2). Therefore, the cost function in Eq. (7) was

expressed as J cp
1,0

( )
�
���MT c1,0 1 cp

1,0

( )
2MT c1,0

( )���, where c1,0

is the initial state of c1 (which is referred to as a reference state
to be predicted), cp

1,0 is its initial perturbation and ‖ · ‖ is a L2

norm measuring the distance between reference state and its
perturbation at the future time T.

Equation (8), i.e., the Cd in Eq. (7), was used to constrain
the amplitude of initial perturbations, which describes the
root-mean-square of initial perturbations on grid points nor-
malized by the standard deviation of initial SSHA and is
described as follows:
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Cd � c1,0
p

����������������
1
n

∑n
i�1

cp
1,0

( )2
i

√
#b c1,0

( )
STD

∣∣∣∣∣
}
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8)

where n is the number of grid points perturbed, (c1,0)STD is
the standard deviation of the c1,0 on the grid points over the
whole model scope and b is a preassigned positive number
that was used to constrain the largest magnitude of the initial
perturbations. Then the CNOP of the SSHA forecasts can be
solved by Eq. (9):

J cp
0d

( )
� max

cp
1,0∈Cd

J cp
1,0

( )
, (9)

where it accords to the practical observational errors of the
SSHA and takes b = 0.04, which guarantees that the initial per-
turbations of SSHA do not exceed the dimensional observational
errors of 0.02–0.03 m at each grid point. In addition, since the
SSHA observations obtained from a flock of satellites were gen-
erally processed into weekly grid SSHA data products and then
a 7-day assimilation window has been used to the initialization of
the SSHA forecasting (see Weiss and Grooms 2017), we used 7
days as the optimization time interval of calculating the CNOP
and identifying the sensitive areas for targeting observations of
mesoscale eddies associated with the SSHA forecasting with
lead time 7 days. Equation (8) indicates that initial perturbations
belong to a physical constraint defined by L2 norm. Then Eq. (9)
together with Eq. (8) guarantee the existence of CNOP; further-
more, they ensures that the CNOP locates on the boundary of
the constraint condition Eq. (8) (see Duan andMu 2009).

A key step to applying the CNOP approach was determin-
ing how to obtain the CNOP numerically by Eq. (9) because
it is almost impossible to obtain an analytical solution to such
a nonlinear optimization problem of high dimensions. In
recent years, different algorithms, such as spectral projected
gradient 2 (SPG2) (Birgin et al. 2000), sequential quadratic
programming (SQP) (Barclay et al. 1997), and limited-mem-
ory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Liu and
Nocedal 1989), have been adopted to obtain the CNOP
according to different physical problems of concern. In the
present study, the SPG2 algorithm was chosen to calculate the
CNOP. It is noted that the SPG2 algorithm were generally
designed to solve a minimum problem of nonlinear function
within an initial constraint condition, where the gradient of
the cost function with respect to initial perturbations was
needed to represent the descending direction of searching for
the minimum of the cost function. Therefore, for the
problem of concerns here, we had to rewrite Eq. (9) as
J(cp

0d ) � min
cp
1,0∈Cd

[2J(cp
1,0)]. Specifically, a first guess is assigned

to the initial perturbation cp
1,0. Then the QG model is inte-

grated forward with the initial value of c1,0 1 cp
1,0 to obtain

the forecast MT(c1,0 1 cp
1,0) with the reference state MT c1,0

( )
and the negative of the cost function, 2J(cp

1,0), can be

obtained. Then the gradient of the negative of the cost func-
tion with respect to the initial perturbations is calculated.
Expectantly, the gradient here represents the fastest des-

cending direction of the cost function. However, in numerical
experiments, CNOP can be obtained as long as the gradient
keeps a fast descending direction but does not necessarily
belong to the fastest. But in this situation, there will need
much more time costs of the SPG2. Based on the automati-
cally and iteratively forward integration of the two-layer QG
model governed by the SPG2, the initial perturbation cp

1,0 is

optimized and updated according to the gradient till the con-
vergence condition in the SPG2 is satisfied. Then the resultant
initial perturbation cp

0d just is the CNOP. Thus, we turn a max-
imization problem into a minimization problem, finally obtain-
ing the CNOP by solving this minimization problem using the
SPG2 algorithm with the relevant gradient.

4. The CNOP of the SSHA forecasting

In this section, we will clarify the influence of the accuracy
of mesoscale eddies in the initial field on the forecast uncer-
tainties of oceanic state SSHA by using the CNOP approach.
To do so, we adopted the SSHA-based eddy identification
algorithm shown in appendix A. As an example, we plot in
Fig. 1 the distribution of identified mesoscale eddies when the
QGmodel was integrated to the time T0 (see section 4a) start-
ing from the initial value represented by a matrix comprised
of random numbers satisfying the normal distribution N(0, 1)
of c. The flow field in Fig. 1 is dominated by a population of
self-organized coherent vortices with irregular shapes and
asymmetric structures of the flow field (also see Fig. 2). By
statistics, these vortices have an average radius of approxi-
mately 120 km, which agrees with the statistics on the sizes of
mesoscale eddies according to global SSHA observations (see
Chelton et al. 2011) and represents a total of 57 mesoscale
eddies. This result indicates that the two-layer QG model and

FIG. 1. The SSHA field (m) c1 and associated mesoscale eddies
generated by the two-layer QG model when it is integrated to the
time T0 with the initial value represented by a matrix comprised of
random numbers satisfying the normal distribution N(0, 1) of c.
The white circles represent the centers of mesoscale eddies with
blue cyclonic and red anticyclonic eddies.
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the approach to identifying eddies are acceptable for the theo-
retical study of mesoscale eddies.

a. The CNOP of the SSHA forecasts

The two-layer QG model, as mentioned above, was inte-
grated to the time T0 starting from the initial matrix com-
prised of a group of random numbers. Then, with the
streamfunction ci (i = 1, 2) at time T0 as the initial value, the
QG model was further integrated to time T1 with T1 . T0.
The duration between T0 and T1 was 7 days (i.e., one week),
where the time integral [T0, T1] corresponds to the 350th
week in the QG model integration. With the time-dependent
evolution of the SSHA during different weeks as reference
states to be predicted, we calculated the CNOPs of the initial
SSHA, where the initial perturbation and its final state were
cared only for the SSHA c1 but over the full-field model
scope. The SPG2 algorithm for calculating CNOPs, as men-
tioned in section 3, requires the gradient information of the
cost function with respect to initial perturbations, where the
gradient was often calculated by integrating an adjoint model
more efficiently. However, the QG model here does not have
its adjoint ready, then we intend to calculate the gradient
using approach of numerical derivatives. The full-field SSHA
includes 65 536 grid points, which indicates a large number of
perturbation dimensions and time-consuming when one uses
the numerical derivatives to calculate the gradient and then
the CNOP. To reduce the time costs, an empirical orthogonal
function (EOF) analysis was applied to an SSHA time series
taken from the 200th week to the 500th week generated by
the two-layer QG model. Specifically, we took the SSHA at
the first day of each week and formed the time series of

SSHA. Then a data matrix C of 65 536 rows and 301 columns
was obtained. If one performs the EOF decomposition to this
matrix directly, a large amount of computer memory is
required and it is almost impossible to obtain the EOF
modes. Therefore, in the present study, we first calculated
eigenvalues l = (l1, l2, … , l301) and eigenvectors VR of the
matrix CTC, then the EOF modes of C can be easily
obtained by calculating the eigenvectors of CCT through

VN � 1=
���
K

√( )
WVR, where L is the diagonal matrix consisting

of diagonal elements l = (l1, l2, … , l301). For more details
of this EOF decomposition, readers can be referred to
Lagerloef and Bernstein (1988). Thus, the leading 50 EOF
modes with a 96.92% explained variance were selected.
These EOF modes can be regarded as a group of base vec-
tors of initial perturbations of the SSHA. Then an initial
perturbation cp

1,0 can be formulated as follows:

cP
1,0 � c1EOF1 1 c2EOF2 1 c3EOF3 1 · · · 1 c50EOF50,

(10)

where C = (c1, c2, c3,… , c50) are 50 constant coefficients.
Different coefficients correspond to different initial pertur-
bations, which then transfers the problem of searching for
CNOP of the SSHA with 65 536 perturbation dimensions
into the one searching for a particular combination of the
50 coefficients by the SPG2. With this strategy, the CNOPs
of the reference states can be much easily obtained by the
SPG2 with the gradient of the cost function with respect to
these coefficients calculated by numerical derivatives
[J(ck 1 Dck) 2 J(ck)]/Dck, k = 1, 2, 3, … , 50, with a small
coefficient perturbation Dck = 1025.

We randomly assigned 10 reference states (i.e., ten 7-day
evolution of SSHA in the model integration) to calculate the
CNOPs. In addition, a total of 10 CNOPs were obtained. We
found that the large perturbations of the CNOPs are locally dis-
tributed over the space; especially, the grid points of large per-
turbations of CNOPs are often located on mesoscale eddies.
Specifically, approximately 95% of the top 600 grid points fell
on some mesoscale eddies (see Fig. 2 as an example) due to
sensitivity of the mesoscale eddies themselves (see sections 4b
and 4c). Note that the initial perturbations in the area of large
values of CNOPs may contribute more to the growth of
CNOPs. It was therefore implied that the perturbation growth
of the SSHA was more sensitive to the initial perturbations
superimposed on the mesoscale eddies; if it was a forecast of
the SSHA, its uncertainties would be highly sensitive to the ini-
tial accuracy of mesoscale eddies. Therefore, the initialization
of mesoscale eddies was important to the forecasting accuracy
of ocean states described by the SSHA. This result supports the
perspective proposed by Weiss and Grooms (2017) that assimi-
lating observations taken over mesoscale eddies was more
effective than assimilating a subset of observations on a regular
and equispaced grid covering model scope. In Weiss and
Grooms (2017), the observations on evenly distributed regular
grids over eddies were assimilated (also see the introduction).
However, when considering the irregular shapes and asymmet-
ric flow field of the eddies and their nonlinear evolutionary

FIG. 2. The CNOP of the 7-day evolution of SSHA with the ini-
tial value is shown in Fig. 1, but only the areas occupied by the top
600 grid points with large perturbation amplitudes are colored in
red. The locally distributed black areas represent different meso-
scale eddies.
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behaviors, we inferred that there may exist areas over the
eddies where the observations should be preferentially rear-
ranged to be unevenly distributed and assimilated, which may
improve the forecasting ability of ocean states. To confirm this
inference, we next explored the CNOP-type initial errors super-
imposed on individual eddies for associated SSHA forecasts.

b. The CNOPs of initial eddies associated with SSHA
forecasting

The CNOP, as mentioned above, represents the initial per-
turbation that caused the largest perturbation growth. The
growth of the CNOP was more sensitive to the initial perturba-
tions in the area of large CNOP values. Such an area may repre-
sent the sensitive area of perturbation growth with respect to
initial perturbations. In this situation, the forecasting accuracy
can be significantly improved by reducing the initial errors in
the sensitive area identified by the CNOP. Therefore, to initial-
ize the mesoscale eddies much better and improve the forecast
level of the SSHA, it is necessary to explore the sensitive area
of mesoscale eddies by using the CNOP method. As an initial
attempt, we focused on individual mesoscale eddies and explore
their sensitive area for improving the forecast level of their asso-
ciated SSHA. Since the individual eddies cover a much smaller
number of grids (at most 1000 grids; see appendix A) and have
much lower perturbation dimensions for computing the opti-
mally growing initial errors, we directly computed the gradient
of the cost function with respect to initial perturbations super-
imposed on individual initial eddies using numerical derivatives
rather than that with respect to coefficients of EOF modes.

For the predetermined 57 eddies in Fig. 1, the CNOP-type
initial error of each individual eddy was calculated for the
SSHA forecast with a lead time of 7 days, and a total of 57
CNOP-type errors were obtained, where the SSHA to be pre-
dicted was prescribed as a rectangle that covers the area occu-
pied by the initial eddy and its final location after a 7-day
evolution. By observing the initial errors of CNOP-type, most

of them (specifically, 39/57) possessed common features. Fur-
thermore, this feature was found to be independent of the size
of the rectangle covering the initial eddy and its final location
after a 7-day evolution. These CNOP-type errors generally pre-
sented their dominant errors in the area where the initial eddies
present an apparent velocity gradient from high to low speed
along the eddy rotation and often had a shear structure of the
SSHA there (see Fig. 3 for an example of CNOPs). Other
CNOP-type errors did not show this feature; in particular, they
yielded much smaller forecasting errors of SSHA, which, by
comparison and inferentially, is resulted from the correspond-
ing initial eddy failing to have an obvious velocity gradient and
being unable to induce the unstable shear structure of initial
errors favoring large prediction errors (also see section 4c).
This finding indicated that the SSHA forecasts are less sensitive
to the accuracy of the initial eddies without an obvious velocity
gradient, which may illustrate why the large perturbations of
the CNOPs over the full-field domain for the SSHA forecasts
are locally distributed on some mesoscale eddies rather than on
others. That is, the initial uncertainties of these eddies are
much more weakly disturbing the SSHA forecasts. For this rea-
son, we do not care here them but preferentially pay attention
to the initial eddies of obvious velocity gradients.

c. Interpretation

As shown above, CNOP-type errors generally occur in the
area where the initial eddies present an obvious velocity gra-
dient from high to low speed and often present a shear struc-
ture of the SSHA, causing aggressively large prediction errors
of the SSHA. In the present section, we interpret why the
CNOPs have these features.

This problem is equivalent to understanding why the
CNOPs with those features mentioned previously can signifi-
cantly grow. To address this issue, we adopted the approach
of eddy-energies analysis (Tsujino et al. 2006; Fujii et al. 2008).
Generally, the calculation of eddy energies requires the

FIG. 3. (a) The CNOP-type error (shaded; m) superimposed on the initial mesoscale eddy represented by (b) the
velocity (shaded; m s21), which is associated with the 7-day SSHA forecast. In (a) and (b), the black “�” represents
the center of the initial eddy, the red contours outline the SSHA component, and the thick contours denote the edge
of the eddy, while the white arrows in (b) represent the velocity vector. Boxes A and B in (b) denote the areas where
­V=­t, 0 is satisfied, with box A presenting denser contours of velocity.
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decomposition of an instantaneous flow field into a mean flow
and an eddy fluctuation, where the mean flow is often defined as
the long-term mean of the instantaneous flow field, so in gen-
eral, the eddy fluctuation is obtained by subtracting the mean
flow from the instantaneous flow and bears temporal and spatial
variability. For a horizontal mean flow, the growth of the eddy
fluctuation often results from the barotropic instability of the
mean flow. The kinetic energy for supporting the growth of the
eddy fluctuation comes from the mean flow. The kinetic energy
of the mean flow transitioning to the eddy fluctuation can be
measured by a barotropic conversion rate (BT), which can be
derived by the following Eq. (11) [i.e., the tendency equation of
eddy kinetic energy (EKE) under the quasigeostrophic
assumption]:

­EKE
­t

�2r0 u′u′
­u
­x

1 u′y′
­u
­y

1
­y

­x

( )
1 y′y′

­y

­y

[ ]
1 residue;

(11)

where u and y are zonal and meridional velocities of the
mean flow; u′ and y′ are the corresponding velocities of the
eddy fluctuation field, respectively; and

BT �2r0 u′u′
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1 y′y′
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­y

[ ]
· (12)

Obviously, the EKE can be converted from the mean flow
only when the BT is positive.

For particular physical problems of concern, there may exist
various definitions of mean flow and eddy fluctuation. Despite
this, the BT can also be regarded as an indicator of barotropic
instability (see Fujii et al. 2008). In the present study, the refer-
ence state to be predicted can be treated as the mean flow, and
the CNOP-type errors are regarded as the eddy fluctuation.
The BT for the evolution of the CNOP-type errors can be cal-
culated. A positive BT always occurs in the area occupied by
large values of CNOP-type errors, i.e., the area where the initial
eddies of the reference state present an obvious velocity gradi-
ent from high to low speed. Figure 4 plots the BT of the
CNOP-type error shown in Fig. 3. The initial errors in the area
where the initial eddies present an obvious velocity gradient
from high to low speed are more likely to extract energy from
the reference state and grow significantly. Why does the posi-
tive BT tend to occur in this area?

To answer the above question, we can rewrite the BT as in
Eq. (13) (the derivation can be seen in appendix B), which is
established under the frame of a natural coordinate system and
uses the Lagrange expression, which is calculated as follows:

BT �2 V′2

V 1 V′( )
­V
­t

, (13)

where V′ is the velocity in the CNOP-type error and its evolu-
tion, and V . 0 in the natural coordinate system and repre-
sents the velocity in the reference state with V′| |, V
generally. We split Eq. (13) into two terms 2V′2= V 1 V′( )
and ­V=­t. Clearly, a larger V′| | will result in the term
2V′2= V 1 V′( ) having a larger absolute value, which

indicates that the BT is larger in absolute value and that more
energy can be converted. Since the trace line on the vortex is
approximately circular, V′| | � ­c′=­r| | can be approximately
deduced (see appendix C). Therefore, a large V′| | corresponds
to a large ­c′=­r| |. Thus, if and only if the CNOP-type errors
possess the strongest positive–negative contrast of perturbed
SSHA, as in Fig. 3a, they can yield the largest velocity V′| |
and then the most energies are converted. This finding
explains why the CNOP-type errors tend to have a shear
structure of c′

1, as shown in Fig. 3a.
Since the velocities generally satisfy V′| |, V , the term

2V′2= V 1 V′( ) is often negative. Therefore, when the term
­V=­t is also negative, the BT can be positive. In Fig. 5, the
7-day evolution of the SSHA and velocity, followed by Euler
expression, always exhibits an eddy structure similar to the
initial eddy, whereas the water masses on the eddy, followed
by Lagrange expression, are simultaneously in motion. Then,
­V=­t mainly reflects the velocity tendency of the water
masses in the eddy. With the initial eddy shown in Fig. 3, we
integrate the QG model and calculate ­V=­t at different
times. There are always two locations on the eddy (marked by
boxes “A” and “B”), which satisfy ­V=­t

( )
, 0; in particular,

the velocities in box A present much denser contours, imply-
ing that the term ­V=­t in box A is more negative, which,

combined with the term 2 V′2= V 1 V′( ), enhances the BT
more positive in box A. The ­V=­t, 0 and its induced posi-
tive BT means that in the areas with the water mass velocity
of the eddy changing from large to small, the initial errors
have the potential to extract more energies and develop into
larger errors. Thus, the initial errors occurring in box A are
inclined to grow much more significantly, which indicates
the CNOP-type errors, as the initial perturbation that has the
largest nonlinear growth, preferentially occurring in the area
where the initial eddy presents a large velocity gradient with
the velocity decreasing along the rotation direction of the

FIG. 4. The distribution of the BT (1027 m2 s23) of the CNOP-
type error in Fig. 3. The dots occupy the eddy, with the red bold
line denoting the eddy edge.
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vortex. This sheds light on that the CNOP-type errors of such
structures are less sensitive to orientation for eddies that are
more isotropic, which is also responsible for why the large
perturbations of the CNOPs superimposed on the full-field
domain are locally distributed on some eddies (see section 4a)
and other eddies do not present their own CNOP-type errors
as of an obvious shear structure of SSHA (see section 4b).

5. Sensitivity to CNOP-type errors superimposed on
initial eddies

In the last section, we illustrated the CNOP-type errors of
the SSHA forecasting tend to be located on the initial
eddies and are especially concentrated in the areas with an
obvious velocity gradient from high to low speed; further-
more, the CNOP-type errors often present a shear structure
of the SSHA there. Physically, we have explained the ratio-
nality of the CNOP-type errors as the optimally growing ini-
tial errors superimposed on the initial eddy associated with
the SSHA forecasts. As analyzed above, the growth of
CNOP-type errors is more sensitive to the errors in the areas

in which the CNOP-type errors concentrate and have large
error values. These areas may represent the sensitive areas of
initial eddies for target observations associated with SSHA
forecasts; then, the forecasting accuracy could be significantly
improved by reducing the initial errors in the sensitive areas.
To confirm this inference, we conducted the following two
groups of numerical experiments to show the sensitivity of
SSHA forecasting errors to CNOP-type errors.

a. Sensitivity to locations of initial eddy errors

We first explored the sensitivity to the locations of initial
eddy errors. Five groups of experiments, denoted as R1, R2,
R3, R4, and R5, were predesigned (see Fig. 6). The groups of
experiments investigated the effect of possible observational
errors on 16 different grid points on the initialization of meso-
scale eddy. To do so, we superimposed the initial perturba-
tions on the 16 grid points when they were located in the
sensitive area in R1 and that of the nonsensitive areas in
R2–R4. In R5, the 16 grid points have a uniform distribution
over the mesoscale eddy, similar to Weiss and Grooms
(2017). For each of R1–R5, we generated 25 groups of

FIG. 5. The evolution of the SSHA with the initial eddy as in Fig. 3b. The velocity (m s21) is plotted in for the time
(a) T0, (b) (1/3)(T1 2 T0), (c) (2/3)(T1 2 T0), and (d) T1, where [T0, T1] corresponds to the 350th week in the QG
model integration (see section 4a). The red contours draw the outline of the SSHA fields, the thick closed contours
represent the edge of the eddy, and the white arrows denote velocity vectors.
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random initial errors with the random number at each grid of
a normal distribution N(0, s1), where s1 is a positive number
and prescribed as being stochastically yielded from the inter-
val (0, 4) when considering the amplitude of observational
error. With these initial errors, the QG model was integrated
for 7 days to obtain the SSHA forecasts.

We took the differences between the SSHA forecast
result and the reference state SSHA and obtained the fore-
cast errors of the SSHA caused by the 25 random initial
errors in R1–R5. Figure 7a shows these forecast errors. The
forecast errors that occurred in R1 were generally signifi-
cantly larger than those in R2–R5. This finding showed that
the forecast errors of the SSHA was more sensitive to the
random initial errors in the sensitive area identified by the
CNOP-type errors than in other areas.

b. Sensitivity to spatial structures of initial eddy errors

Further, we compared the forecast errors caused by 25
groups of random initial errors with those caused by the
CNOP-type errors. The R1–16 gridpoint (i.e., the 16 grid
points in R1) component of the CNOP-type initial errors
tended to yield much greater forecast errors compared with
the random initial errors in R1 when they are scaled to have
the amplitude of the R1–16 gridpoint component of the

CNOP-type error (see Fig. 7b). The CNOP-type errors and
random initial errors presented different spatial structures. It
can therefore be inferred that the spatial structure of initial
errors plays an important role in yielding a large forecast
error. To further examine this perspective, we conducted the
following sensitivity experiments.

Based on the above 25 groups of random initial perturba-
tions in R1 and the R1–16 gridpoint component of the
CNOP-type error, we generated new types of initial errors of
special patterns as follows:

Typea � aCNOP-type error

1 1 2 a( ) 3 random error; (14)

where a = 0, 0.1, 0.2, 0.3… , 1. Obviously, these errors also
occur on the 16 grids in R1. With increasing a, the new type
of error bears increasing similarities to the CNOP-type error.
For a fair comparison, all new types of initial errors were
scaled to have an amplitude similar to that of the CNOP-type
error. With these new initial errors, the forecast errors of the
final SSHA were investigated. Figure 7b displays a box plot
for the forecast errors caused by 25 groups of new initial
errors for each value of a. It is shown that the forecast errors
become increasingly larger with increasing a. In fact, the new
errors, as mentioned above, are similar to CNOP-type errors

FIG. 6. R1, R2, R3, R4, and R5 show separate experiments, where 16 different grid points on the mesoscale eddy (shown in Fig. 3b) are
selected and initial errors are superimposed. The black stars denote the 16 grid points, and the black “�” represents the center of the initial
eddy. The 16 grid points in R1 occupy the area where CNOP-type error is located, i.e., the sensitive area of the eddy.

J I A NG E T A L . 731APRIL 2022

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 04/08/22 12:44 AM UTC



when a is large. Therefore, we confirmed that the initial errors
of a particular structure in sensitive area R1, as shown in
CNOP-type errors, are more likely to cause larger forecast
errors than other initial errors.

It is noted that the experiments in section 5a and 5b took
the eddy shown in Fig. 3 as an example to show the sensitive
area and its associated unstable structures of initial errors. In
fact, for all the 39 eddies whose CNOP-type errors coincide
with the unified characteristics summarized in section 4b, we
conducted similar experiments and consistent results are
obtained. That is, the SSHA forecasting uncertainties are very
sensitive to the initial errors in the sensitive area over the ini-
tial eddies, especially to those of particular unstable struc-
tures, as in the CNOP-type errors. This finding indicates that
if additional observations, especially with a particular array
indicated by the CNOP-type errors, are preferentially imple-
mented in the sensitive areas over the eddies and assimilated,
the forecasting ability of the SSHA could be greatly
improved.

6. Observing system simulation experiments to confirm
the rationality of sensitive area for target observation

In this section, we conducted observing system simulation
experiments (OSSEs) to confirm the rationality of the sensi-
tive area determined by CNOP-type errors. To do so, we took
the reference state from T0 to T1 to represent the “true” state
(hereafter “Nature Run”) and generated synthetic or pseudo
observations by adding errors on Natural Run at selected
observation sites. Based on the Nature Run, we superimposed
white noise with different amplitudes of variances on the
Nature Run at time T0 and then performed the Lanczos filter-
ing algorithm to make the flow fields smooth. With these flow
fields as initial values, we integrated the QG model to time T1

(see section 4a) and obtain various “Control Run” or control
forecasts of the Natural Run.

Different control forecasts will have separate forecast
errors, which, are caused by various initial errors, i.e., the dif-
ferences between the Natural Run and Control Runs at time
T0 (see section 4a). Certain initial errors will lead to signifi-
cant forecast errors, whereas others will yield negligible

forecast errors. For the initial errors causing negligible fore-
cast errors, the forecast results have been satisfying, and even
if the targeted observations are assimilated, the improvement
of the forecast result is indistinguishable. Therefore, to evalu-
ate the effect of target observations more reasonably, we
chose control forecasts with large forecast errors to conduct
assimilation experiments on target observations. Specifically,
we generated 100 Control Runs of the Natural Run and con-
sidered the corresponding 100 initial errors. These initial
errors were all scaled to have the same amplitude by
X′
i � liXi,where Xi and X′

i (i = 1, 2, 3, … , 100) denote the initial
error of the Control Run and its scaled counterpart, respectively; li
denotes the scaling factor, which should make X′

i satisfy������������������∑N
i, j51

X′
i,j

( )2
=N

√
� 1=5
( )

d0, where d0 is the standard deviation of

the initial SSHA in the 10 reference states (see section 4a),
j denotes a grid point, and N represents the total number of grid
points in the rectangle that covers the area occupied by the initial
eddy and its final location after a one-week evolution. The forecast
errors caused by the initial errors are all examined, and the top 30
initial errors with large forecast errors were selected for conducting
the OSSEs.

In the OSSEs, the synthetic observations were assimilated
into the initial field of the Control Run and formulated a new
initial field. With this new initial field, we integrated the QG
model and obtained a new forecast with respect to the SSHA.
For convenience, we referred to this new forecast as the
“Assimilation Run.”

For the 39 eddies whose CNOP-type errors can identify
the sensitive area for SSHA forecasting (see section 4b), we
adopted the above strategy to conduct OSSEs and showed
the sensitivity of the CNOP-type errors. Since similar results
are obtained, for simplicity, we only use the eddy in Fig. 3 to
describe the result. In the Assimilation Run, five different
assimilation strategies were used. Figure 8 shows these strat-
egies, which are referred to as E91, E31, E32, E33, and E34.
E91 means that the synthetic observations are evenly dis-
tributed on 9 grids over the eddy (similar to Weiss and
Grooms 2017) and assimilated; E31 assimilates only three
(in the sensitive area; i.e., the box A in Fig. 3) of the 9 grids

FIG. 7. The boxplot of the forecast errors (m) caused by (a) 25 random initial errors in the area shown in R1–R5
and (b) the initial errors of the special patterns characterized by the coefficient a in R1. The red bold dots represent
the mean value, and the black bold lines denote the median. Particularly, the red bold dot with a = 0 corresponds to
25 random initial errors, while that with a = 1.0 corresponds to the CNOP-type initial error.
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in E91, while E32, E33, and E34 assimilate another three
that do not fall in the sensitive area (see Fig. 8). Note that
the E34 almost corresponds to the box B in Fig. 3. Optimal
interpolation (see appendix D) was employed to assimilate
synthetic observations. The benefits of the SSHA forecast-
ing skill from assimilating observations were evaluated by
Eq. (15):

b � dF1 2 dF2

dF1
3 100%, (15)

where dF1 is the forecast error of the Control Run with
respect to the Nature Run and dF2 is the forecast error of the
Assimilation Run with respect to the Nature Run.

With these assimilation strategies, we integrated the QG
model and calculated the benefits from assimilating target
observations. The ratio between the benefits b of E3i
(i = 1, 2, 3, 4) and that of E91 are calculated and then plotted in
Fig. 9, which measures the contribution of assimilating three
observations to the improvement of the forecast ability of the
SSHAwhen assimilating the nine observations. E31 had the larg-
est contribution. Furthermore, there respectively exist one grid
observation in E32 and E34 overlaps with the observations in
E31. That is, the locations of the observations in E32 and E34
are very close to the sensitive area; consequently, E32 and E34
presented secondarily large contributions to the improvement of

the forecast ability of the SSHA. From these experiments, we
confirmed that preferentially implementing additional observa-
tions in the sensitive area determined by CNOP-type errors is
indeed valid for improving the initialization of mesoscale eddies
and then the associated forecast level of the ocean state
described by SSHA.

In section 5b, it was deduced that the targeting observations
should also be considered with what array to display accord-
ing to the sensitivity to the structure of the CNOP-type errors.
To verify this point, we further conducted the following
OSSEs. The assimilation strategy was essentially the same as
that in the former part with the exception that the three-grid
observations are randomly selected from those in the sensitive
area. A total of 30 arrays for three-grid observations were
obtained for each of the 39 eddies of concern (see section 4b),
and a common conclusion is obtained. Figure 10 shows the
30 arrays in the sensitive area (i.e., the box A) for the eddy in
Fig. 3. Here, we similarly take this eddy as an example to illus-
trate the results. With the assimilation of the 30 observational
arrays, we calculated their benefits (see Fig. 11) and found
that if and only if observations exist with an array displayed
along the radial direction of the eddy, the benefits from assim-
ilation will be notable. Such observational arrays crosscut the
shear structure of the SSHA similarly as in the CNOP-type
errors and are helpful for capturing the spatial characteristic of

FIG. 8. CNOP-type errors and five kinds of assimilation strategies. The bold points represent the observations, and the red points indicate
the observations to be assimilated.
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the optimally growing initial error superimposed on the eddy,
and by assimilating them we are able to effectively reduce its
effect on the SSHA forecasting. It is also argued that the box B
of the eddy in Fig. 3 presents strong velocity shear despite it is
weaker than that in the box A and one may question how
important it is for the benefits. To address it, we conducted sim-
ilar OSSEs and demonstrated that the benefits from the assimi-
lation in the box B are significantly less than those in the box A
(i.e., the sensitive area), with the former being less than 20% at
maximal while the latter being up to more than 30% at maxi-
mal. Furthermore, we found that the variability among the ben-
efits made by 30 assimilation strategies for the box B are not as
significant as that for box A despite the large benefits for boxes
A and B are all for the observational arrays that crosscut the
shear structure of the SSHA. All these demonstrated that
the benefits after assimilation are more significantly sensitive to
the strong velocity gradient occurring along the rotation of the
initial eddy, which is responsible for the occurrence of the
CNOP-type error with a shear SSHA structure there. In numer-
ical experiments, we also tried assimilation strategies with more
observations and similar results were obtained. Therefore, the
structure of the CNOP-type errors provides guidance to imple-
ment target observations with what array to display. This find-
ing also sheds light on how the evenly distributed observations
as doing in Weiss and Grooms (2017) are preferentially redis-
played according to the array indicated by the CNOP-type
errors, then finally improving the SSH forecasting ability.

7. Summary and discussion

Motivated by the crucial role of oceanic mesoscale eddies in
influencing oceanic fluid motions and associated weather and

climate anomalies, we conducted the first attempt to investi-
gate the optimally growing initial error of the SSHA forecasts
by using the CNOP approach and illustrated the role of meso-
scale eddies in improving the SSHA forecasts generated by a
two-layer QG model. The results showed that in the optimally
growing initial errors characterized by the CNOP, the compo-
nents located on the mesoscale eddies tend to contribute more
to the forecasting errors of the SSHA with a 7-day lead time,
which indicated that the accuracy of the mesoscale eddies dis-
tributed over the initial SSHA field was particularly important
when obtaining the high skill of the SSHA forecasts. This
result coincides with the perspective proposed by Weiss and
Grooms (2017) that assimilating evenly distributed observa-
tions over mesoscale eddies is more effective than assimilating
a subset of observations on a regular and equispaced grid cov-
ering model scope in improving SSH forecasting ability. How-
ever, by calculating and observing the CNOP-type initial
errors superimposed on individual eddies, we found that the
dominant errors tend to occur at a particular location where
the eddies exhibit an obvious velocity gradient from high to
low speed along the rotation direction and often have a shear
structure of the SSHA there. This finding implies that the ini-
tial errors at different locations over the eddy may have differ-
ent contributions to the final forecast errors of SSHA and in
the above particular location shows the strong sensitivity to
initial errors of SSHA forecasts (note that this particular loca-
tion can also be referred to as a “sensitive area”). Therefore,
assimilating evenly distributed observations over mesoscale
eddies in Weiss and Grooms (2017) may not be the optimal
assimilating strategy for SSHA forecasting. Then, we infer that
if additional observations are preferentially implemented,
especially with a particular array in the above particular loca-
tion, and assimilating them to the initial field, the forecasting
skill of the SSHA could be significantly improved.

Physically, we interpreted the sensitivity of the CNOP-type
errors superimposed on individual eddies by barotropic insta-
bility and provided theoretical evidence for the above infer-
ence on the very effective assimilation strategy of mesoscale
eddies associated with SSHA forecasts. Specifically, a positive
BT will ensure that the errors obtain energy from the refer-
ence state to develop. Therefore, if the eddies in the reference
states have a location where the fluid exhibits the most appar-
ent velocity gradient, with values from large to small along
the rotation direction and the errors themselves possess a
strong shear structure with a positive–negative contrast of
SSHA, they will determine the associated BT is positive and
its value is the largest. Then, most energies can be converted
from the reference states to errors, finally being favorable for
the errors growing optimally. Since we are finding the opti-
mally growing initial errors superimposed on initial eddies
associated with the SSHA forecasts, the resultant CNOP-type
initial error, as the optimally growing initial error, must fea-
ture that its dominant errors occur at the location where the
eddies exhibit an obvious velocity gradient from high to low
speed along the rotation direction and often have a shear
structure of the SSHA over there.

Numerically, we conducted sensitivity experiments and
OSSEs to verify the sensitivity of CNOP-type initial errors

FIG. 9. Boxplot of the contribution of assimilating selected three-
grid observations to the reduction in the control forecast errors
when assimilating nine evenly distributed grid observations, where
the associated control forecasts are the 30 Control Runs with large
forecast errors.
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and suggest a much more effective target observation strategy
of mesoscale eddies associated with SSHA forecasts. The
results showed that when random initial errors are added in
the sensitive area, they lead to larger forecast errors than in
other regions over the mesoscale eddies; in particular, if an ini-
tial error with a structure similar to the CNOP-type initial
errors is added on the initial eddies, it significantly enhances
the forecast errors of SSHA. Consequently, both sensitive

areas occupied by CNOP-type errors superimposed on initial
eddies in the reference states and the associated shear struc-
ture of the errors make the largest contribution to the final
forecast errors of SSHA. Therefore, if additional observations
are implemented in the sensitive area, especially with an array
of observations that can capture the shear structure of the
errors, the SSHA forecasting skill can be significantly
improved by assimilating these additional observations. The

FIG. 10. G1–G30 represent 30 assimilation strategies, where the three-grid observations are randomly selected from those in the sensitive
area of the eddy. The bold black dots denote the center of the eddy, and the bold red dots indicate the location of the three observations to
be assimilated.
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OSSEs were used to verify the above sensitivity of the CNOP-
type errors. They illustrated that preferentially implementing
additional observations in the sensitive area determined by the
CNOP-type errors is indeed valid for improving the initializa-
tion of mesoscale eddies and then the associated forecast level
of the SSHA; in particular, if and only if observations arranged
along the radial direction of the eddy exist, the benefits from
assimilation are considerable. Obviously, these particular
observational arrays located in the sensitive area capture the
shear characteristics of the optimally growing initial errors and
show the usefulness of the CNOP structure in implementing
targeting observations with what array to display.

In realistic field campaigns, although it is difficult to target
the accurate positions to implement the additional observations
due to problems of observing methods and associated observ-
ing devices and instruments, which must lead to observational
errors, these observations have reflected the real world to a
high degree (Mu 2013). In addition, as the first attempt at tar-
get observations of mesoscale eddies associated with SSHA
forecasting, we adopted a simple two-layer quasigeostrophic
model to investigate this issue. In particular, we only paid
attention to the surface flow associated with individual meso-
scale eddies. From the resultant CNOP sensitivity and its inter-
pretation of barotropic instability, it seems that a much simpler
shallow-water model is also applicable to the problem of con-
cern here. Of course, this should be confirmed by a comparison
between the two-layer model and the shallow-water model to
identify the particular role of the two-layer model. In any case,
our original intention is to implement a comparison between
the present study and that of Weiss and Grooms (2017) and
the two-layer QG model is finally adopted. In addition, we also
realize that the mesoscale eddies in actual stratified oceans gen-
erally exhibit a three-dimensional structure and interaction
among themselves, which may be related to a mixture of baro-
tropic and baroclinic instabilities (Liao et al. 2019). In this sce-
nario, a more practical model is expected to be useful for
investigating the effect of the accuracy of mesoscale eddies on
the forecasting ability of ocean states such as SSHA, even other
oceanic variables, finally designing the optimal observation net-
work of mesoscale eddies and improving the forecast level of
the ocean state to a greater extent.

It is also realized that, although the simple two-layer QG
mode adopted in the present study, which does not have its
adjoint model ready, allows us to solve the gradient by calcu-
lating the numerical derivatives, a large amount of time cost is
still required for solving CNOP. Certainly, such doing is inad-
visable for complex realistic models. In fact, there exist
adjoint models of some realistic models such as the Weather
Research and Forecasting (WRF) Model (Michalakes et al.
2001) for weather forecasts, the Regional Ocean Model Sys-
tem (ROMS) (Shchepetkin and McWilliams 2005) for oceanic
simulations, and others. Related to the present study, one can
also use the ROMS model and its adjoint to explore the meso-
scale eddy of concerned problems. Of course, there exist
some intelligent algorithms, such as particle swarm optimiza-
tion (PSO), genetic algorithm, etc., which have been emerging
to solve high-dimensional optimization problems. These algo-
rithms do not calculate the gradient and may be applicable to
models of different complexities. It is therefore expected that
such kind of algorithms can be applied to calculate the CNOP
for more realistic models and further explore sensitivity of
mesoscale eddies in the future.
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FIG. 11. Boxplot of the control forecast error reduction after assimilating selected three-grid observations in G1–G30,
where the control forecasts are the 30 Control Runs with large forecast errors.
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APPENDIX A

Vortex Identification Algorithm

The present study adopts the SSHA-based eddy identifi-
cation algorithm suggested by Chelton et al. (2011) to
determine the vortex position. Then, a mesoscale eddy can
be defined as a connected set of grids that satisfy the fol-
lowing criteria:

1) The values of the SSHA on the grids are above (or
below) a given threshold for anticyclonic (cyclonic)
eddies.

2) There are at least 20 grids but fewer than 1000 grids com-
prising the connected region.

3) There exists one local maximum (minimum) of the SSHA
for anticyclonic (cyclonic) eddies.

In the present study, the threshold above is prescribed as
1.5 times the RMS (root-mean-square) of the SSHA field
over the whole model scope. With this threshold, the loca-
tions of the eddies are approximately determined, and then
the outermost closed contour of the SSHA for each eddy
can be sketched as the eddy edge according to the second
and third criteria.

APPENDIX B

Calculation of BT in the Natural Coordinate System

The natural coordinate system here is established along
the trace of the water mass, where the tangent and normal
directions (denoted by s and n) of the trace are two coor-
dinates of the system. Through the quasigeostrophic (QG)
balance assumption, a flow can be decomposed into a
leading-order geostrophic flow component V and a small
ageostrophic component Va. The geostrophic flow satisfies
Eq. (B1):

f0V �21
r

­p
­n

, (B1)

where f0 is the Coriolis parameter, r is the density, and p is
the pressure.

The variability of the geostrophic flow V is controlled by
the next-order momentum (Tsujino et al. 2006) and is
described as follows:

V2

R
�2f0Va 2

1
r

­pa
­n

, (B2)

where R is the curvature radius and pa is the small ageo-
strophic component of pressure. The calculation of eddy
energies requires decomposition of instantaneous fields into
mean and eddy fluctuation fields, where the mean field is
often defined as a long-term mean (denoted by a bar) and
its eddy fluctuation (denoted by a prime) is defined as the
deviation from it. The following Eq. (B3) shows the decom-
position of the relevant variables:

V � V 1 V′, Va � Va 1 V′
a, pa � pa 1 p′a: (B3)

Substituting Eq. (B3) for Eq. (B2), it is derived as follows:

V′2 �2 f0RV
′
a 2 2VV′

2
R
r

­p′a
­n

· (B4)

By seeking a partial derivative with respect to time to the left
and right sides of Eq. (B4), it obtains the following Eq. (B5):

­ V′2( )
­t

�2 f0R
­V′

a

­t
2 2

­ VV′( )
­t

2
R
r

­

­t
­p′a
­n

( )
· (B5)

By multiplying the left and right sides of Eq. (B5) by 1/2
and with the EKE being (1/2)V′2, the control equation of
the EKE can be obtained as in Eq. (B6):

­EKE
­t

�2
V′2(

V 1 V′) ­V
­t

2
f0RV

′

2
(
V 1 V′) ­V′

a

­t

2
V′R

2r
(
V 1 V′) ­

­t
­p′a
­n

( )
· (B6)

Clearly, the first term on the right side of Eq. (B6), i.e.,
Eq. (B7), is the BT, which is defined as follows:

BT �2 V′2

V 1 V′( )
­V
­t

· (B7)

APPENDIX C

The Relationship between the Streamfunction and Water
Mass Velocity in the Natural Coordinate System

The trace on the vortex can be roughly regarded as a cir-
cle and approximately coincides with the streamline of
water mass motion. The relationship between the natural
coordinate system and the Cartesian coordinate system with
the two coordinates x and y can be constructed as follows
via the polar coordinate system (Fig. C1).

In Fig. C1, taking the red dot in the second quadrant as a
mass point on the cyclonic vortex can be derived as follows:

V2 � u2 1 y2

u �2sinu 3 V
y � cosu 3 V

;
r2 � x2 1 y2

x � cosu 3 r
y � sinu 3 r

,
u �2­c

­y

y � ­c

­x

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
­c

­r
� ­c

­x
­x
­r

1
­c

­y
­y
­r

� ­c

­x
cosu( ) 1 ­c

­y
sinu( )

� ­c

­x
y

V

( )
1

­c

­y
2

u
V

( )
� 1
V

y y( ) 1 u u( )[ ] � V,

where V is the horizontal velocity in the natural coordinate
system, u, y is its zonal and meridional components of V,
and r is the polar radius of the polar coordinate system,
which is also the normal coordinate in the natural coordinate
system. The above derivations can also be done for the mass
points in other quadrants, and V = ­c/­r is obtained. These
derivations can similarly do for anticyclonic vortices, and V
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= 2­c/­r is obtained. Therefore, the relationship between
the streamfunction and velocity of the mass points on the
vortex can be expressed as V| | � ­c=­r| |.

APPENDIX D

Optimal Interpolation Assimilation Approach

The optimal interpolation can be formulated as follows:

xa� xb1W yo 2 Hxb( )
W � BHT(R 1 HBHT)21 ,

⎧⎪⎪⎨⎪⎪⎩ (D1)

where xa is the desired analysis field, xb is the background
field, yo represents observations at spaced points, H is the
observational operator that converts background fields into
the “observed first guesses” and W is the weight matrix that
is calculated through the observational error covariance
matrix R and the background error covariance matrix B.
Assuming observational errors are spatially uncorrelated,
the observational error covariance matrix R is diagonal.
Then, the element (i, j) of R can be written as follows in
Eq. (D2):

Rij � s2
odij, (D2)

where dij is the Kronecker delta and so is determined by the
accuracies of the synthetic observations. The background
error covariance matrix B is estimated using an empirical
formula:

Bij � s2
bexp 2 dij=L

( )2[ ]
, (D3)

where dij is the distance between two grids and sb is deter-
mined by the initial errors; L is the correlation length of
matrix B. Since the average radius of mesoscale eddies in
the model adopted in the present study is 120 km and their
related physical fields have a large gradient in the horizon-
tal direction, the correlation length L associated with meso-
scale eddies cannot be as large as that of large-scale circula-
tion. Specifically, the length L here is experimentally
adopted as 60 km.
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