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ABSTRACT: Using the latest operational version of the ENSO forecast system from the National Marine Environmental
Forecasting Center (NMEFC) of China, ensemble forecasting experiments are performed for El Nifio-Southern Oscillation
(ENSO) events that occurred from 1997 to 2017 by generating initial perturbations of the conditional nonlinear optimal
perturbation (CNOP) and climatically relevant singular vector (CSV) structures. It is shown that when the initial pertur-
bation of the leading CSV structure in the ensemble forecast of the CSVs scheme is replaced by those of the CNOP
structure, the resulted ensemble ENSO forecasts of the CNOP+CSVs scheme tend to possess a larger spread than the
forecasts obtained with the CSVs scheme alone, leading to a better match between the root-mean-square error and the
ensemble spread, a more reasonable Talagrand diagram, and an improved Brier skill score (BSS). All these results indicate
that the ensemble forecasts generated by the CNOP+CSVs scheme can improve both the accuracy of ENSO forecasting
and the reliability of the ensemble forecasting system. Therefore, ENSO ensemble forecasting should consider the effect of
nonlinearity on the ensemble initial perturbations to achieve a much higher skill. It is expected that fully nonlinear ensemble
initial perturbations can be sufficiently yielded to produce ensemble forecasts for ENSO, finally improving the ENSO
forecast skill to the greatest possible extent. The CNOP will be a useful method to yield fully nonlinear optimal initial
perturbations for ensemble forecasting.
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1. Introduction uncertainties present in this prediction result by evaluating the
ensemble spread (Leith 1974). However, due to the insufficient
reliability of ensemble forecast systems, the uncertainties
present in the prediction results are often aggressively under-
estimated (Buizza et al. 2005; Palmer 2019). The reliability of
an ensemble forecast system depends on the methods used to
yield the ensemble members. For an ensemble forecast dealing
with initial uncertainties, the ensemble members are usually
generated by superimposing initial perturbations on a control
forecast. Thus, determining how to yield ensemble initial per-
turbations becomes a key question when obtaining a reliable
ensemble forecast system.

Some methods, such as random initial perturbations (Leith
1974), lagged average forecasting (Hoffman and Kalnay 1983),
singular vector (SV) methods (Lorenz 1965), and breeding
vector (BV) methods (Toth and Kalnay 1993), have been
proposed to yield ensemble initial perturbations, and these
methods have achieved successes in operational forecasting
to a certain degree. In particular, the SV method has been
applied in European Centre for Medium-Range Weather
Forecasts (ECMWF) for numerical weather forecasting and
has obtained great success (Molteni et al. 1996; Buizza et al.
2008). SVs stand out because they have clear dynamical
meaning and can capture the fast-growing initial perturba-
Corresponding author: Wansuo Duan, duanws@lasg.iap.ac.cn tions of control forecasts. The SV method has also been widely

As one of the strongest interannual variabilities in the
tropical Pacific Ocean, El Nifio-Southern Oscillation (ENSO)
can bring about extreme weather and climate events all over
the world (Wang et al. 2000; Diaz et al. 2001; Alexander et al.
2002; Henderson et al. 2018). It is therefore necessary to pre-
dict ENSO and to improve the skill of these predictions (Cane
et al. 1986; Latif et al. 1998; Chen and Cane 2008; Zhu et al.
2013; Zhang et al. 2020). ENSO prediction results are often
contaminated by prediction errors caused by uncertainties in
the initial conditions and model parameters (Tang et al. 2018),
atmospheric noise (Kleeman and Moore 1997; Moore and
Kleeman 1998) and other high-frequency variabilities, such as
Madden—Julian oscillations and westerly wind burst events
(Vecchi and Harrison 2003; Gebbie et al. 2007).

Ensemble forecasting is a useful forecasting method that
not only provides a deterministic prediction result by tak-
ing the ensemble mean but also obtains an estimation of the
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applied to studies of climatic ENSO forecasting and predict-
ability. Some studies have calculated SVs by using intermedi-
ate or hybrid (simple atmosphere and OGCM) coupled ENSO
models (Xue et al. 1997; Fan et al. 2000) to explore ENSO
predictability from the perspective of error growth (Kug et al.
2010); in these studies, the SVs were calculated by deriving the
adjoint of the relevant models. However, for very complex
models, such as coupled GCMs, it is very difficult to derive the
adjoint. Fortunately, Kleeman et al. (2003) proposed an ap-
proach to calculating SVs in the presence of weather noise; in
this approach, SVs are called climatically relevant singular
vectors (CSVs). CSVs have been applied to ENSO ensemble
forecasts to improve the skill of ENSO predictions by using a
fully coupled GCM (Tang et al. 2006).

ENSO phenomena have been verified to include nonline-
arity; correspondingly, ENSO forecasting systems should also
be constructed by fully nonlinear models. Beyond doubt, SVs,
as an approach to yielding ensemble initial perturbations,
certainly have limitations in ENSO forecasting due to their
linear approximations. To overcome the linearity of SVs, (Mu
et al. 2003) focused on the leading SV (LSV) with the fastest
growth rate in the linearized model and proposed the condi-
tional nonlinear optimal perturbation (CNOP) approach; this
approach is a natural extension of the LSV in the nonlinear
regime and represents the largest-growing initial perturbation
in the nonlinear model. The CNOP approach has been used to
explore the largest-growing initial errors and the optimal pre-
cursors of weather or climate events; the CNOP method has
also been used to determine the sensitive areas for targeted
observations associated with the forecasting of weather and
climate events by using an intermediate ENSO model (Duan
et al. 2004; Mu et al. 2007a; Yu et al. 2012; Duan et al. 2013; Tao
et al. 2017; Duan et al. 2018). For ensemble forecasting, the
CNOP method has also been used to yield ensemble initial
perturbations by replacing the LSV with the CNOP using a
quasigeostrophic model (Mu and Jiang 2008; Jiang and Mu
2009). The results showed that this new ensemble forecast
method improved the skill of forecasts compared with the
ensemble forecast method of SVs. Inspired by the good per-
formance of the CNOP in studies of ensemble forecasts using a
simple model, it is natural to ask how to calculate the CNOP
initial perturbations in an operational ENSO forecast system.
Can this CNOP initial perturbation improve the skill of en-
sembles to forecast ENSO when the LSV in the SVs ensemble
forecast method is replaced by the CNOP? These questions
will be addressed in the present study.

In the following sections, the ENSO forecast system and
ensemble forecasting method adopted here are introduced in
section 2. Section 3 gives a brief introduction of the CSV and
CNOP of the CESM. All the ensemble forecast results are
given in section 4. The summary and discussion follow in
section 5.

2. The ENSO forecast system and ensemble
forecasting method

In this article, we adopt an ENSO operational forecast
system from the National Marine Environmental Forecasting
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Center (NMEFC) of China to construct an ENSO ensemble
forecast system through perturbations of the CNOP and SVs.
Next, the ENSO forecast system and the perturbation methods
are introduced.

a. The ENSO forecast system

The ENSO forecast system adopted here is an operational
forecast system of the NMEFC. Its core model was established
based on the Community Earth System Model (CESM) de-
veloped by NCAR/UCAR. This Earth system model consists
of atmospheric, oceanic, land and ice components, with a flux
coupler linking these components. Both biogeochemical pro-
cess and global carbon cycle are included in this model. The
horizontal resolution of the atmospheric component, the
Community Atmosphere Model (CAM), is 0.9° latitude X
1.25° longitude with 26 vertical levels. The oceanic component
of CESM, the Parallel Ocean Program version 2 (POP2), has a
resolution of 1° that is reduced to 1/3° near the equator. The
CESM model produces acceptable ENSO simulations and
simulations of the decadal variability in ENSO (Deser et al.
2012; Zheng et al. 2018).

The NMEFC ENSO forecast system assimilates sea tem-
perature in depths ranging from 15 to 400m from GODAS
data (Derber and Rosati 1989) by using the nudging method.
The hindcasting results generated by the forecast system for
the ENSO events that occurred during 1981-2011 suggest that
the system has an acceptable skill when forecasting ENSO
events. Currently, this ENSO forecast system is operationally
running in the NMEFC (Zhang et al. 2018). In the present
study, we will use this system to conduct ensemble forecast
experiments to predict ENSO.

b. The methods used to yield ensemble initial perturbations
1) THE CSVs

Although the traditional SV method is often used to gen-
erate initial perturbations in ensemble forecasting, the neces-
sity of calculating adjoints limits the wide application of this
method in operational climate event forecasting. As men-
tioned in the introduction, Kleeman et al. (2003) proposed an
efficient technique to calculate singular vectors. They used the
EOF modes derived from a model’s historical integration to
obtain CSVs in the presence of weather noise. Specifically, a
dynamical system W(¢) can be written as follows:

W() = F[W()], 1

where W is a state vector, Fis a nonlinear operator, and ¢t > ¢’ is
the time. For a “small” perturbation §W(¢), which does not
grow considerably during the time interval, the system ex-
pressed in Eq. (1) can be linearized as follows:

SW(t) = R(t,1)8W¥(!), 2)

where R is the tangent linear operator. The singular vectors for
the time interval (7, ) are the eigenvectors of the operator
R*(t, )R(¢, '), where R*(¢,¢') is the transposed matrix of
R, t).

Let E,,,, be the EOF modes derived from the model’s his-
torical integration, where m is the phase-space dimension and n
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denotes the number of EOF modes we obtained. Since the
total variances of the leading 5 EOFs in the tropical Pacific in
this model can reach to 90.37%, n = 5 is enough to construct a
reduced set of small perturbations. In this situation, the Eq. (2)
can be rewritten as follows:

8¥, =R _E  +residual, 3)

mm’—mn

where the residual term is often fairly small in amplitude and
predominantly consists of small-scale noise. Accordingly, the
eigenvectors of the operator R;:mRm,,, represent the CSVs
we need.

For ENSO, the CSVs should be calculated based on a neu-
tral year state. From the years of interest 1997-2017, 2013 was a
normal year, and its corresponding state was chosen to calcu-
late the CSVs. The CSVs are calculated by following four steps.

(i) Anensemble of 30 predictions with lead times of 8 months
are constructed by perturbing a set of 30 white-noise
pattern initial errors with a typical amplitude of 0.01°C
in a normal year. The mean is denoted as Wy(¢).

(ii) Each of the five leading normalized correlation-EOF
modes EOF,,; (i = 1,2, ..., 5) are added to the initial
state of the normal year, and the initial errors resulting from
the white-noise pattern mentioned in the last step are super-
imposed to produce new predictions with 30 random initial
perturbations. The corresponding mean is denoted by W;(¢).

(iii) WithW;(¢) (=1,2,...,5)and W(¢),8W,,s can be calculated
following 8W,,s = [W1(r) — Wo(7),..., Ws(r) — Wo()]".

(iv) R, is then calculated according to Eq. (3), and the
singular vectors are obtained.

2) THE CNOP

As mentioned in the introduction, the CNOP has been used
to generate initial perturbations for ensemble forecasts by
replacing the LSV in ensemble forecasts while keeping other
CSVs as the ensemble members; this method has achieved
success in improving forecast skill because the CNOP involves
the effect of nonlinearity and overcomes the limitations of
LSV. The application of the CNOP first requires computations.
Traditionally, the gradient of the objective function associated
with the CNOP is needed in its optimization. Unfortunately,
most coupled CGCMs do not possess corresponding adjoint
models; furthermore, coding the adjoint model of a complex
model is a massive and time-consuming task. To overcome
these limitations associated with traditional optimization al-
gorithms, some intelligent optimization algorithms, such as
particle swarm optimization and generic algorithms, have been
applied to calculate the CNOP (Sun and Mu 2013; Mu et al.
2015; Zhang et al. 2017). Particularly, based on the ensemble
projection approach proposed by Wang and Tan (2010), Chen
et al. (2015), Mu et al. (2019), and Xu et al. (2021) combined
this method with the SPG2 solver (Birgin et al. 2000) and
developed a singular vector decomposition (SVD)-based en-
semble projection algorithm. This new method can be suc-
cessfully applied to the Zebiak—Cane model and CESM model
for the calculation of the CNOP associated with ENSO pre-
dictions. In the present study, we adopt such an approach to
calculate the CNOP of the CESM.
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For the dynamical system W(t) mentioned above, let xo be
an initial perturbation superimposed on the initial value X, of a
reference state. For the selected norms ||-||5 and ||-||, the CNOP
(denoted by xgs) is the solution to the following optimization
problem:

L) —FX, ) (4

J(x,5) = max ||F(X, +x,,

llxlls=8
where ||xg||s = & is the constraint of the initial perturbation
amplitude and § is a prescribed positive number that defines the
amplitude of the initial perturbation xo. The norm ||-|| measures
the evolution of the initial perturbations. Optimization algo-
rithms are often used to solve minimization problems. We then
rewrite J1(xo) = — J(xo) and solve the minimization problem of
J1(xp) to obtain the CNOP.

The projection of a continuous system into a discrete nu-
merical model can be expressed as x(f) = Z,{ilo,-u,-vf, where N
is the degree of freedom of a numerical model, o; is a singular
value arranged from highest to lowest, u; is the spatial mode
corresponding to o, and v; is the time series of u;. A forced
and dissipative dynamical system will tend toward a low-
dimensional attractor after a long evolution (Osborne and
Pastorello 1993; Foias 1997). The spatial modes u; can be
chosen so that |o;| monotonously decreases sufficiently quickly
as i increases. If k (k = N) former main spatial modes are used
as the bases to construct the approximate state space of the
whole system, the original N-dimensional system can be trun-
cated to a k-dimensional approximate system.

SVD statistically provides a standard method that reduces
the dimension of the system effectively by determining the
number of spatial modes. If k spatial modes are chosen and
combined linearly to approximate the state vector of the dis-
crete system, then x, = Zleaiui, and the optimization problem
associated with computing the CNOP is then transformed into
the following equation:

2

K
J,(a5) = min —HF<X0+ Z{aiui,t,t’)—F(XO,t,t’) , (5

[l lls=2

where a; is the weighted coefficient of the chosen mode u;.
Equation (5) searches for the optimal combination of
weighted coefficients of the chosen bases. The validity of the
SVD-based EP algorithm when computing the CNOP has
been verified in a ZC model that has an adjoint model. Chen
et al. (2015) combined the SVD-based EP method with the
traditional SPG2 algorithm to calculate the CNOP and ex-
plore the optimal precursor conditions of ENSO events. The
results show that the CNOP obtained by the SVD-based EP
algorithm can effectively approximate the CNOP calculated
by the adjoint method, and the SVD-based EP algorithm can
also retain the general spatial characteristics of the latter.
Wen et al. (2015) combined this method with four intelligent
algorithms to compute the CNOP in the ZC model. Their
results show that not only does the spatial pattern of the
CNOP generated by the reduced-dimension method look
similar to that generated by the adjoint method, but the
variation trend of the cost functions in different calendar
months obtained with the new method is almost the same as
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FIG. 1. The spatial structures of the (a) LSV and (b) CNOP initial errors in the tropical Pacific Ocean for ENSO events. (top) SSTs and
(bottom) the equatorial (5°N-5°S) subsurface temperatures (°C) averaged by the meridian 5°N-5°S.

that obtained with the latter method. These studies dem-
onstrated that, independent of the optimization algorithm
chosen, the SVD-based EP algorithm can be used to ap-
proximately compute the CNOP. In this study, the CNOP of
the operational ENSO forecast system is calculated using
this SVD-based EP algorithm.

3. The CSV and CNOP of the CESM

It has been shown that the initial errors associated with
conditions in the tropical Pacific Ocean have a significant
influence on ENSO predictability (Mu et al. 2007a; Duan and
Hu 2016). In the present study, we mainly focus on the in-
fluence of errors in the initial sea temperature in the tropical
Pacific Ocean on the ENSO forecast skill in the ensemble
forecast. The experiments are conducted using the ENSO
forecast system of the NMEFC, as was introduced in the last
section. The control forecasts are yielded by the ENSO
forecast system; hindcasts are obtained for SST anomalies
during the years from 1997 to 2017. Due to expensive com-
puting costs, the ensemble forecasts conducted here are only
initialized on 1 January in each year. Both the CSVs and
CNOP are also obtained on January 1stin each year following
the procedures presented in section 2b.

In Fig. 1, the spatial structures of both the leading CSV (for
convenience, we also refer to it as the LSV) and the CNOP-
type initial perturbations in the tropical Pacific Ocean are
presented. The LSV-type perturbation reveals positive SST
anomalies in the eastern Pacific Ocean and negative SST
anomalies in the western region, while in the subsurface,
three sea temperature anomaly centers presenting a positive—
negative—positive pattern appear along the tropical Pacific
Ocean from west to east. However, for the CNOP-type initial
perturbations, positive SST anomalies dominate nearly the
whole tropical Pacific Ocean; along the vertical section, the
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positive anomalies are mainly distributed in the central and
eastern Pacific Ocean with larger amplitudes than those
provided by the LSV, and negative anomalies dominantly
appear in the subsurface in the western tropical Pacific Ocean.
The differences between the CNOP-type and LSV-type initial
perturbations in spatial structures are understandable since
the CNOP-type initial perturbation has the largest error
growth in the nonlinear scenario while the LSV initial per-
turbation is the fastest growing perturbation under the linear
assumption. It is clear that the CNOP and LSV have different
patterns. We cannot help but wonder whether these differ-
ences may result in different performances of the CNOP
and LSV in the ensemble forecasting of ENSO. In the fol-
lowing section, we will use CNOP and CSVs to conduct
ensemble forecasting of ENSO and compare their ENSO
prediction skills.

First, the control forecast is obtained without any initial
perturbation added at the initial field. Then, the ensemble
forecast members associated with the CSVs-type initial
perturbations are generated by adding and subtracting the
leading five CSVs to and from the initial analysis field of the
control forecast to, together with the control forecast,
yield a total of 11 ensemble members. For convenience, we
call such ensembles CSVs-scheme ensembles. For the
CNOP-type initial perturbations, we simply use the CNOP
to replace the leading CSV in the CSVs-scheme ensemble,
referring to such an ensemble as CNOP+CSVs-scheme
ensemble. For comparison, all the initial perturbations in
these two schemes are scaled to have the same amplitude as
the climatological variance in the sea temperatures in the
tropical Pacific Ocean.

For both CSVs and CNOP+CSVs schemes, the SST anom-
alies associated with ENSO events during 1997-2017 are pre-
dicted for 8 months starting from January in each year. The
ENSO prediction skills are comparably evaluated to explore the
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validity of applying the CNOP in ENSO ensemble forecasts
yielded by the ENSO forecast system of the NMEFC.

4. Results

a. The deterministic skill and reliability of the ensemble
forecast

To examine the role of the CNOP in improving the skill of
the ensemble when forecasting ENSO events, ensemble
forecasting experiments are carried out with both the CSVs
scheme and the CNOP+CSVs scheme, and ENSO predic-
tions of SST anomalies during 1997-2017 are obtained; the
anomaly correlation, root-mean-square error (RMSE), and
ensemble spread are used to measure the deterministic skill
of the ensemble forecasting.

Figure 2 shows the ENSO forecast skills, with black lines
denoting the skill of the control forecast and the red and
blue lines representing the skills of the CSVs scheme and
CNOP+CSVs scheme, respectively. For the control fore-
cast, the anomaly correlation coefficients are relatively
higher at short lead times and then abruptly drop from
above 0.7 to approximately 0.5 at a lead time of 5 months.
This dramatic drop in skill may be caused by the spring
prediction barrier (SPB) when ENSO predictions are made
spanning the spring season (Webster and Yang 1992; Mu
et al. 2007b; Lai et al. 2018). When the ensemble forecasting
strategy of either the CSVs or CNOP+CSVs scheme is
adopted, the ensemble mean forecasts of the SST anomalies
in the tropical Pacific Ocean obtain much larger correlation
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coefficients than those of the control forecast at a lead time
of 5 months, suggesting that an ensemble forecasting strategy is
an effective way to improve the ENSO forecasting skill in the
NMEFC ENSO forecast system. In addition, we notice that the
anomaly correlation skill of the CNOP+CSVs scheme is slightly
higher than that of the CSVs scheme at lead times from 3 to
6 months, while at other lead times, the correlation skill
of the CSVs scheme is slightly higher than that of the
CNOP+CSVs scheme.

Regarding the RMSEs, the ensemble forecasts with lead
times longer than 2 months show much higher skill than the
control run; that is, the RMSEs in the ensemble forecasts are
smaller than those in the control forecast. However, comparing
the ensemble forecasts with the CNOP+CSVs and CSVs
schemes, the former has slightly smaller RMSEs than the latter
for lead times from 4 to 7 months. From these comparisons, it
seems that the CNOP trivially improves the skill of the CSVs-
ensemble forecast in ENSO predictions. In fact, whether an
ensemble forecast system is acceptable depends on two as-
pects: the deterministic forecasting skill and accountability.
Accountability is the skill associated with estimating uncer-
tainties in the ensemble mean forecast. Therefore, if the en-
semble forecasts obtained with the CNOP+CSVs scheme
show little improvement in the deterministic forecasting skill as
measured by anomaly correlations and RMSEs but a large
increase in the forecasting skill of prediction uncertainties
measured by the ensemble spread, these forecasts can also be
thought of as having much larger improvement in the en-
semble forecast skill and are much more accountable than
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the other forecasts. Therefore, we will investigate the ac-
countability of the ensemble forecasts obtained with the
CNOP+CSVs scheme in the following context.

As shown in Fig. 2, the CSVs-scheme ensemble forecasts
have a significantly small spread at all lead times, which is
actually a common shortcoming of almost all ensemble
forecasting methods (Tompkins et al. 2017), while the
CNOP+CSVs-scheme ensemble forecasts have a much
larger spread. Then, the following question is raised: Is it
optimal to apply the CNOP+CSVs-scheme ensemble fore-
casts to estimate the forecast uncertainties of the ensemble
mean forecast?

As discussed in Zhu (2005), the spread is used to measure
the distance from the ensemble mean of the forecasts to
each ensemble member while the RMSE measures the dis-
tance from the ensemble mean of the forecasts to the true
value represented by the observation. Therefore, the ensemble
members are not likely to include the true values and have a
significant improved estimate against the control forecast un-
less the spread is not less than the RMSE. Buizza et al. (2005)
demonstrated that a perfect ensemble forecasting system
should have the same ensemble spread magnitude as that of the
RMSE; and a large difference between them is an indication of
statistical inconsistency. Therefore, the ratio of the RMSE to
the ensemble spreads are here investigated, where the ratio A is
expressed as A = RMSE/spread. According to Buizza et al.
(2005), when the ratio A has a value of approximately 1, it in-
dicates an optimal match between the ensemble spread and the
error of the ensemble mean, suggesting that the ensemble
spread can represent the prediction errors in ensemble mean
forecasts measured by the RMSE. The ratio A values of the
ensemble forecasts obtained with both schemes are presented
in Fig. 3. It is shown that the ratio A of the CSVs scheme has an
extremely large value, 33.18, at a lead time of 1 month because
of its very small ensemble spread; the value then decreases to a
flat curve for lead times from 3 to 8 months. On average, the
ratio A of the CSVs scheme can reach 6.26 over the forecasting
time period, even if the ratio of the flat curve from lead times of
3-8 months can still reach 1.98. However, the ratio A of the
CNOP+CSVs scheme is always flat for lead times from 1 to
8 months, and its average is only 1.54, which is significantly
smaller than that of the CSVs scheme. To show the spatial
structure of the forecast result in the whole tropical Pacific
Ocean, other than only the Nifio-3 index, the spatial pattern of
ratio A is plotted in Fig. 4. For the ensemble forecasts with the
CSVs scheme, the ratios are much larger than 1.0, and most
large values locate in the central Pacific Ocean; while for the
ensemble forecasts carried out with the CNOP+CSVs
scheme, all the ratios are less than 2.0, which is obviously
much smaller than that of the CSVs scheme. Therefore, it is
clear that the application of the CNOP+CSVs scheme in
the ensemble forecast system can significantly improve the
reliability of ensemble forecasts when compared with the
CSVs scheme.

The Talagrand diagram is also used to evaluate the reli-
ability of the ensemble forecasts. In the case of ensemble
forecasting with N ensemble forecast members, we first rank
these N members in increasing order and define N + 1
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intervals. The verifying observations should fall with equal
frequency into each of the intervals for a perfectly consistent
ensemble forecast system. Therefore, the more reliable an
ensemble forecast is, the flatter the Talagrand diagram will be.
In the region of concern (i.e., the region between 20°N and
20°S in the tropical Pacific Ocean) in the present study,
there are 16086 grid points associated with the adopted
CESM model, and the effective sample size is M = grid
point number X N = 16086 X 11 = 176946, where N = 11
and corresponds to the number of ensemble ENSO fore-
casting members in the present study. As mentioned before,
N ensemble members have N + 1 intervals; for the kth in-
terval [k € (1, N + 1)], the numbers of observations that
fall into the kth interval can be accumulated and marked as
Sk, and the probability can be calculated according to 8; =
Si/M. Normally, the verifying observations fall into the
extreme intervals (i.e., the first and last intervals) much more
frequently than they fall into the middle intervals (Talagrand
et al. 1997).

The plot of B;, i.e., the Talagrand diagram, is shown in
Fig. 5. For the ensemble forecasts obtained with the CSVs
scheme, the diagram shows a U-shape, while for those ob-
tained with the CNOP+CSVs scheme, the diagram is more
like an L-shape, with much fewer forecasts falling into the
first interval. This shows that the percentages of the obser-
vations falling into the middle intervals increase and the
percentages of those falling into the first and last intervals
decrease, indicating that the reliability of the ensemble
forecasts obtained with CNOP+CSVs scheme is improved
against the reliability of the forecasts obtained with the CSVs
scheme when these schemes are applied in the ENSO en-
semble forecasts generated by the NMEFC.

A more accurate quantitative diagnosis is given by the
sum-of-squares differences between S, and its expectation,
i.e., M/(N + 1). The deviation from flatness in the histogram
can be measured as Azsz;l {Sk —[M/(N +1)]} . For a
perfectly reliable system, A has an expectation Aj, where
Ag = M[N/(N + 1)]. Then, the ratio 6 = A/Aj can be used to
measure the flatness of the histogram (Talagrand et al. 1997;
Candille and Talagrand 2005). This measurement is also
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FIG. 4. The spatial pattern of the averaged ratio A (which is defined as A = RMSE/spread)
values of (a) the CSVs scheme and (b) the CNOP+CSVs scheme.

used in Jiang and Mu (2009). According to the definition of
ratio 8, for a perfect ensemble forecast system, & will be
equal to 1. However, the value of 6 is always larger than 1 in
realistic ensemble forecasting. Therefore, the closerdisto 1,
the more reliable an ensemble system is. Figure 6 presents
the temporal variation in the ratio 8 of the rank histogram.
Although both the CSVs and CNOP+CSVs schemes have
ratio 6 values obviously larger than 1, they tend to signifi-
cantly decrease with a lengthening lead time; in particular,
the ratio of the CNOP+CSVs scheme is smaller than that of
the CSVs scheme. This indicates that the CNOP+CSVs
scheme provides more reliable ensemble forecasts than the
CSVs scheme.

b. The probability skill in ensemble forecasts

The Brier skill (BS) is often used to verify the accuracy of a
probability forecast. The BS is always calculated as the mean
squared difference between the forecast probability P; and the
corresponding observed binary variable O;, the latter of which
is defined as 1 when an event occurs and 0 otherwise. The BS is
calculated using the formula BS = (1/M )Z?il (P; — O;) ,where
M is the number of total verification samples. A small BS value
indicates a better ensemble forecast. The BS values are cal-
culated for three categorical events in the present study, i.e.,
cold, neutral, and warm events. The three categorical events
possess equal climatological frequencies of 1/3 and are applied
to all the forecasting results and the observations. This is done
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to exclude the potential influences of the different climato-
logical state of the observations and the forecast data. This
analysis method is also used by Zhang et al. (2019) to evaluate
the SST predictability using the multimodel hindcast data.
The BSs of the ensemble forecasts generated by the CSVs
and CNOP+CSVs schemes and those obtained with the con-
trol forecast are calculated. Among these calculations, the BSs
of the ensemble forecasts are much smaller than those of the
control run. To reveal the relative accuracy of the probabilistic
forecasts compared to the accuracy of the control run, the Brier
skill score (BSS) is further calculated by BSS = 1 — (BS/BS(1)-
For a perfect ensemble forecast, the BSS value is equal to 1,
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FIG. 5. Evolution of the rank histograms of the CNOP+CSVs

scheme (red) and CSVs scheme (blue).
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FIG. 6. The diagnostic score 6 values obtained from the rank
histograms of the CNOP+CSVs scheme (red) and CSVs scheme
(blue) as a function of the lead time.

while for realistic ensemble forecasts, the larger the BSS value
is, the more reliable the ensemble forecast system is. Figure 7
presents the evolution of the BSSs of both the CSVs and
CNOP+CSVs schemes. Generally, the BSSs of both kinds of
ensemble schemes increase with the lead time. For neutral
years, the performances of both kinds of ensemble methods are
similar, with the BSS of the CSVs scheme being slightly larger
than that of the CNOP+CSVs scheme. For cold events and
warm events, the BSS of the CNOP+CSVs scheme is much
larger than that of the CSVs scheme, implying that the
CNOP+CSVs scheme can significantly improve the prediction
skill in the ENSO ensemble forecast as measured by the BSS.

In summary, applying an ensemble forecast method, either
the CSVs or CNOP+CSVs scheme, can significantly improve
the ENSO predictions obtained using the NMEFC ENSO
forecast system. In particular, the CNOP+CSVs scheme, i.c.,
the scheme involving the replacement of the LSV with the
CNOP, can further improve the accuracy of ENSO forecasts,
especially by increasing the reliability of the associated en-
semble forecast system.

5. Summary and discussion

In this paper, we calculate the CSVs and CNOP of the sea
temperatures in the tropical Pacific Ocean to forecast ENSO
events in the operationally running ENSO forecast system of
the NMEFC. Two groups of ensemble initial perturbations are
constructed: one is the CSVs scheme using the leading five
CSVs; the other is the CNOP+CSVs scheme with the CNOP
replacing the LSV of the CSVs scheme. Ensemble forecast
experiments of ENSO are conducted using these two groups of
ensemble initial perturbations initialized in January of each
year from 1997 to 2017. The results show that the NMEFC
ENSO forecast system benefits greatly when ensemble forecast
strategies are introduced. In particular, when comparing the
CSVs with the CNOP+CSVs scheme, the ensemble forecast of
CNOP+CSVs scheme is shown to be able to obviously im-
prove the skill when predicting ENSO events; specifically, the
ensemble spread and associated reliability of the ensemble
forecasts are significantly improved, although the accuracy of

Brought to you by Institute of Atmospheric Physics,CAS | Unauthenticated | Downloaded 11/05/21 12:42 AM UTC

WEATHER AND FORECASTING

VOLUME 36

(a) cold events

0.25
0.20
0.15

BSS

0.10
0.05

OOO T ) ) ) ) ) )

1 2 3 4 5 6 7
Lead time/month

oo

warm events
0.30

0.25
0.20
0.15
0.10
0.05

OOO ] ] 1 1 1 1 1
1 2 3 4 5 6 7
Lead time/month

BSS

oo

neutral state
0.40

0.30 1

BSS

0.20 1

0.10 4

0.00 T T T . T T

._
\S)
w
N
)
(@)}
N
%)

Lead time/month

F1G. 7. Evolution of the BSSs of the CNOP+CSVs scheme (red)
and CSVs scheme (blue) as a function of the lead time: (a) cold
events, (b) warm events, and (c) neutral state.

the ensemble forecasts is increased to a lesser extent. The
difference between the two groups of ensemble initial pertur-
bations only lies in the difference between the LSV and CNOP
schemes. The LSV represents the fastest linearly growing
perturbation, while the CNOP acts as the nonlinear optimal
perturbation. ENSO possesses irregular variabilities and am-
plitudes and is generally thought of as being controlled by
nonlinear dynamical systems; furthermore, its prediction error
growth is also demonstrated as having an almost common
dynamical mechanism that often causes ENSO events to be
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over or underpredicted (Duan and Wei 2013; Duan and Hu 2016).
The CNOP, due to its nonlinearity, can capture the nonlinear
dynamical behavior of the initial error growth of ENSO forecasts,
causing the ensemble forecasts of CNOP+CSVs scheme to be
able to partially describe the nonlinear effects of error growth
on ENSO forecasts; this scheme thus possesses higher skill for
ENSO forecasting than the ensemble forecasts obtained with the
CSVs scheme.

As demonstrated by Huo and Duan (2019), the magnitude of
the initial perturbation, the lead time of the ensemble forecast
may also influence the predictability of the ensemble forecasts.
Therefore, more studies could be carried out to further clarify
those questions. Besides, the CSVs and CNOP may also be
sensitive to the phase of the ENSO cycle. Nevertheless, due to
the associated expensive computational costs, we only calcu-
late herein the CNOP and CSVs for ENSO forecasts starting
from January. In addition, since ENSO dynamics are often
governed by nonlinear dynamical systems, all ensemble initial
perturbations used in ENSO forecasting should consist of nonlin-
ear ENSO effects. However, for the ensemble forecasting strategy
of CNOP+CSVs scheme, although this scheme possesses a much
higher forecasting skill due to the introduction of the CNOP, the
rest of the ensemble initial perturbations are still linearly opti-
mized. That is, the ensemble initial perturbations generated by the
CNOP+CSVs scheme do not fully include nonlinear effects.
Regarding this effect, Duan and Huo (2016) proposed an or-
thogonal CNOPs strategy to generate ensemble initial perturba-
tions. This strategy was applied in the fifth-generation mesoscale
model (MMS5) in an attempt to obtain better forecasts of tropical
cyclone tracks (Huo and Duan 2019). The results showed that the
ensemble forecasts obtained using orthogonal CNOPs have a
higher forecasting skill for tropical cyclone tracks than that of the
CNOP+SVs scheme. Therefore, it is important to fully consider
the influence of nonlinearity on ensemble initial perturbations in
ensemble forecasts. The biggest challenge we face now is the
overwhelmingly large computational cost. So a more efficient al-
gorithm needs to be developed in order to compute the orthogonal
CNOPs for the application of the CNOP in complex climate
models. Actually, the work conducted under our investigation and
the primary results are encouraging. It is expected that orthogonal
CNOPs can be effectively applied in ENSO ensemble forecasts to
achieve much higher forecast skills in the future.
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