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ABSTRACT: Using the latest operational version of the ENSO forecast system from the National Marine Environmental

Forecasting Center (NMEFC) of China, ensemble forecasting experiments are performed for El Niño–SouthernOscillation

(ENSO) events that occurred from 1997 to 2017 by generating initial perturbations of the conditional nonlinear optimal

perturbation (CNOP) and climatically relevant singular vector (CSV) structures. It is shown that when the initial pertur-

bation of the leading CSV structure in the ensemble forecast of the CSVs scheme is replaced by those of the CNOP

structure, the resulted ensemble ENSO forecasts of the CNOP1CSVs scheme tend to possess a larger spread than the

forecasts obtained with the CSVs scheme alone, leading to a better match between the root-mean-square error and the

ensemble spread, a more reasonable Talagrand diagram, and an improved Brier skill score (BSS). All these results indicate

that the ensemble forecasts generated by the CNOP1CSVs scheme can improve both the accuracy of ENSO forecasting

and the reliability of the ensemble forecasting system. Therefore, ENSO ensemble forecasting should consider the effect of

nonlinearity on the ensemble initial perturbations to achieve amuch higher skill. It is expected that fully nonlinear ensemble

initial perturbations can be sufficiently yielded to produce ensemble forecasts for ENSO, finally improving the ENSO

forecast skill to the greatest possible extent. The CNOP will be a useful method to yield fully nonlinear optimal initial

perturbations for ensemble forecasting.
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1. Introduction

As one of the strongest interannual variabilities in the

tropical Pacific Ocean, El Niño–Southern Oscillation (ENSO)

can bring about extreme weather and climate events all over

the world (Wang et al. 2000; Diaz et al. 2001; Alexander et al.

2002; Henderson et al. 2018). It is therefore necessary to pre-

dict ENSO and to improve the skill of these predictions (Cane

et al. 1986; Latif et al. 1998; Chen and Cane 2008; Zhu et al.

2013; Zhang et al. 2020). ENSO prediction results are often

contaminated by prediction errors caused by uncertainties in

the initial conditions and model parameters (Tang et al. 2018),

atmospheric noise (Kleeman and Moore 1997; Moore and

Kleeman 1998) and other high-frequency variabilities, such as

Madden–Julian oscillations and westerly wind burst events

(Vecchi and Harrison 2003; Gebbie et al. 2007).

Ensemble forecasting is a useful forecasting method that

not only provides a deterministic prediction result by tak-

ing the ensemble mean but also obtains an estimation of the

uncertainties present in this prediction result by evaluating the

ensemble spread (Leith 1974). However, due to the insufficient

reliability of ensemble forecast systems, the uncertainties

present in the prediction results are often aggressively under-

estimated (Buizza et al. 2005; Palmer 2019). The reliability of

an ensemble forecast system depends on the methods used to

yield the ensemble members. For an ensemble forecast dealing

with initial uncertainties, the ensemble members are usually

generated by superimposing initial perturbations on a control

forecast. Thus, determining how to yield ensemble initial per-

turbations becomes a key question when obtaining a reliable

ensemble forecast system.

Some methods, such as random initial perturbations (Leith

1974), lagged average forecasting (Hoffman and Kalnay 1983),

singular vector (SV) methods (Lorenz 1965), and breeding

vector (BV) methods (Toth and Kalnay 1993), have been

proposed to yield ensemble initial perturbations, and these

methods have achieved successes in operational forecasting

to a certain degree. In particular, the SV method has been

applied in European Centre for Medium-Range Weather

Forecasts (ECMWF) for numerical weather forecasting and

has obtained great success (Molteni et al. 1996; Buizza et al.

2008). SVs stand out because they have clear dynamical

meaning and can capture the fast-growing initial perturba-

tions of control forecasts. The SVmethod has also been widely
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applied to studies of climatic ENSO forecasting and predict-

ability. Some studies have calculated SVs by using intermedi-

ate or hybrid (simple atmosphere and OGCM) coupled ENSO

models (Xue et al. 1997; Fan et al. 2000) to explore ENSO

predictability from the perspective of error growth (Kug et al.

2010); in these studies, the SVs were calculated by deriving the

adjoint of the relevant models. However, for very complex

models, such as coupled GCMs, it is very difficult to derive the

adjoint. Fortunately, Kleeman et al. (2003) proposed an ap-

proach to calculating SVs in the presence of weather noise; in

this approach, SVs are called climatically relevant singular

vectors (CSVs). CSVs have been applied to ENSO ensemble

forecasts to improve the skill of ENSO predictions by using a

fully coupled GCM (Tang et al. 2006).

ENSO phenomena have been verified to include nonline-

arity; correspondingly, ENSO forecasting systems should also

be constructed by fully nonlinear models. Beyond doubt, SVs,

as an approach to yielding ensemble initial perturbations,

certainly have limitations in ENSO forecasting due to their

linear approximations. To overcome the linearity of SVs, (Mu

et al. 2003) focused on the leading SV (LSV) with the fastest

growth rate in the linearized model and proposed the condi-

tional nonlinear optimal perturbation (CNOP) approach; this

approach is a natural extension of the LSV in the nonlinear

regime and represents the largest-growing initial perturbation

in the nonlinear model. The CNOP approach has been used to

explore the largest-growing initial errors and the optimal pre-

cursors of weather or climate events; the CNOP method has

also been used to determine the sensitive areas for targeted

observations associated with the forecasting of weather and

climate events by using an intermediate ENSO model (Duan

et al. 2004;Mu et al. 2007a; Yu et al. 2012; Duan et al. 2013; Tao

et al. 2017; Duan et al. 2018). For ensemble forecasting, the

CNOP method has also been used to yield ensemble initial

perturbations by replacing the LSV with the CNOP using a

quasigeostrophic model (Mu and Jiang 2008; Jiang and Mu

2009). The results showed that this new ensemble forecast

method improved the skill of forecasts compared with the

ensemble forecast method of SVs. Inspired by the good per-

formance of the CNOP in studies of ensemble forecasts using a

simple model, it is natural to ask how to calculate the CNOP

initial perturbations in an operational ENSO forecast system.

Can this CNOP initial perturbation improve the skill of en-

sembles to forecast ENSO when the LSV in the SVs ensemble

forecast method is replaced by the CNOP? These questions

will be addressed in the present study.

In the following sections, the ENSO forecast system and

ensemble forecasting method adopted here are introduced in

section 2. Section 3 gives a brief introduction of the CSV and

CNOP of the CESM. All the ensemble forecast results are

given in section 4. The summary and discussion follow in

section 5.

2. The ENSO forecast system and ensemble
forecasting method

In this article, we adopt an ENSO operational forecast

system from the National Marine Environmental Forecasting

Center (NMEFC) of China to construct an ENSO ensemble

forecast system through perturbations of the CNOP and SVs.

Next, the ENSO forecast system and the perturbation methods

are introduced.

a. The ENSO forecast system

The ENSO forecast system adopted here is an operational

forecast system of the NMEFC. Its core model was established

based on the Community Earth System Model (CESM) de-

veloped by NCAR/UCAR. This Earth system model consists

of atmospheric, oceanic, land and ice components, with a flux

coupler linking these components. Both biogeochemical pro-

cess and global carbon cycle are included in this model. The

horizontal resolution of the atmospheric component, the

Community Atmosphere Model (CAM), is 0.98 latitude 3
1.258 longitude with 26 vertical levels. The oceanic component

of CESM, the Parallel Ocean Program version 2 (POP2), has a

resolution of 18 that is reduced to 1/38 near the equator. The

CESM model produces acceptable ENSO simulations and

simulations of the decadal variability in ENSO (Deser et al.

2012; Zheng et al. 2018).

The NMEFC ENSO forecast system assimilates sea tem-

perature in depths ranging from 15 to 400m from GODAS

data (Derber and Rosati 1989) by using the nudging method.

The hindcasting results generated by the forecast system for

the ENSO events that occurred during 1981–2011 suggest that

the system has an acceptable skill when forecasting ENSO

events. Currently, this ENSO forecast system is operationally

running in the NMEFC (Zhang et al. 2018). In the present

study, we will use this system to conduct ensemble forecast

experiments to predict ENSO.

b. The methods used to yield ensemble initial perturbations

1) THE CSVS

Although the traditional SV method is often used to gen-

erate initial perturbations in ensemble forecasting, the neces-

sity of calculating adjoints limits the wide application of this

method in operational climate event forecasting. As men-

tioned in the introduction, Kleeman et al. (2003) proposed an

efficient technique to calculate singular vectors. They used the

EOF modes derived from a model’s historical integration to

obtain CSVs in the presence of weather noise. Specifically, a

dynamical system C(t) can be written as follows:

C(t)5F[C(t0)] , (1)

whereC is a state vector, F is a nonlinear operator, and t. t0 is
the time. For a ‘‘small’’ perturbation dC(t), which does not

grow considerably during the time interval, the system ex-

pressed in Eq. (1) can be linearized as follows:

dC(t)5R(t, t0)dC(t0) , (2)

whereR is the tangent linear operator. The singular vectors for

the time interval (t0, t) are the eigenvectors of the operator

R*(t, t0)R(t, t0), where R*(t, t0) is the transposed matrix of

R(t, t0).
Let Emn be the EOF modes derived from the model’s his-

torical integration, wherem is the phase-space dimension and n
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denotes the number of EOF modes we obtained. Since the

total variances of the leading 5 EOFs in the tropical Pacific in

this model can reach to 90.37%, n5 5 is enough to construct a

reduced set of small perturbations. In this situation, the Eq. (2)

can be rewritten as follows:

dC
mn

5R
mm

E
mn

1 residual , (3)

where the residual term is often fairly small in amplitude and

predominantly consists of small-scale noise. Accordingly, the

eigenvectors of the operator R*
mm

Rmm represent the CSVs

we need.

For ENSO, the CSVs should be calculated based on a neu-

tral year state. From the years of interest 1997–2017, 2013 was a

normal year, and its corresponding state was chosen to calcu-

late the CSVs. TheCSVs are calculated by following four steps.

(i) An ensemble of 30 predictions with lead times of 8months

are constructed by perturbing a set of 30 white-noise

pattern initial errors with a typical amplitude of 0.018C
in a normal year. The mean is denoted as C0(t).

(ii) Each of the five leading normalized correlation-EOF

modes EOFmi (i 5 1, 2, . . . , 5) are added to the initial

state of the normal year, and the initial errors resulting from

the white-noise pattern mentioned in the last step are super-

imposed to produce new predictions with 30 random initial

perturbations. The corresponding mean is denoted byCi(t).

(iii) WithCi(t) (i5 1, 2, . . . , 5) andC0(t),dCm5 canbecalculated

following dCm5 5 [C1(t)2C0(t), . . . ,C5(t)2C0(t)]
T.

(iv) Rmm is then calculated according to Eq. (3), and the

singular vectors are obtained.

2) THE CNOP

As mentioned in the introduction, the CNOP has been used

to generate initial perturbations for ensemble forecasts by

replacing the LSV in ensemble forecasts while keeping other

CSVs as the ensemble members; this method has achieved

success in improving forecast skill because the CNOP involves

the effect of nonlinearity and overcomes the limitations of

LSV. The application of the CNOP first requires computations.

Traditionally, the gradient of the objective function associated

with the CNOP is needed in its optimization. Unfortunately,

most coupled CGCMs do not possess corresponding adjoint

models; furthermore, coding the adjoint model of a complex

model is a massive and time-consuming task. To overcome

these limitations associated with traditional optimization al-

gorithms, some intelligent optimization algorithms, such as

particle swarm optimization and generic algorithms, have been

applied to calculate the CNOP (Sun and Mu 2013; Mu et al.

2015; Zhang et al. 2017). Particularly, based on the ensemble

projection approach proposed by Wang and Tan (2010), Chen

et al. (2015), Mu et al. (2019), and Xu et al. (2021) combined

this method with the SPG2 solver (Birgin et al. 2000) and

developed a singular vector decomposition (SVD)-based en-

semble projection algorithm. This new method can be suc-

cessfully applied to the Zebiak–Cane model and CESMmodel

for the calculation of the CNOP associated with ENSO pre-

dictions. In the present study, we adopt such an approach to

calculate the CNOP of the CESM.

For the dynamical system C(t) mentioned above, let x0 be

an initial perturbation superimposed on the initial valueX0 of a

reference state. For the selected norms k�kd and k�k, the CNOP

(denoted by x0d) is the solution to the following optimization

problem:

J(x
0d
)5 max

kx0kd# d
kF(X

0
1 x

0
, t, t0)2F(X

0
, t, t0)k2, (4)

where jjx0jjd # d is the constraint of the initial perturbation

amplitude and d is a prescribed positive number that defines the

amplitude of the initial perturbation x0. The norm k�kmeasures

the evolution of the initial perturbations. Optimization algo-

rithms are often used to solve minimization problems. We then

rewrite J1(x0)5 2 J(x0) and solve the minimization problem of

J1(x0) to obtain the CNOP.

The projection of a continuous system into a discrete nu-

merical model can be expressed as x(t)5�N

i51siuiv
T
i , where N

is the degree of freedom of a numerical model, si is a singular

value arranged from highest to lowest, ui is the spatial mode

corresponding to si, and vi is the time series of ui. A forced

and dissipative dynamical system will tend toward a low-

dimensional attractor after a long evolution (Osborne and

Pastorello 1993; Foias 1997). The spatial modes ui can be

chosen so that jsijmonotonously decreases sufficiently quickly

as i increases. If k (k#N) former main spatial modes are used

as the bases to construct the approximate state space of the

whole system, the original N-dimensional system can be trun-

cated to a k-dimensional approximate system.

SVD statistically provides a standard method that reduces

the dimension of the system effectively by determining the

number of spatial modes. If k spatial modes are chosen and

combined linearly to approximate the state vector of the dis-

crete system, then x0 5�k

i51aiui, and the optimization problem

associated with computing the CNOP is then transformed into

the following equation:

J
1
(a

d
)5 min

kx0kd# d
2

����F
�
X

0
1 �

k

i51

a
i
u
i
, t, t0

�
2F(X

0
, t, t0)

����
2

, (5)

where ai is the weighted coefficient of the chosen mode ui.

Equation (5) searches for the optimal combination of

weighted coefficients of the chosen bases. The validity of the

SVD-based EP algorithm when computing the CNOP has

been verified in a ZC model that has an adjoint model. Chen

et al. (2015) combined the SVD-based EP method with the

traditional SPG2 algorithm to calculate the CNOP and ex-

plore the optimal precursor conditions of ENSO events. The

results show that the CNOP obtained by the SVD-based EP

algorithm can effectively approximate the CNOP calculated

by the adjoint method, and the SVD-based EP algorithm can

also retain the general spatial characteristics of the latter.

Wen et al. (2015) combined this method with four intelligent

algorithms to compute the CNOP in the ZC model. Their

results show that not only does the spatial pattern of the

CNOP generated by the reduced-dimension method look

similar to that generated by the adjoint method, but the

variation trend of the cost functions in different calendar

months obtained with the new method is almost the same as
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that obtained with the latter method. These studies dem-

onstrated that, independent of the optimization algorithm

chosen, the SVD-based EP algorithm can be used to ap-

proximately compute the CNOP. In this study, the CNOP of

the operational ENSO forecast system is calculated using

this SVD-based EP algorithm.

3. The CSV and CNOP of the CESM

It has been shown that the initial errors associated with

conditions in the tropical Pacific Ocean have a significant

influence on ENSO predictability (Mu et al. 2007a; Duan and

Hu 2016). In the present study, we mainly focus on the in-

fluence of errors in the initial sea temperature in the tropical

Pacific Ocean on the ENSO forecast skill in the ensemble

forecast. The experiments are conducted using the ENSO

forecast system of the NMEFC, as was introduced in the last

section. The control forecasts are yielded by the ENSO

forecast system; hindcasts are obtained for SST anomalies

during the years from 1997 to 2017. Due to expensive com-

puting costs, the ensemble forecasts conducted here are only

initialized on 1 January in each year. Both the CSVs and

CNOP are also obtained on January 1st in each year following

the procedures presented in section 2b.

In Fig. 1, the spatial structures of both the leading CSV (for

convenience, we also refer to it as the LSV) and the CNOP-

type initial perturbations in the tropical Pacific Ocean are

presented. The LSV-type perturbation reveals positive SST

anomalies in the eastern Pacific Ocean and negative SST

anomalies in the western region, while in the subsurface,

three sea temperature anomaly centers presenting a positive–

negative–positive pattern appear along the tropical Pacific

Ocean from west to east. However, for the CNOP-type initial

perturbations, positive SST anomalies dominate nearly the

whole tropical Pacific Ocean; along the vertical section, the

positive anomalies are mainly distributed in the central and

eastern Pacific Ocean with larger amplitudes than those

provided by the LSV, and negative anomalies dominantly

appear in the subsurface in the western tropical Pacific Ocean.

The differences between the CNOP-type and LSV-type initial

perturbations in spatial structures are understandable since

the CNOP-type initial perturbation has the largest error

growth in the nonlinear scenario while the LSV initial per-

turbation is the fastest growing perturbation under the linear

assumption. It is clear that the CNOP and LSV have different

patterns. We cannot help but wonder whether these differ-

ences may result in different performances of the CNOP

and LSV in the ensemble forecasting of ENSO. In the fol-

lowing section, we will use CNOP and CSVs to conduct

ensemble forecasting of ENSO and compare their ENSO

prediction skills.

First, the control forecast is obtained without any initial

perturbation added at the initial field. Then, the ensemble

forecast members associated with the CSVs-type initial

perturbations are generated by adding and subtracting the

leading five CSVs to and from the initial analysis field of the

control forecast to, together with the control forecast,

yield a total of 11 ensemble members. For convenience, we

call such ensembles CSVs-scheme ensembles. For the

CNOP-type initial perturbations, we simply use the CNOP

to replace the leading CSV in the CSVs-scheme ensemble,

referring to such an ensemble as CNOP1CSVs-scheme

ensemble. For comparison, all the initial perturbations in

these two schemes are scaled to have the same amplitude as

the climatological variance in the sea temperatures in the

tropical Pacific Ocean.

For both CSVs and CNOP1CSVs schemes, the SST anom-

alies associated with ENSO events during 1997–2017 are pre-

dicted for 8 months starting from January in each year. The

ENSO prediction skills are comparably evaluated to explore the

FIG. 1. The spatial structures of the (a) LSV and (b) CNOP initial errors in the tropical Pacific Ocean for ENSO events. (top) SSTs and

(bottom) the equatorial (58N–58S) subsurface temperatures (8C) averaged by the meridian 58N–58S.
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validity of applying the CNOP in ENSO ensemble forecasts

yielded by the ENSO forecast system of the NMEFC.

4. Results

a. The deterministic skill and reliability of the ensemble

forecast

To examine the role of the CNOP in improving the skill of

the ensemble when forecasting ENSO events, ensemble

forecasting experiments are carried out with both the CSVs

scheme and the CNOP1CSVs scheme, and ENSO predic-

tions of SST anomalies during 1997–2017 are obtained; the

anomaly correlation, root-mean-square error (RMSE), and

ensemble spread are used to measure the deterministic skill

of the ensemble forecasting.

Figure 2 shows the ENSO forecast skills, with black lines

denoting the skill of the control forecast and the red and

blue lines representing the skills of the CSVs scheme and

CNOP1CSVs scheme, respectively. For the control fore-

cast, the anomaly correlation coefficients are relatively

higher at short lead times and then abruptly drop from

above 0.7 to approximately 0.5 at a lead time of 5 months.

This dramatic drop in skill may be caused by the spring

prediction barrier (SPB) when ENSO predictions are made

spanning the spring season (Webster and Yang 1992; Mu

et al. 2007b; Lai et al. 2018). When the ensemble forecasting

strategy of either the CSVs or CNOP1CSVs scheme is

adopted, the ensemble mean forecasts of the SST anomalies

in the tropical Pacific Ocean obtain much larger correlation

coefficients than those of the control forecast at a lead time

of 5 months, suggesting that an ensemble forecasting strategy is

an effective way to improve the ENSO forecasting skill in the

NMEFC ENSO forecast system. In addition, we notice that the

anomaly correlation skill of the CNOP1CSVs scheme is slightly

higher than that of the CSVs scheme at lead times from 3 to

6 months, while at other lead times, the correlation skill

of the CSVs scheme is slightly higher than that of the

CNOP1CSVs scheme.

Regarding the RMSEs, the ensemble forecasts with lead

times longer than 2 months show much higher skill than the

control run; that is, the RMSEs in the ensemble forecasts are

smaller than those in the control forecast. However, comparing

the ensemble forecasts with the CNOP1CSVs and CSVs

schemes, the former has slightly smaller RMSEs than the latter

for lead times from 4 to 7 months. From these comparisons, it

seems that the CNOP trivially improves the skill of the CSVs-

ensemble forecast in ENSO predictions. In fact, whether an

ensemble forecast system is acceptable depends on two as-

pects: the deterministic forecasting skill and accountability.

Accountability is the skill associated with estimating uncer-

tainties in the ensemble mean forecast. Therefore, if the en-

semble forecasts obtained with the CNOP1CSVs scheme

show little improvement in the deterministic forecasting skill as

measured by anomaly correlations and RMSEs but a large

increase in the forecasting skill of prediction uncertainties

measured by the ensemble spread, these forecasts can also be

thought of as having much larger improvement in the en-

semble forecast skill and are much more accountable than

FIG. 2. Evolution of the Niño-3 index correlation between the

CNOP1CSVs scheme (red), CSVs scheme (blue), control run

(black), and observations as a function of the lead time.
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the other forecasts. Therefore, we will investigate the ac-

countability of the ensemble forecasts obtained with the

CNOP1CSVs scheme in the following context.

As shown in Fig. 2, the CSVs-scheme ensemble forecasts

have a significantly small spread at all lead times, which is

actually a common shortcoming of almost all ensemble

forecasting methods (Tompkins et al. 2017), while the

CNOP1CSVs-scheme ensemble forecasts have a much

larger spread. Then, the following question is raised: Is it

optimal to apply the CNOP1CSVs-scheme ensemble fore-

casts to estimate the forecast uncertainties of the ensemble

mean forecast?

As discussed in Zhu (2005), the spread is used to measure

the distance from the ensemble mean of the forecasts to

each ensemble member while the RMSE measures the dis-

tance from the ensemble mean of the forecasts to the true

value represented by the observation. Therefore, the ensemble

members are not likely to include the true values and have a

significant improved estimate against the control forecast un-

less the spread is not less than the RMSE. Buizza et al. (2005)

demonstrated that a perfect ensemble forecasting system

should have the same ensemble spreadmagnitude as that of the

RMSE; and a large difference between them is an indication of

statistical inconsistency. Therefore, the ratio of the RMSE to

the ensemble spreads are here investigated, where the ratio l is

expressed as l 5 RMSE/spread. According to Buizza et al.

(2005), when the ratio l has a value of approximately 1, it in-

dicates an optimal match between the ensemble spread and the

error of the ensemble mean, suggesting that the ensemble

spread can represent the prediction errors in ensemble mean

forecasts measured by the RMSE. The ratio l values of the

ensemble forecasts obtained with both schemes are presented

in Fig. 3. It is shown that the ratio l of the CSVs scheme has an

extremely large value, 33.18, at a lead time of 1 month because

of its very small ensemble spread; the value then decreases to a

flat curve for lead times from 3 to 8 months. On average, the

ratio l of the CSVs scheme can reach 6.26 over the forecasting

time period, even if the ratio of the flat curve from lead times of

3–8 months can still reach 1.98. However, the ratio l of the

CNOP1CSVs scheme is always flat for lead times from 1 to

8 months, and its average is only 1.54, which is significantly

smaller than that of the CSVs scheme. To show the spatial

structure of the forecast result in the whole tropical Pacific

Ocean, other than only the Niño-3 index, the spatial pattern of

ratio l is plotted in Fig. 4. For the ensemble forecasts with the

CSVs scheme, the ratios are much larger than 1.0, and most

large values locate in the central Pacific Ocean; while for the

ensemble forecasts carried out with the CNOP1CSVs

scheme, all the ratios are less than 2.0, which is obviously

much smaller than that of the CSVs scheme. Therefore, it is

clear that the application of the CNOP1CSVs scheme in

the ensemble forecast system can significantly improve the

reliability of ensemble forecasts when compared with the

CSVs scheme.

The Talagrand diagram is also used to evaluate the reli-

ability of the ensemble forecasts. In the case of ensemble

forecasting with N ensemble forecast members, we first rank

these N members in increasing order and define N 1 1

intervals. The verifying observations should fall with equal

frequency into each of the intervals for a perfectly consistent

ensemble forecast system. Therefore, the more reliable an

ensemble forecast is, the flatter the Talagrand diagram will be.

In the region of concern (i.e., the region between 208N and

208S in the tropical Pacific Ocean) in the present study,

there are 16 086 grid points associated with the adopted

CESM model, and the effective sample size is M 5 grid

point number 3 N 5 16 086 3 11 5 176 946, where N 5 11

and corresponds to the number of ensemble ENSO fore-

casting members in the present study. As mentioned before,

N ensemble members have N 1 1 intervals; for the kth in-

terval [k 2 (1, N 1 1)], the numbers of observations that

fall into the kth interval can be accumulated and marked as

Sk, and the probability can be calculated according to bi 5
Sk/M. Normally, the verifying observations fall into the

extreme intervals (i.e., the first and last intervals) much more

frequently than they fall into the middle intervals (Talagrand

et al. 1997).

The plot of bi, i.e., the Talagrand diagram, is shown in

Fig. 5. For the ensemble forecasts obtained with the CSVs

scheme, the diagram shows a U-shape, while for those ob-

tained with the CNOP1CSVs scheme, the diagram is more

like an L-shape, with much fewer forecasts falling into the

first interval. This shows that the percentages of the obser-

vations falling into the middle intervals increase and the

percentages of those falling into the first and last intervals

decrease, indicating that the reliability of the ensemble

forecasts obtained with CNOP1CSVs scheme is improved

against the reliability of the forecasts obtained with the CSVs

scheme when these schemes are applied in the ENSO en-

semble forecasts generated by the NMEFC.

A more accurate quantitative diagnosis is given by the

sum-of-squares differences between Sk and its expectation,

i.e.,M/(N1 1). The deviation from flatness in the histogram

can be measured as D5�N11

k51 fSk 2 [M/(N1 1)]g2. For a

perfectly reliable system, D has an expectation D0, where

D0 5 M[N/(N 1 1)]. Then, the ratio d 5 D/D0 can be used to

measure the flatness of the histogram (Talagrand et al. 1997;

Candille and Talagrand 2005). This measurement is also

FIG. 3. Evolutionof the ratiol (which is definedasl5RMSE/spread)

values of the CNOP1CSVs scheme (red) and CSVs scheme (blue)

as a function of the lead time.
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used in Jiang and Mu (2009). According to the definition of

ratio d, for a perfect ensemble forecast system, d will be

equal to 1. However, the value of d is always larger than 1 in

realistic ensemble forecasting. Therefore, the closer d is to 1,

the more reliable an ensemble system is. Figure 6 presents

the temporal variation in the ratio d of the rank histogram.

Although both the CSVs and CNOP1CSVs schemes have

ratio d values obviously larger than 1, they tend to signifi-

cantly decrease with a lengthening lead time; in particular,

the ratio of the CNOP1CSVs scheme is smaller than that of

the CSVs scheme. This indicates that the CNOP1CSVs

scheme provides more reliable ensemble forecasts than the

CSVs scheme.

b. The probability skill in ensemble forecasts

The Brier skill (BS) is often used to verify the accuracy of a

probability forecast. The BS is always calculated as the mean

squared difference between the forecast probability Pi and the

corresponding observed binary variableOi, the latter of which

is defined as 1 when an event occurs and 0 otherwise. The BS is

calculated using the formula BS5 (1/M)�M

i51(Pi 2Oi)
2
, where

M is the number of total verification samples. A small BS value

indicates a better ensemble forecast. The BS values are cal-

culated for three categorical events in the present study, i.e.,

cold, neutral, and warm events. The three categorical events

possess equal climatological frequencies of 1/3 and are applied

to all the forecasting results and the observations. This is done

to exclude the potential influences of the different climato-

logical state of the observations and the forecast data. This

analysis method is also used by Zhang et al. (2019) to evaluate

the SST predictability using the multimodel hindcast data.

The BSs of the ensemble forecasts generated by the CSVs

and CNOP1CSVs schemes and those obtained with the con-

trol forecast are calculated. Among these calculations, the BSs

of the ensemble forecasts are much smaller than those of the

control run. To reveal the relative accuracy of the probabilistic

forecasts compared to the accuracy of the control run, the Brier

skill score (BSS) is further calculated by BSS5 12 (BS/BSctrl).

For a perfect ensemble forecast, the BSS value is equal to 1,

FIG. 4. The spatial pattern of the averaged ratio l (which is defined as l 5 RMSE/spread)

values of (a) the CSVs scheme and (b) the CNOP1CSVs scheme.

FIG. 5. Evolution of the rank histograms of the CNOP1CSVs

scheme (red) and CSVs scheme (blue).
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while for realistic ensemble forecasts, the larger the BSS value

is, the more reliable the ensemble forecast system is. Figure 7

presents the evolution of the BSSs of both the CSVs and

CNOP1CSVs schemes. Generally, the BSSs of both kinds of

ensemble schemes increase with the lead time. For neutral

years, the performances of both kinds of ensemblemethods are

similar, with the BSS of the CSVs scheme being slightly larger

than that of the CNOP1CSVs scheme. For cold events and

warm events, the BSS of the CNOP1CSVs scheme is much

larger than that of the CSVs scheme, implying that the

CNOP1CSVs scheme can significantly improve the prediction

skill in the ENSO ensemble forecast as measured by the BSS.

In summary, applying an ensemble forecast method, either

the CSVs or CNOP1CSVs scheme, can significantly improve

the ENSO predictions obtained using the NMEFC ENSO

forecast system. In particular, the CNOP1CSVs scheme, i.e.,

the scheme involving the replacement of the LSV with the

CNOP, can further improve the accuracy of ENSO forecasts,

especially by increasing the reliability of the associated en-

semble forecast system.

5. Summary and discussion

In this paper, we calculate the CSVs and CNOP of the sea

temperatures in the tropical Pacific Ocean to forecast ENSO

events in the operationally running ENSO forecast system of

the NMEFC. Two groups of ensemble initial perturbations are

constructed: one is the CSVs scheme using the leading five

CSVs; the other is the CNOP1CSVs scheme with the CNOP

replacing the LSV of the CSVs scheme. Ensemble forecast

experiments of ENSO are conducted using these two groups of

ensemble initial perturbations initialized in January of each

year from 1997 to 2017. The results show that the NMEFC

ENSO forecast system benefits greatly when ensemble forecast

strategies are introduced. In particular, when comparing the

CSVs with the CNOP1CSVs scheme, the ensemble forecast of

CNOP1CSVs scheme is shown to be able to obviously im-

prove the skill when predicting ENSO events; specifically, the

ensemble spread and associated reliability of the ensemble

forecasts are significantly improved, although the accuracy of

the ensemble forecasts is increased to a lesser extent. The

difference between the two groups of ensemble initial pertur-

bations only lies in the difference between the LSV and CNOP

schemes. The LSV represents the fastest linearly growing

perturbation, while the CNOP acts as the nonlinear optimal

perturbation. ENSO possesses irregular variabilities and am-

plitudes and is generally thought of as being controlled by

nonlinear dynamical systems; furthermore, its prediction error

growth is also demonstrated as having an almost common

dynamical mechanism that often causes ENSO events to be

FIG. 7. Evolution of the BSSs of the CNOP1CSVs scheme (red)

and CSVs scheme (blue) as a function of the lead time: (a) cold

events, (b) warm events, and (c) neutral state.

FIG. 6. The diagnostic score d values obtained from the rank

histograms of the CNOP1CSVs scheme (red) and CSVs scheme

(blue) as a function of the lead time.
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over or underpredicted (Duan andWei 2013;Duan andHu 2016).

The CNOP, due to its nonlinearity, can capture the nonlinear

dynamical behavior of the initial error growth of ENSO forecasts,

causing the ensemble forecasts of CNOP1CSVs scheme to be

able to partially describe the nonlinear effects of error growth

on ENSO forecasts; this scheme thus possesses higher skill for

ENSO forecasting than the ensemble forecasts obtained with the

CSVs scheme.

As demonstrated byHuo andDuan (2019), themagnitude of

the initial perturbation, the lead time of the ensemble forecast

may also influence the predictability of the ensemble forecasts.

Therefore, more studies could be carried out to further clarify

those questions. Besides, the CSVs and CNOP may also be

sensitive to the phase of the ENSO cycle. Nevertheless, due to

the associated expensive computational costs, we only calcu-

late herein the CNOP and CSVs for ENSO forecasts starting

from January. In addition, since ENSO dynamics are often

governed by nonlinear dynamical systems, all ensemble initial

perturbations used in ENSO forecasting should consist of nonlin-

ear ENSO effects. However, for the ensemble forecasting strategy

of CNOP1CSVs scheme, although this scheme possesses a much

higher forecasting skill due to the introduction of the CNOP, the

rest of the ensemble initial perturbations are still linearly opti-

mized. That is, the ensemble initial perturbations generated by the

CNOP1CSVs scheme do not fully include nonlinear effects.

Regarding this effect, Duan and Huo (2016) proposed an or-

thogonal CNOPs strategy to generate ensemble initial perturba-

tions. This strategy was applied in the fifth-generation mesoscale

model (MM5) in an attempt to obtain better forecasts of tropical

cyclone tracks (Huo and Duan 2019). The results showed that the

ensemble forecasts obtained using orthogonal CNOPs have a

higher forecasting skill for tropical cyclone tracks than that of the

CNOP1SVs scheme. Therefore, it is important to fully consider

the influence of nonlinearity on ensemble initial perturbations in

ensemble forecasts. The biggest challenge we face now is the

overwhelmingly large computational cost. So a more efficient al-

gorithmneeds to be developed in order to compute the orthogonal

CNOPs for the application of the CNOP in complex climate

models. Actually, the work conducted under our investigation and

the primary results are encouraging. It is expected that orthogonal

CNOPs can be effectively applied in ENSO ensemble forecasts to

achieve much higher forecast skills in the future.
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