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Using the outputs from CMCC-CM in CMIP5 experiments, the authors identified sensitive areas for targeted 

observations in ENSO forecasting from the perspective of the initial error growth (IEG) method and the particle 

filter (PF) method. Results showed that the PF targets areas over the central-eastern equatorial Pacific, while the 

sensitive areas determined by the IEG method are slightly to the east of the former. Although a small part of the 

areas targeted by the IEG method also lie in the southeast equatorial Pacific, this does not affect the large-scale 

overlapping of the sensitive areas determined by these two methods in the eastern equatorial Pacific. Therefore, 

sensitive areas determined by the two methods are mutually supportive. When considering the uncertainty of 

methods for determining sensitive areas in realistic targeted observation, it is more reasonable to choose the 

above overlapping areas as sensitive areas for ENSO forecasting. This result provides scientific guidance for how 

to better determine sensitive areas for ENSO forecasting. 
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. Introduction 

El Niño–Southern Oscillation (ENSO) is the dominant mode of the

arge-scale coupled ocean–atmosphere in the tropical Pacific. The occur-

ence of ENSO not only has direct impacts on the atmosphere and ocean

ver the Pacific regions, but also plays an important role in modulat-

ng the global weather and climate anomalies through teleconnection

 Cane, 1983 ; Sakai and Kawamura, 2009 ). Accordingly, it is important

o improve the forecasting skill for ENSO. 

However, there are still many uncertainties in realistic ENSO fore-

asting. In particular, the impact of the “spring predictability barrier ”

SPB) is one of the main reasons for the large deviation in ENSO fore-

asting ( Duan and Hu, 2016 ). The SPB phenomenon refers to the fact

hat most models when forecasting ENSO often show a significant de-

line in their forecasting skill during boreal spring and/or the beginning

f summer, resulting in large forecast uncertainties ( Duan et al., 2009a ;

hang et al., 2014 ). Zhang et al. (2014) summarized previous studies

nd found that initial errors with specific spatial distribution character-

stics are more likely to cause a notable SPB, and such initial errors are
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ften located in several key areas. This may offer some useful informa-

ion on sensitive areas for targeted observations in ENSO forecasting. 

The methods used in previous studies to determine sensitive areas

or targeted observations can be roughly divided into two categories

 Toth and Kalnay, 1997 ; Bishop and Toth, 1999 ; Baker and Daley, 2000 ;

amill and Snyder, 2002 ). The methods in the first category —e.g., the

inear singular vector ( Palmer et al., 1998 ) and conditional nonlinear

ptimal perturbation ( Mu et al., 2003 ; Duan and Mu, 2009b ) —begin by

btaining the initial errors that have the greatest impact on the forecast,

nd then the areas with larger and more concentrated initial errors can

e determined as the sensitive areas. These methods are based on the

nitial error growth (IEG), which measures the sensitivity of forecast

rrors to initial errors. The methods in the other category are aimed

t reducing the forecast error variance directly. Those regions where

he reduction in the forecast error variance is maximized are deemed

s the sensitive areas for targeted observations via data assimilation.

he ensemble transform Kalman filter (ETKF; Bishop et al., 2001 ) and

he particle filter (PF; Van Leeuwen, 2009 ; Kramer and Dijkstra, 2013 ;

uan et al., 2018 ) methods, which are based on ensemble dispersion to
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Fig. 1. Monthly mean growth rates of prediction errors for El Niño events. The vertical axes denote the prediction samples. The contour lines represent the monthly 

growth rates of the increase (or decrease) in prediction errors, where positive values indicate growth of the prediction. 
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easure the sensitivity of forecast errors to initial errors, are two ex-

mples of this category of methods. ETKF is currently a popular data

ssimilation method, but is based on linear and Gaussian assumptions

 Vetra-Carvalho et al., 2018 ). Meanwhile, due to scientific and techno-

ogical advances, dynamical models have become increasingly nonlin-

ar, meaning it is more reasonable to require data assimilation methods

hat can handle non-Gaussian distributions, which cause the limitation

f ETKF to be amplified ( Vetra-Carvalho et al., 2018 ). The PF method

as developed rapidly under such development needs because, although

t and ETKF can be unified through Bayes theorem, the PF method holds

he prospect of completely nonlinear data assimilation and is not lim-

ted to Gaussian distributions ( Vetra-Carvalho et al., 2018 ; Van Leeuwen

t al., 2019 ). 

In the above two ideas for determining sensitive areas, we ask the

ollowing questions: Can the sensitive areas determined from the per-

pective of IEG and those determined by the PF method be mutually sup-

ortive? What are the similarities and differences between them? When

onsidering the uncertainty of these methods for determining sensitive

reas, how should we then determine more reasonable sensitive areas?

y answering these questions, we hope to provide a scientific reference

or determining the sensitive areas for targeted observations in ENSO

orecasting. 

. Data and methods 

.1. Data 

We used the monthly mean sea surface temperature (SST) data of

he pre-industrial control (pi-control) runs from the CMIP5 experiments

f CMCC-CM (Centro Euro-Mediterraneo sui Cambiamenti Climatici Cli-

ate Model). The pi-control runs, which are mainly used to analyze the

nternal variability of models with time-invariant forcing, are a refer-

nce for historical and climate sensitivity experiments. We randomly

hose three 20-year time series from the coupled model, and from each
2 
eries we identified three typical El Niño events, i.e., a total of nine

vents. This paper studies typical El Niño events with warming in early

oreal spring and peaking at the end of the year (Fig. S1). 

.2. Methods for determining sensitive areas for targeted observations 

.2.1. Method based on IEG 

To study the distribution features of initial errors, we need to judge

hether the SPB phenomenon for El Niño events exists in CMCC-CM.

irst of all, the SST of each typical El Niño year was treated as the

observation ”, and then the other 19 years of SSTs in each time series

ere regarded as 19 “predictions ” of the “observation ”. Each “observa-

ion ” corresponded to 19 “predictions ”. Then, following the definition

f Mu et al. (2007) regarding the growth tendency of prediction errors,

e were able to estimate the monthly growth tendency of prediction

rrors. According to the season-dependent evolutions of prediction er-

ors, we could judge whether the SPB existed in CMCC-CM. That is, if

he growth tendency of the prediction errors reached its maximum in

pring and/or the beginning of summer, we were able to confirm that

he SPB phenomenon for El Niño events existed in CMCC-CM. 

In this study, because we adopted the pi-control runs, we assumed

hat prediction errors were only caused by initial errors. For the predic-

ions that yielded an SPB, we studied the corresponding initial errors

hrough empirical orthogonal function (EOF) analysis. Then, we deter-

ined the areas with larger and more concentrated initial errors as the

ensitive areas for targeted observations. 

.2.2. PF method 

The PF method is an assimilation method that uses the Monte Carlo

lgorithm to achieve Bayes theorem ( Duan et al., 2018 ). The core of the

F method is to adjust the weight of particles by using ‘sequential impor-

ance sampling’ ( Van Leeuwen, 2009 ; Kramer et al., 2012 ; Kramer and

ijkstra, 2013 ). The specific details of the PF method can be referred to

n Kramer et al. (2012) and Kramer and Dijkstra (2013) . 
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Fig. 2. Composite patterns of SSTAs for two types of SPB initial errors. Dotted areas indicate the composites of SSTAs exceed the 95% confidence level. 

Fig. 3. Ensemble mean of the PP index obtained by assimilating the three-month observations of SST at OND( − 1), JFM, AMJ, and JAS, respectively. 
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Using the PF method to determine sensitive areas involved first split-

ing the 330-year SST integration from CMCC-CM into one-year seg-

ents, which yielded 330 ensemble members (i.e., particles). Since the

xternal forcing of the pi-control runs is constant, the ensemble could be

egarded as having an identical distribution. The prior probability den-

ity function (PDF) of the system state will be the climatological PDF

iven by these ensemble members. Then, we adjusted the weights of

nsemble members by assimilating the observations. The observations

ere were not real as such, but simulated. It was necessary to take the

ST in each typical El Niño year selected in the previous part of this

tudy as the “true value ”, and superimpose the random error on the

true value ” to produce an idealized observation. Therefore, the new en-

emble could be obtained by continuously assimilating the three-month

dealized observations, and the posterior PDF was given by these new

nsemble members. 

In this study, we used the predictive power (PP; Schneider and

riffies, 1999 ) —an entropy-based metric —to measure the degree of re-

uction in the uncertainty of the posterior PDF relative to the uncertainty

n the prior PDF. The PP is limited to the range 0 ≤ PP ≤ 1. The larger

he PP, the greater the degree of reduction in the forecast uncertainty.

herefore, the regions with high PP were determined as the sensitive

reas for targeted observations. 
3 
. Sensitive areas determined by the IEG method 

According to the method described in Section 2.2.1 , we are able to

udge whether the SPB phenomenon exists in CMCC-CM. Fig. 1 (a) shows

he monthly mean growth rates of prediction errors for the nine El Niño

vents. From Fig. 1 (a) we can see that prediction errors usually start to

row in April, and the most significant growth occurs around June. That

s, we can demonstrate that the SPB phenomenon exists in CMCC-CM.

urthermore, we can study the monthly mean growth rates of predic-

ion errors in each time series ( Fig. 1 (b–d)), from which we can see

hat the time when the prediction errors start to grow rapidly and the

rowth rates of prediction errors are different in each time series. The re-

ults indicate that the SPB may have interdecadal characteristics. From

ig. 1 we can also conclude that some of the above predictions yield the

PB phenomenon, while others cannot yield it. As mentioned above, the

rediction errors are only caused by initial errors. Nevertheless, some

nitial errors are obviously too large to be compared with actual initial

ST errors. Thus, we selected predictions with initial errors less than

.5°C, and we refer to the initial errors yielding the SPB as “SPB initial

rrors ” for convenience. 

But what are the spatial distribution characteristics of the SPB initial

rrors? To address this, we used EOF analysis to extract the dominant
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Fig. 4. Mean prediction errors averaged over April–December in the ensembles, 

obtained after assimilating SST in JFM at the first 40 maximum points from the 

overlapping areas (blue bar), PF areas and IEG areas (gray bars), respectively. 

As a reference, the red bar represents the counterpart before assimilation. 
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ode (i.e., EOF1) of the SPB initial errors, and then selected original ini-

ial errors with the same and opposite sign as EOF1 to form two types

f initial errors, and finally obtain two main patterns of SPB initial er-

ors through composite analysis ( Fig. 2 ). One of the patterns possesses

 positive SST anomaly (SSTA) pattern in the eastern equatorial Pacific,

hile the other consists of a negative SSTA component that is located

n the eastern equatorial Pacific and the southeast equatorial Pacific.

t can be seen that the distribution of the main energy of the SPB ini-

ial errors has local characteristics; that is, the distribution of errors has

arge-value areas. 
ig. 5. (a) Climatological probability distribution of Niño-3.4 index before assimilati

ST in JFM in the (b) overlapping areas, (c) PF areas, and (d) IEG areas. The red lin

he probability value, and the darker the color, the greater the probability. 

4 
Overall, the main initial errors yielding the SPB are concentrated in

he eastern equatorial Pacific (10°N–10°S, 150°–100°W) and the south-

ast equatorial Pacific (10°–20°S, 140°–110°W), which means that initial

rrors in these areas are more likely to cause the SPB and produce large

rediction errors. Therefore, these areas may represent sensitive areas

or ENSO forecasting. If we deploy additional observations in these ar-

as, and then assimilate observations to the initial field of the model,

he forecasting skill for El Niño events could be significantly improved,

s compared to doing so in other areas. 

. Sensitive areas determined by the PF method 

In this next part of our study we used the PF method to determine

he sensitive areas of the nine El Niño events. Fig. 3 shows the PP in-

ex (average for the nine El Niño events) obtained by assimilating the

hree-month observations of SST at OND( − 1), JFM, AMJ, and JAS, re-

pectively, where OND( − 1) represents the period from October to De-

ember of the year before the typical year, JFM represents the period

rom January to March of the typical year, and so forth. As mentioned

bove, the regions with high PP can be determined as the sensitive ar-

as for targeted observations. Therefore, from Fig. 3 we can see that the

ositions of the sensitive areas obtained by assimilating the observa-

ions in different seasons are not much different and basically located in

he central-eastern equatorial Pacific (~10°N–10°S, 180°–120°W). How-

ver, the values of the PP index have some differences in different sea-

ons. The PP obtained by assimilating observations in AMJ is the small-

st. Moreover, the PP values obtained by assimilating the observations

n JAS are bigger than the assimilation results in other seasons. This
on. (b–d) Probability distribution of Niño-3.4 index, obtained after assimilating 

e represents the development of the “true value ”. The gray shading represents 
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s because JAS is the season when the development of El Niño events

trengthens and the signal-to-noise ratio for SST is relatively large. 

. Effectiveness of the sensitive areas 

Through the previous analysis we found that there is a large-scale

verlap (10°N–10°S, 150°–120°W) of the sensitive areas determined by

he above two methods in the equatorial eastern Pacific. Therefore, the

ensitive areas determined by the two methods are mutually supportive.

hen considering the uncertainty of the methods in realistic targeted

bservations, it is more reasonable to choose the above overlapping ar-

as as the sensitive areas for ENSO forecasting. 

To illustrate this inference, we selected the first 40 maximum points

rom the above overlapping areas, the sensitive areas determined by the

F method (i.e., PF areas), and the sensitive areas determined by the

EG method (i.e., IEG areas), respectively. Next, we used the PF assimi-

ation method to assimilate the SST in JFM for each group of grid points,

nd then let the three groups of ensemble members obtained after as-

imilation to develop freely during the following April–December. By

omparing the prediction skills of the three ensembles, it was possible

o verify whether or not the overlapping areas were valid for improving

he El Niño forecast skill. 

Fig. 4 shows the mean prediction errors averaged over April–

ecember in the three ensembles, obtained by assimilating the SST in

FM at the first 40 maximum points from the overlapping areas (blue

ar), PF areas and IEG areas (gray bars), respectively. From Fig. 4 we

an see that the mean prediction errors obtained by assimilating SST in

he overlapping areas is obviously smaller than the mean before assimi-

ation, which is also smaller than the mean in the PF areas and IEG areas.

hat is, choosing the overlapping areas as the sensitive areas is reason-

ble and effective, and is more effective than adopting the PF areas or

EG areas. 

Finally, we analyzed the reasons why the overlapping areas are more

alid, from the perspective of the probability distribution. Fig. 5 shows

he probability distribution of the Niño-3.4 index, obtained by assimi-

ating the SST in JFM in the overlapping areas, PF areas, and IEG areas,

espectively. Compared with the climatological probability distribution

 Fig. 5 (a)), the spreads of the three ensembles obtained after assimilating

bservations in the above three areas decrease to varying degrees. At the

ssimilation stage, the three groups of ensemble members are all located

ear the “true value ”, and over time the errors gradually increase at the

orecast stage; but overall, the development of all members is skewed to

he warm events. The number of members skewed to the warm events

fter assimilating SST in the overlapping areas is more than its counter-

arts in the other two areas, and the errors with the “true value ” after

ssimilating SST in the overlapping areas are lowest. 

. Conclusions 

In this study we identified the sensitive areas for targeted obser-

ations for ENSO forecasting from the perspective of the IEG method

nd PF method. Results showed that the sensitive areas determined

y the PF method are targeted in the central-eastern equatorial Pacific

~10°N–10°S, 180°–120°W), while their counterparts determined by the

EG method are concentrated in the eastern equatorial Pacific (10°N–

0°S, 150°–100°W) and the southeast equatorial Pacific (10°–20°S, 140°–

10°W). We found that the sensitive areas determined by the above two

ethods overlap widely in the eastern equatorial Pacific (10°N–10°S,

50°–120°W). Therefore, the sensitive areas determined by the above

wo methods are mutually supportive. When considering the uncertainty

f the methods in realistic targeted observation, it would be more rea-

onable to choose the above overlapping areas as the sensitive areas

or target observations in ENSO forecasting. By comparing the predic-

ion skills of the three ensembles, obtained after assimilating SST in the
5 
verlapping areas, PF areas, and IEG areas, respectively, it was further

erified that the overlapping areas are more valid for improving ENSO

orecast skill. The approach in this study to determining sensitive areas

rovides a reference for further research on targeted observations. 
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