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Abstract
The optimally growing initial errors (OGEs) of El Niño events are found in the Community Earth System Model (CESM) by 
the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors 
for ENSO (El Niño Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions 
of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm. 
In the CESM, we obtain three types of OGEs of El Niño events with different intensities and diversities and call them type-
1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the 
equatorial Pacific accompanied by a negative west–east slope of subsurface temperature from the subsurface to the surface 
in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite 
sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface 
to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower 
layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the 
eastern equatorial Pacific develop locally into a mature La Niña (El Niño)-like mode. For the type-3 initial error, the negative 
errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the 
eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing 
mechanisms, both cause El Niño events to be underpredicted as neutral states or La Niña events. However, the type-2 initial 
error makes a moderate El Niño event to be predicted as an extremely strong event.

Keywords  ENSO predictability · CESM · Optimally growing initial error · Conditional nonlinear optimal perturbation · 
Optimization calculation

1  Introduction

The El Niño-Southern Oscillation (ENSO) is characterized 
by an interannual variability of sea surface temperature 
(SST) in the tropical Pacific (Philander 1983; Ropelewski 
and Halpert 1987). Although the ENSO phenomenon origi-
nates and develops in the tropical Pacific, it has global cli-
matic, ecological, economic and societal impacts through 
ocean and atmospheric teleconnection (Rasmusson and 

Wallace 1983; Trenberth et al. 1998; Ham et al. 2014). Since 
the extreme 1982/83 El Niño event, considerable progress 
has been made in the development of observing systems, 
theories and numerical models related to ENSO (Wallace 
et al. 1998; Wang 2018; Tang et al. 2018; Zhang et al. 2020). 
These endeavors have deepened our understanding of ENSO 
dynamics and improved the prediction skill of the ENSO, 
and it is skillfully predictable with a 1-year lead time in 
ENSO hindcast experiments (Zebiak and Cane 1987; Kirt-
man and Schopf 1998; Fedorov and Philander 2000; Yeh 
et al. 2012). Despite this progress, there are still consider-
able uncertainties in real-time ENSO predictions (Jin et al. 
2008; Luo et al. 2008; Tang et al. 2008). Especially after 
the 1990s, El Niño events have behaved more diversely. A 
new type of El Niño event, the central-Pacific El Niño (CP-
El Niño), occurs frequently and increases the difficulty in 
ENSO forecasts (Ashok et al. 2007; Kao and Yu 2009; Kug 
et al. 2009). The so-called CP-El Niño events have warm 
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SSTs concentrated in the central tropical Pacific, and their 
spatial structures and evolution mechanisms are obviously 
different from those of traditional El Niño events with warm 
SSTs concentrated in the eastern tropical Pacific.

Lorenz (1975) suggested that uncertainties in numerical 
weather and climate predictions are mainly caused by both 
initial and model errors and classified predictability prob-
lems into two types: the first type associated with initial 
errors and the second type associated with model errors. 
Many studies have described ENSO as a self-sustaining 
oscillation and suggested that the model-based predictions 
of ENSO depended dominantly on the initial conditions 
(Latif et al. 1998; Chen et al. 2004). Therefore, many stud-
ies have explored ENSO predictability from the viewpoint of 
initial error growth to find the initial error that has the larg-
est impact on the prediction of ENSO, that is, the optimally 
growing initial error (OGE) (Moore and Kleeman 1996; Xue 
et al. 1997a, b; Thompson 1998; Fan et al. 2000; Samelson 
and Tziperman 2001). In these studies, the linear singular 
vector (LSV) method is commonly used to solve the optimi-
zation problem. For example, Moore and Kleeman (1996) 
and Xue et al. (1997a, b) used LSV to investigate the OGEs 
that induce the largest uncertainties in ENSO prediction. 
However, the LSV may not be a reasonable approximation 
to the optimally growing initial perturbation in a nonlinear 
model when the amplitude of the initial perturbation is large 
and/or the forecast time is long.

To overcome these limitations in the LSV method, Mu 
et al. (2003) proposed the concept of conditional nonlin-
ear optimal perturbation (CNOP) to study the predictability 
problems of weather and climate events. CNOP represents a 
perturbation which, under a given physical constraint, results 
in the largest nonlinear error evolution at the prediction time. 
If being superimposed on the initial fields of a weather and 
climate event, it denotes the optimally growing initial error 
that has the largest effect on the uncertainty of prediction 
results. Presently, the CNOP method has been widely used 
in a variety of ENSO models with multiple complexities 
to search for the OGEs of ENSO and investigate the pre-
dictability problems concerned with initial errors, such as 
the maximal prediction error (Xu and Duan 2008; Tao et al. 
2017), the spring prediction barrier (Mu et al. 2007a, b; Yu 
et al. 2009; Duan et al. 2009), and the sensitive area of target 
observation (Tian and Duan 2016; Duan and Hu 2016; Duan 
et al. 2018). Moreover, CNOP method is also extended to 
investigate the ENSO predictability problems concerning the 
uncertainties in model parameters and external forcings, that 
is, find the optimal model parameter perturbations (Yu et al. 
2012; Gao et al. 2018; Tao et al. 2019) and nonlinear optimal 
external forcings (Duan and Zhao 2015; Tao et al. 2020) 
which lead to the the largest growth of prediction error.

Mathematically, the essence of computing the CNOP is to 
find the global maximum value of a nonlinear function with 

regard to initial perturbations, which can be transformed into 
a minimum optimization problem. An appropriate nonlin-
ear optimization algorithm is then necessary to compute 
the CNOP. There are two main types of optimization algo-
rithms. One type is the traditional optimization algorithm 
that requires the gradient information of the cost function 
with regard to initial perturbations. If the corresponding 
adjoint model of a numerical model has been conducted, 
the gradient will be efficiently calculated by the adjoint 
model. The other type is the intelligent algorithm that does 
not require gradient information and are adjoint-free. For 
simple or intermediate complex models with relatively small 
dimensions, these two types of optimization algorithms can 
be used to calculate CNOP conveniently. However, compli-
cated coupled ocean–atmosphere numerical models usually 
have no corresponding adjoint models. In particular, cod-
ing the adjoint model of a complex numerical model is a 
large, tedious, and time-consuming job. Meanwhile, because 
the degrees of freedom in complicated coupled models are 
generally approximately 106–107, the cost of computing 
the CNOP directly using intelligent algorithms is usually 
a formidable challenge and almost unacceptable. All these 
reasons limit the further application of CNOPs in complex 
coupled models. Therefore, how to calculate CNOPs in 
numerical models, especially in complicated coupled mod-
els, remains a challenging problem.

Despite these difficulties, scientists have examined 
numerous methods to compute CNOPs or their approxima-
tion. For some intermediate coupled models (ZC, Zebiak 
and Cane 1987; ICM, Zhang et al. 2003), their adjoint 
models are coded in advance to compute the gradient of 
the cost function (Xu 2006; Gao et al. 2016), and then 
CNOPs are computed by traditional optimization algo-
rithms (Mu et al. 2007b; Tao et al. 2017). Duan et al. 
(2009) proposed an adjoint-free ensemble-based method 
to look for a CNOP and found that the spatial pattern of a 
CNOP obtained approximately by this ensemble method 
is qualitatively similar to that computed by the adjoint 
method. Their initial errors, superposed on the “true” 
El Niño events to be predicted, are generated by taking 
the differences between the initial fields of the “true” El 
Niño events at the starting month and those in each month 
of the dominant 4-year period of ENSO preceding each 
reference year. Since then, the ensemble-based method 
has been used in the complicated FGOALS-g (Flexible 
Global Ocean Atmosphere Land System-gmail model 
in IAP/LASG, Yan and Yu 2012), CESM (Community 
Earth System Model in NCAR, Neale et al. 2012) and 
GFDL_CM2p1 (Geophysical Fluid Dynamics Laboratory 
Climate Model version 2p1, Delworth et al. 2006) mod-
els to compute CNOPs approximately and search for the 
initial errors that induce an obvious spring predictability 
barrier for the ENSO (Duan and Wei 2013; Duan and Hu 
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2016; Qi 2018). However, for the ensemble-based method, 
Combined Empirical Orthogonal Function (CEOF) analy-
sis is conducted on the selected error samples, composite 
analysis is performed according to the sign of the time 
series of CEOFs with larger variance, and then several 
types of initial errors are obtained. Their results depend 
heavily on the sample space, yet they cannot contain all 
satisfying initial errors. Furthermore, even if the sample 
space is large enough, the results obtained by CEOF and 
composite analysis may be common (basic) characteristics 
suitable for many cases but not the optimal solution for a 
particular El Niño event. As noted by Hu and Duan (2016), 
a more effective algorithm must be developed to compute 
CNOPs in complicated models.

In addition, to overcome the difficulties in writing 
adjoint models but still compute CNOPs by optimization 
algorithms, Wang and Tan (2010) applied an adjoint-free 
ensemble projection (EP) algorithm to approximate the 
gradient of cost function with respect to initial perturba-
tions and then computed the CNOP. The key of this EP 
algorithm is to use a localization technique and assess 
spurious correlations between observation stations and 
model grids. However, this treatment will determine the 
covariance of the localized Schur radii artificially and 
empirically. To avoid the localization procedure of the EP 
algorithm in Wang and Tan (2010), Chen et al. (2015b) 
proposed a singular vector decomposition (SVD)-based 
EP algorithm to compute the CNOP, which overcomes the 
uncertainty caused by empirically choosing the localiza-
tion radius. The main concept is to construct CNOPs using 
former main singular vectors of historical time series in 
numerical models to greatly reduce the degrees of freedom 
in the optimization problem. Thus, the optimized vari-
ables are the weight coefficients of the main SV modes 
rather than the original physical variables, and the issue 
of computing the CNOP is transformed into determining 
the optimal weight coefficient combination of the main SV 
modes. The SVD-based EP algorithm has been success-
fully applied to compute CNOPs in the intermediate ZC 
model combined with traditional algorithms and intelli-
gent algorithms (Chen et al. 2015b; Wen 2015). Therefore, 
we naturally ask whether the SVD-based EP algorithm can 
be used in complex coupled ocean–atmosphere models to 
compute CNOPs and explore the OGEs in El Niño events.

In this study, we use the SVD-based EP algorithm to 
compute CNOPs in the CESM and search for OGEs of 
El Niño events. This paper is organized as follows: The 
CESM used in this study is depicted in Sect. 2. Section 3 
introduces the definition of the CNOP and how to compute 
the CNOP by the SVD-based EP algorithm. The valid-
ity of computing the CNOP in the CESM is verified in 
Sect. 4. Section 5 gives numerical experimental results for 
the OGEs of El Niño events in detail. The related dynamic 

mechanisms of error growth are explained in Sect. 6. Sec-
tion 7 summarizes the study and provides some discussion.

2 � The community earth system model

The CESM (version 1.0.3) in this study, superseding version 
4 of the Community Climate System Model (CCSM4), is a 
fully coupled global climate model that provides state-of-
the-art simulations of the Earth’s past, present and future 
climate states. The CESM consists of five component mod-
els: atmosphere, ocean, land, land ice, and sea ice, plus one 
central flux coupler component that coordinates the models 
and exchanges geophysical fluxes between them. Based on 
the needs of researchers, the atmospheric components of 
the CESM can be alternatively accessed as the Community 
Atmosphere Model (CAM), the high-top atmosphere Whole 
Atmosphere Community Climate Model (WACCM), or the 
CAM with chemistry (CAM-CHEM). The Community 
Atmosphere Model version 4 (CAM4) used in this study 
has a finite-volume (FV) dynamic core with 26 vertical lay-
ers and a horizontal resolution of 0.9° (longitude) × 1.25° 
(latitude). The model configuration is described in detail 
in Neale et al. (2012). The ocean component is based on 
the Parallel Ocean Program version 2 (POP2, Smith et al. 
2010) from the Los Alamos National Laboratory (LANL), 
which has 60 vertical levels with a layer thickness varying 
from 10 m in the top 150 m to 250 m below 4000 m. It uses 
spherical coordinates in the Southern Hemisphere and a dis-
placed pole grid in the Northern Hemisphere. The horizontal 
resolution is approximately 1° (longitude) × 0.27° (latitude) 
at the equator, with the domain ranging from 79°S to 89°N. 
The CAM4 and POP2 are coupled through the version 7 
coupler (CPL7, Craig et al. 2012) together with the Com-
munity Land Model version 4 (CLM4, Oleson et al. 2010), 
the Community Ice Code version 4 (CICE4, Hunke and 
Lipscomb 2008) of LANL, and the Glimmer Community 
Ice Sheet Model version 1.6 (Glimmer-CISM1.6, Rutt et al. 
2009; Lipscomb et al. 2013). More details of the CESM and 
its simulation of the climate system are highlighted in Hur-
rell et al. (2013). Bellenger et al. (2014) noted that despite 
some biases in the tropical Pacific interannual variability, the 
CESM accurately simulates the fundamental characteristics 
of observational ENSO events.

3 � CNOP and SVD‑based EP algorithm

The CNOP represents an initial perturbation, subjected to a 
given constraint, and has the largest nonlinear evolution at 
the end of the prediction time. The CNOP method is a natu-
ral generalization of the LSV to a nonlinear system. Here, 
we briefly introduce the CNOP approach.
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Let M be a nonlinear propagation operator (i.e., the 
numerical model) and x0 be an initial perturbation super-
imposed on the reference state X(t) , which is a solution to 
the nonlinear model and satisfies X(t) = M(X0, t0, t) , with 
X0 being the initial field of reference state X(t) and t0 being 
the initial prediction time.

For selected norms ‖⋅‖� and ‖⋅‖ , the CNOP ( x0� ) is the 
solution of the following optimization problem:

where ‖‖x0‖‖� ≤ � is the initial constraint defined by the 
selected norm ‖⋅‖� and � is a prescribed positive number 
that defines the constraint radius of the initial perturbation 
x0 . The norm ‖⋅‖ measures the evolution of perturbations. 
To conveniently apply existing optimization algorithms, let 
J1(x0) = −J(x0) and solve the equivalent minimization prob-
lem in Eq. (1) to compute the CNOP.

Both traditional algorithms and intelligent algorithms 
are often used to solve the above optimization problem. 
For traditional optimization algorithms, the key is to 
obtain the gradient of the cost function with respect to the 
initial perturbation x0. However, the CESM has no cor-
responding adjoint model, and the gradient cannot be effi-
ciently computed. Thus, adjoint-free intelligent algorithms 
may be used to compute CNOPs. However, the number of 
degrees of freedom in the CESM is very large, and the cost 
of computing CNOPs directly using intelligent algorithms 
is almost unacceptable. In this study, the CNOP will be 
computed by the SVD-based EP method proposed by Chen 
et al. (2015b).

The projection of a continuous system into a discrete 
numerical model can be expressed as x(t) =

∑N

i=1
�iuiv

T
i
 , 

where N  is the degree of freedom of a numerical model, 
�i is the singular value arranged from the highest to low-
est, ui is the spatial mode corresponding to vi , and vi is the 
time series of ui.

A forced and dissipative dynamic system tends toward 
a low-dimensional attractor after long evolution (Teman 
1991; Osborne and Pastorello 1993; Foias 1997). The spa-
tial modes ui can be such that ||�i|| monotonously decreases 
quickly enough as i increases. If m(m ≤ N) former main 
spatial modes are used as the bases to construct the 
approximate state space of the whole system, the original 
N-dimensional system can be truncated to an m-dimen-
sional approximate system.

SVD statistically provides a standard method that reduces 
the dimension of the system effectively by choosing spatial 
modes. If m spatial modes are chosen and combined linearly 
to approximate the state vector of the discrete system, then 
x0 =

∑m

i=1
aiui , and the optimization problem that computes 

the CNOP is then transformed into the following:

(1)J(x0�) = ���
‖x0‖�

≤�

���(X0 + x0,t0, t) −�(X0,t0, t)
��
2

where ai is the weight coefficient of the chosen mode ui . 
Because the selected spatial modes are orthonormal vectors, 
the constrained condition becomes ‖a‖� ≤ � . This approach 
searches for the optimal combinations of weight coefficients 
for the chosen bases.

The ability of the SVD-based EP algorithm to compute 
CNOP has been verified in the ZC model that has an adjoint 
model. Chen et al. (2015b) combined the SVD-based EP 
method with the traditional SPG2 algorithm (Birgin et al. 
2000) to calculate the CNOP and explore the optimal pre-
cursor of ENSO events. The results show that the CNOP 
obtained by the SVD-based EP algorithm can effectively 
approximate the CNOP calculated by the adjoint method 
and retain the general spatial characteristics of the latter. 
Wen (2015) combined this method with four intelligent algo-
rithms to compute CNOPs in the ZC model. Their results 
show that the spatial pattern of the CNOP obtained by the 
new method looks similar to that obtained by the adjoint 
method, and the variation trend of the cost function in dif-
ferent calendar months is almost the same as that of the 
latter. These studies demonstrated that, independent of the 
optimization algorithm, the SVD-based EP algorithm can be 
used to approximately compute CNOPs.

4 � Validity of computing a CNOP in the CESM

The CESM is a fully coupled earth system model that 
includes ocean, atmosphere, land, sea ice, and land ice com-
ponents and has a very high dimensionality. The number of 
grids on the upper tropical Pacific alone reaches 105. There-
fore, it is necessary to reduce the dimensions of the model 
to calculate the CNOP. Based on the characteristics of the 
low-dimensional attractor for the ENSO system, we apply 
the SVD-based EP algorithm to reduce the dimensions of 
optimization problems, calculate the CNOP in a truncated 
phase space and search for the OGEs in El Niño events.

4.1 � Experimental strategy

The fixed external data of tracer gases, insolation, aero-
sols and land cover in the year 2000 are used to force the 
CESM for 179 years, and the Niño 3.4 index of historical 
data for the last 85 years (95–179) is analyzed (the figure is 
neglected). We define the El Niño (La Niña) event when the 
Niño 3.4 index is greater (smaller) than 0.5 °C (− 0.5 °C) 
in more than five consecutive months. During this 85-year 
span, the ENSO simulated in the CESM behaves with 2- to 
5-year periodic characteristics, and 22 El Niño events and 

(2)

J1(a�) = min
‖a‖�≤�

�
−

�����
�(X0 +

m�

i=1

aiui, t0, t) −�(X0, t0, t)
�����

2
�
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24 La Niña events occur. Among them, 21 El Niño events 
and 16 La Niña events have the characteristics of phase lock, 
that is, the peaks of the Niño 3.4 indices occur in winter. 
Figure 1 shows the Empirical Orthogonal Function (EOF) 
analysis results of SSTA from the 85-year historical data. It 
can be seen that the leading EOF (EOF1) of SSTA presents 
a typical EP-El Niño-like mode, and can explain 71.64% 
of the total variance. The second mode (EOF2) has warm 
signals in the tropical central and western Pacific, with cold 
signals in the tropical eastern-southern Pacific, which is sim-
ilar to the mature CP-El Niño mode. The 6.86% explained 
variance of EOF2 is obviously smaller than that of EOF1, 
which means the EOF1 mode is more steady than EOF2. 
Comparing the principal components (PC) of two modes, 
PC1 behaves a stronger interannual variability than PC2, 
which also illustrates that EP-El Niño events simulated 

by the CESM are usually much stronger than CP-El Niño 
events. All these results show that the CESM can capture 
the characteristics of period, phase-locking and diversity of 
ESNO events. Although some studies have pointed out that 
the anomalous warm centers of El Niño events are relatively 
west, corresponding to observations (Capotondi 2013), and 
the asymmetry of El Niño and La Niña is weak (Zhang and 
Sun 2014), in general, the fundamental features of the model 
simulation are consistent with those of observations. There-
fore, in this study, it is feasible that we can use the CESM to 
study the ENSO OGEs.

There are many El Niño events in the 85-year historical 
run of the CESM. However, because calculating one CNOP 
requires a large amount of computer time, we are limited by 
the present computational conditions and cannot study each 
ENSO event in detail. Thus, we focus on six selected El 

Fig. 1   EOF analysis results of 
SSTA in the tropical Pacific 
region from the 85-year histori-
cal data. a1 Is the leading EOF 
mode (EOF1) and a2 is the time 
series (PC1) of EOF1. b Is the 
same as (a) but for the second 
EOF (EOF2)

Fig. 2   Time-dependent Niño3.4 
indices for four EP-El Niños, 
two CP-El Niños and one 
neutral state from the 85-year 
control run, denoted by EP1, 
…, EP4, CP1, CP2, and NR1, 
respectively. These events are 
chosen as reference states to 
conduct the optimization cal-
culation experiments. The red 
asterisk denotes the start month 
of prediction of January (0)
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Niño events with different intensities and diversities (Fig. 2), 
and these events are denoted by EP1, EP2, EP3, EP4, CP1, and 
CP2. Among them, EP1, EP2 and EP3 are strong EP-El Niño 
events, EP4 is a relatively moderate EP-El Niño event, and 
CP1 and CP2 are weak CP-El Niño events. Figure 3 shows 
the evolutions of SSTA and sea surface wind anomalies for 
EP1, EP4 and CP1-El Niño. EP1 and EP4 are typical EP-El 
Niño events. The SST warm anomaly occurs along the equa-
torial eastern Pacific coast, extends westward, and finally 
matures in winter. For the CP1-El Niño event, the warm 
SSTA anomaly first appears in the tropical central and west-
ern Pacific and finally reaches the mature phase in winter. 
CP1-El Niño has no obvious propagating characteristics in 
the developing process, which is consistent with the results 
of the observed CP-El Niño.

All these selected El Niño events reached their peak 
in the winter of the development year, consistent with the 
observed phase-locked characteristics. In this context, we 
use Year(0) to denote the year when El Niño reaches the 

peak and Year(− 1/1) to signify the year before/after Year(0). 
For each El Niño event, we make 12-month predictions (i.e., 
lead time of 12 months) with the start months being January 
(0) (Exactly speaking, January 1st) to assure that we can 
focus on the predictions during the onset and growth phase 
of El Niño events.

To study the OGE of an El Niño event, perfect model 
experiments are conducted in this study. That is, the CESM 
is assumed to be perfect. In this condition, the uncertain-
ties in El Niño predictions are considered to be caused 
only by initial errors that are superimposed on the initial 
sea temperature fields of the six “true” El Niño events. In 
the following numerical experiments, the initial errors of 
the sea temperature fields cover the region (19°S-19°N, 
129.375°E-84.375°W), which includes the whole tropical 
Pacific. To explore the role of subsurface processes, the ini-
tial errors extend from the surface to a 165 m depth, which is 
approximately the bottom of the thermocline over the west-
ern equatorial Pacific.

Fig. 3   Evolutions of the SST anomaly (units: °C) and sea surface wind anomaly (units: m/s) of a EP1-El Niño, b EP4-El Niño and c CP1-El Niño
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Let Tp

i,j,0
(t) be the predicted SST, Tt

i,j,0
(t) be the “true” SST 

to be predicted, and (i, j, 0) be the grid points in the pre-
dicted area of the sea surface. The prediction error is defined 
as the difference between the SSTA in the tropical Pacific 
for the predicted El Niño and that of the “true” El Niño 
events, and its value is measured as follows:

Then, the CNOP can be computed by solving the follow-
ing optimization problem:

In Eq. 4, ‖‖‖T
′
0

‖‖‖� ≤ � is the constraint of initial errors and 
is defined as follows:

where T ′
0
 represents the initial error of sea temperature with 

dimensions of 3.094 × 105, i, j and k represent the grid posi-
tions of the zonal, meridional and vertical directions, respec-
tively, and �i,j,k , �i,j,k and T ′

i,j,k
 represent the latitude, standard 

deviation and initial error of sea temperature at the grid (i, 
j, k), respectively. The constraint � = 200 means that the 
averaged absolute value of initial error in each grid point 
does not exceed 0.36 × standard deviation.

As mentioned above, because the dimensions of the opti-
mization problem are very large, the cost that optimizes the 
cost function directly is unacceptable. Therefore, we first 
perform singular vector decomposition on the sea tempera-
ture anomaly in January for the long-term (95–179 year) 
historical data of the CESM and then optimize the linear 

(3)‖‖T
p(t) − Tt(t)‖‖ =

√∑
i,j
[T

p

i,j,0
(t) − Tt

i,j,0
(t)]2.

(4)J(T �

0�
) = max

‖T �
0‖�

≤�

��T
p(t) − Tt(t)��

2

(5)‖‖T
�

0
‖‖� =

√√√√√∑
i,j,k

(
cos�i,j,kT

�
i,j,k

�i,j,k

)2

≤ 200

combination of the weight coefficient of several modes with 
the larger explained variance to obtain the CNOP. The cor-
responding concept has been fully discussed in Sect. 3. Fig-
ure 4 shows the distribution of the first 85 singular values 
for the long-term historical data in the CESM. We can see 
that the singular values decrease very rapidly as the mode 
numbers increase. The maximum is larger than 3500 for the 
first mode, and the singular value is less than 1000 from the 
fourth mode number. Obviously, the more singular vectors 
that are retained, the better the reducing-dimension space 
approximates to the original; however, more computing cost 
is required. Therefore, it is wise to set the mode number 
so that the reduced space approximates well to that of the 
original CESM and the computation cost is acceptable under 
the current calculating conditions. In the following numeral 
experiments, we truncate the former 10 modes with a larger 
explained variance as the basement to build the approxi-
mating space. For these ten former singular vectors, their 
cumulative explained variance reaches 79.27% and can cap-
ture the signals, including medium and large scales in the 
original CESM.

It is important to select an appropriate optimization 
algorithm to compute the CNOP. If the CESM is smooth, 
the gradient of the cost function with regard to the optimi-
zation variables will exist. Then, traditional optimization 
algorithms can be selected to implement optimization cal-
culations. In fact, because this type of algorithm searches 
the minimum of the cost function along the direction indi-
cated by the gradient, the searching speed is relatively fast. 
However, there are many parameterization processes in 
the CESM, and some processes have switching properties, 
which causes that the gradient of the objection function may 
not exist. Figure 5 shows the relations between the evolu-
tion of prediction errors and the norm of initial errors. The 
figure shows that when the random initial errors with the 
norms 120, 60, 12, 6, 1.2, 0.6 and 0.12 are superimposed 
in January (0) of the NR1 neutral state (its Niño 3.4 indices 

Fig. 4   Distribution of the 
first 85 singular values for the 
95–179 year historical run in 
the CESM
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are shown in Fig. 2), the corresponding prediction errors 
do not decrease with a linear trend as the norm of initial 
error tends to 0. That is, we may not find the gradient of 
the cost function in the CESM, and it is necessary to adopt 
optimization algorithms that do not require the gradients. As 
mentioned above, some intelligent optimization algorithms 
are appropriate choices. Moreover, they have been combined 
with the dimension-reduction method to approximate the 
CNOP effectively in the ZC model with intermediate com-
plexity (Wen 2015), which provides some useful references 
and adds to our confidence in computing the CNOP in the 
CESM.

In this study, the relatively new differential evolution 
(reduced as DE) algorithm (Rainer and Kenneth 1997) is 
combined with the reducing-dimension method to calculate 
the CNOP. The DE algorithm uses the information between 

candidate solutions to guide the search direction. The DE 
algorithm, as a type of heuristic algorithm, has the following 
advantages: (1) no requirement for smoothness of the cost 
function; (2) ability to parallelize; and (3) good search for 
the global minimum. In addition, this algorithm has fewer 
control parameters (only three) and a relatively simple evo-
lution strategy, which makes it fit for coding. More impor-
tantly, this algorithm maintains the memory of the histori-
cal optimal solutions, which makes it highly suitable for a 
problem that aims to seek a relatively satisfactory solution 
rather than a strict optimal solution due to the calculation 
cost or other reasons. Therefore, it is reasonable to select the 
DE algorithm to carry out optimization calculations in the 
complex CESM.

Figure 6 summarizes the schematic diagrams that the 
reducing-dimension method is combined with the DE 

Fig. 5   Evolutions of random 
initial errors that are super-
imposed in January (0) of the 
NR1 neutral state. The X axis 
represents the value of the norm 
of random initial error, and the 
Y axis represents the evolution 
of prediction errors. The red 
dots denote the prediction errors 
when the norms are 120, 60, 12, 
6, 1.2, 0.6 and 0.12

Fig. 6   Schematic diagrams of computing CNOPs in the CESM. a Experimental procedures that the SVD-based EP algorithm is combined with 
DE optimization algorithm to compute the CNOP. b Flow chart of DE optimization algorithm



Optimally growing initial errors of El Niño events in the CESM﻿	

1 3

optimization algorithm to compute the CNOP. Firstly, the 
model is integrated for a long term as the control run. Sec-
ondly, SVD is performed on the optimized variables of con-
trol run and appropriate SVs are selected (10 SVs in this 
study), based on the cumulative explained variance, as the 
basement that constructs the CNOP. Thirdly, these selected 
spatial modes, the CESM and reference states X0 are called 
by the DE algorithm to calculate the optimal combinations 
of weighted coefficients. Finally, the CNOP is calculated 
by combining the selected SVs linearly based on weighted 
coefficients. Figure 6b illustrates the flow chart that the DE 
algorithm searches for the optimal weighted coefficient 
combination. The algorithm first initializes the population 
of coefficient vectors randomly (the population size is 20 
in this study), and then judges if this population meets stop 
conditions. If stop conditions are met, the algorithm outputs 
the optimal coefficient combination. If the answer is no, the 
DE algorithm generates new trial vectors by evolution and 
crossover. Each trial coefficient vector corresponds to an 
initial perturbation x0 superimposed on the initial field X0 
of reference state, and its corresponding costfunction can 
be calculated by the CESM. Then, during the selection pro-
cedure, the algorithm substitutes some population mem-
bers that have smaller costfunction with the trial coefficient 
vectors that have larger costfunction, and generates a new 
population. One iteration is then completed. For this new 
population, the algorithm will repeat above iterative process, 
until the stop conditions are met and the optimal weighted 
coefficient combination is output.

4.2 � Verifying results for computing CNOP

Before using the CNOP method to explore the OGEs of El 
Niño events in the CESM, it is necessary to check whether 
the SVD-based EP algorithm is properly combined with 
the DE algorithm to calculate the CNOP in the complex 

coupled numerical model. This validity can be tested from 
two aspects. In mathematics, as the iterative step increases, 
the cost function J(x0) increases rapidly until it converges to 
the maximum value. In addition, a CNOP and its develop-
ment should have physical meaning that accords with the 
observations or numerical results in other ENSO models to 
some degree. To attain the above two purposes, we deliber-
ately choose a neutral state that is close to the climatological 
monthly mean state, denoted by NR1, as the reference state 
(Fig. 2) to compute the CNOP. In fact, this type of CNOP 
has been studied in detail in the intermediate ZC model 
(Duan et al. 2008; Duan et al. 2013). These results show that 
because the observed ENSO events usually have asymmetri-
cal characteristics with strong El Niño and relatively weak 
La Niña events, the CNOP calculated on a neutral state often 
develops into a strong El Niño event. This type of CNOP has 
the most possibility to develop into an El Niño event and is 
considered as the optimal precursor of El Niño. Then, if we 
calculate a CNOP on the neutral state in the complex CESM 
by the SVD-based EP algorithm and DE algorithm, can its 
cost function increase rapidly and converge to a maximum? 
Can the CNOP develop into a strong El Niño event?

Figure 7 shows the varying trend of the cost function 
as the iteration number of the optimization calculation 
increases when the initial error is superimposed in January 
(0) of the NR1 neutral state. It can be seen that the cost func-
tion is approximately 1.2 × 10

4 at the first iteration, increases 
rapidly as the iteration number becomes larger, and slows 
after eight iterations. Although the value of the cost function 
continues increasing and may eventually exceed 3.0 × 10

4 
with more iterations, the difference between the final value 
and the cost function for the tenth iteration may not be very 
large. Thus, to save computer time, when the value of the 
cost function has not been obviously improved after several 
successive iterations, the iterative calculation is stopped. For 
this case, ten iteration steps are selected for the optimization 

Fig. 7   Varying trend of the cost 
function as the iteration number 
of the optimization calculation 
increases when the CNOP-type 
perturbation is superimposed in 
January (0) of the NR1 neutral 
state
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calculation. These results show that the combination of the 
reducing-dimension method and DE algorithm can math-
ematically approximate to find the maximum value of the 
cost function J(x0) in the CESM and the CNOP that has 
the largest development at the end time of the optimiza-
tion calculation. Figure 8 shows the spatial structure of the 
12-month lead development of the CNOP. It can be seen 
that the CNOP-type initial perturbation eventually develops 
into a strong EP-El Niño event, which is consistent with the 
results in the ZC model (Duan et al. 2013).

The above results demonstrate that the CNOP calculated 
in the CESM is not only the maximum point of the cost 
function in the phase space but also develops into a typi-
cal El Niño event, which verifies the validity of the CNOP 
calculation in the CESM by combining the SVD-based EP 
algorithm with the DE algorithm. In the following section, 
we utilize this method to compute the CNOP and explore the 
OGEs of El Niño events.

5 � Optimally growing initial errors of El Niño 
events

As mentioned above, under the hypothesis perfect model 
experiments, the uncertainties in El Niño predictions are 
considered to be caused only by initial errors. We first 
investigate the characteristics of the spatial structures of 
the OGEs for the six selected El Niño events. Numerical 
experimental results for the four EP-El Niño events are 
shown in Fig. 9. We can see that for the strong EP1-El Niño 
(Fig. 9a) and EP3-El Niño (Fig. 9c), the spatial structures 
of the CNOPs are very similar, and their correlation coef-
ficient reaches 0.68. These OGEs possess negative SSTA 
errors in the whole equatorial Pacific accompanied by a 
negative west–east slope of subsurface temperature from 

the subsurface (approximately 160 m depth) to the surface 
in the equatorial central-eastern Pacific. For the moderate 
EP4-El Niño event (Fig. 9d), the spatial structure of OGE 
is similar to those of the EP1 and EP3 cases, except that the 
sign is approximately opposite, and their correlation coef-
ficients reach − 0.61 and − 0.79, respectively. However, 
the OGE of the strong EP2-El Niño (Fig. 9b) is obviously 
different and behaves as a basin-wide dipolar pattern of 
tropical sea temperature errors from the sea surface to the 
subsurface, with positive errors in the upper layers of the 
equatorial eastern Pacific and negative errors in the lower 
layers of the equatorial western Pacific. We also find that 
the OGEs for the CP1-El Niño (Fig. 9e) and CP2-El Niño 
(Fig. 9f) have similar spatial structures to those for the 
EP1- and EP3-El Niño.

The development processes of these OGEs are further 
investigated. We integrate the CESM with the initial fields 
being the initial sea temperature of each “true” El Niño event 
plus the OGEs, and then, by subtracting the “true” state, we 
obtain the evolutions of the prediction errors caused by these 
OGEs. For the strong EP1- and EP3-El Niño, the develop-
ing processes of OGEs are also very similar, and the aver-
aged results are shown in Fig. 10a. It can be seen that the 
initial negative temperature errors, existing in the tropical 
central-eastern Pacific, are locally and rapidly amplified dur-
ing several months and eventually evolve into a prediction 
error similar to the mature phase of La Niña. That is, the 
development of this type of initial error presents a growth 
behavior similar to a La Niña-like evolving mode. For the 
moderate EP4-El Niño (Fig. 10b), the developing process 
of CNOP error is also similar to those of the EP1 and EP3 
cases, except that positive sea temperature errors exist in the 
tropical central-eastern Pacific and develop into a prediction 
error similar to the mature phase of El Niño. However, for 
the strong EP2-El Niño (Fig. 10c), the positive SST errors in 

Fig. 8   12-lead evolution (units: 
°C) of the CNOP-type SST 
perturbation superimposed in 
January (0) of the NR1 neutral 
state
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Fig. 9   Sea temperature (units: °C) of CNOP-type errors for the six El Niño events. The top 4 rows correspond to ocean depths from the sea sur-
face of 0 m, 55 m, 105 m and 155 m. The bottom row is the meridional mean of sea temperature errors over 5°S-5°N

Fig. 10   Evolutions of errors in SSTAs (units: °C) and sea surface 
wind (units: m/s) over the tropical Pacific Ocean as well as equato-
rial (5°S-5°N) subsurface temperature errors (units: °C) for a type-1, 

b type-2 and c type-3 OGEs of El Niño events. The type-1 OGE is 
the average of OGEs of EP1 and EP3-El Niño, and the type-2 (type-3) 
OGE corresponds to that of EP4-El Niño (EP2-El Niño)
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the upper layers of the tropical eastern Pacific decay rapidly, 
and the negative sea temperature errors in the lower layers 
of the equatorial western Pacific propagate to the equato-
rial eastern Pacific and sea surface, amplify persistently and 
eventually also cause a prediction error similar to the mature 
phase of La Niña. This type of error initially experiences an 
El Niño-like decaying phase, subsequently exhibits a transi-
tion to a cold phase, and finally evolves into a La Niña-like 
mode. For the weak CP1- and CP2-El Niño, their developing 
processes of CNOP-type initial errors are similar to those of 
the strong EP1- and EP3-El Niño (Fig. 10a), and correspond-
ing figures are not given for simplicity.

The impacts of El Niño events on global weather and 
climate are related to not only their intensity but also their 
spatial patterns. Thus, it is necessary to further investigate 
the effects of OGEs on the intensity and spatial structure of 
El Niño events. Figure 11 shows the “true” and predicted 

SST anomalies at the end of the prediction time for six El 
Niño events. It is shown that when the OGEs are super-
posed on the “true” El Niño events, the strong EP1-, EP2- 
and EP3-El Niño will be predicted as neutral states. For the 
moderate EP4-El Niño, the development of OGEs eventually 
overestimates it as an extremely strong El Niño event, which 
may be because the intensity of the EP4-El Niño event is 
moderate, so there is still considerable room to enhance the 
intensity of the event. When OGEs are added to the CP1 and 
CP2 reference states, the two weak CP-El Niño events tend 
to be predicted as La Niña events. Figure 11c shows the dif-
ferences between the prediction results and those “true” El 
Niño events, which also shows that except for the OGE of 
EP4-El Niño, which causes a mature El Niño-like prediction 
error, others lead to mature La Niña-like prediction errors 
and cause El Niño events to be predicted as neutral states or 
even La Niña events.

Fig. 11   SSTA of a control run, 
b prediction results and c differ-
ence between (a) and (b) at the 
end month of December(0) for 
six El Niño events, where the 
prediction results are obtained 
by integrating the CESM with 
the initial fields of the control 
runs plus their corresponding 
CNOP-type initial errors
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We notice that, although EP1 and EP4-El Niño have lit-
tle differences in intensity, the spatial structures of initial 
sea temperature errors identified by CNOP method are 
completely different from each other (shown in Fig. 9a and 
Fig. 9d). How to explain this phenomenon? In our previous 
studies, Xu and Duan (2008) found that the structures of 
CNOPs superimposed on the onset phase of EP-El Niño, 
and their effects on El Niño predictions are sensitive to the 
intensities of events. Due to nonlinear saturation, no matter 
what kind of initial fields, the intensities of El Niño and La 
Niña events can not exceed a limit, which causes the satu-
ration of initial error growth. Then for strong EP-El Niño 
events, the CNOP-type initial errors lead to underestimate 
the intensities of EP-El Niño events or predicts them as La 
Niña events. The CNOP includes the SSTA pattern that has a 
zonal dipolar structure with positive errors in the equatorial 
central-western Pacific and negative errors in the equatorial 
eastern Pacific, and the negative thermocline depth errors 
along the equator (somewhat similar to the OGE of EP1-El 
Niño in Fig. 9a). However, for a weak EP-El Niño, the 
CNOP may behave as a similar pattern but with the oppo-
site sign (somewhat similar to the OGE of EP4-El Niño in 
Fig. 9d) and tends to yield a false alarm of a strong EP-El 
Niño event. Duan et al. (2009) further pointed out that, for 
weak El Niño events, it is very difficult to determine which 
type of initial errors leads to worse predictions. All these 
results demonstrate that, for strong EP-El Niño events, the 
direction of OGE growth points to cold SST errors, how-
ever, for relatively weak EP-El Niño events, there exist more 
uncertainties in the structures of CNOP and it is arduous to 
find some conditions that determine the direction of error 
growth into warm or cold SST errors. Despite these results 
are model dependent, they may explain, to some extent, why 
the structures of CNOP-type initial errors of EP1 and EP4-El 
Niño events are quite different from each other though the 
intensity of the former is only slightly larger than that of the 
latter. Specifically for the EP4-El Niño, although its inten-
sity is not very weak (see Figs. 2b, 3), the warm center of 
SSTA in mature and decaying phase locates in the equatorial 
central Pacific (see Fig. 2b), and the largest positive SSTA 
error growth occurs in the equatorial eastern Pacific (see 
Fig. 11c). That is to say, there are considerable rooms for 
the CNOP to develop into large warm SST errors and make 
the EP4-El Niño predicted as a strong El Niño event. Based 
on above analysis, we hold that the CNOP of EP4-El Niño 
has physical meaning rather than a mathematical artifact.

The above results demonstrate that we have found three 
types of OGEs for El Niño events with different intensi-
ties and diversity in the CESM. Among them, two types 
of initial errors in sea temperature have the same spatial 
structures, except for the opposite sign, and are claimed as 
type-1 and type-2 OGEs, respectively. The type-1 (type-
2) OGE possesses negative (positive) SSTA errors in the 

whole equatorial Pacific accompanied by a negative (posi-
tive) west–east slope of subsurface temperature from the 
subsurface (approximately 160 m depth) to the surface in 
the equatorial central-eastern Pacific. The negative (posi-
tive) sea temperature errors are locally amplified for several 
months and eventually evolve into a La Niña (El Niño)-like 
mode. The type-1 OGE tends to induce the “true” strong 
EP-El Niño event to be predicted as a neutral state or induce 
the “true” weak CP-El Niño event to be predicted as a La 
Niña event. The type-2 OGE tends to induce a moderate 
EP-El Niño event to be predicted as an extremely strong 
EP-El Niño event. Although the third type of OGE also 
develops into a mature La Niña-like mode and induces the 
“true” strong EP-El Niño to be predicted as a neutral state, 
its spatial structure is obviously different from that of the 
type-1 OGE and behaves as a basin-wide dipolar pattern of 
tropical sea temperature errors from the sea surface to the 
subsurface, with the positive errors in the upper layers of 
the equatorial eastern Pacific and the negative errors in the 
lower layers of the equatorial western Pacific. The negative 
sea temperature error in the lower layers of the equatorial 
western Pacific propagates to the eastern Pacific, amplifies 
and eventually causes a prediction error similar to a La Niña-
like mode. We call this kind of initial error a type-3 OGE.

6 � Dynamic mechanisms of OGEs

As demonstrated in Sect. 5, there are three types of initial 
errors that often induce the largest uncertainties in the pre-
dictions of El Niño events and especially affect the predic-
tion of the intensity and spatial structure of El Niño events. 
For the type-1 (type-2) initial error, the cold (warm) sea tem-
perature errors are mainly concentrated in the eastern tropi-
cal Pacific and develop locally into a La Niña (El Niño)-like 
mode. The type-3 initial error shows a basin-wide dipolar 
structure in the tropical Pacific Ocean from the subsurface 
to the surface, the warm pole in the eastern tropical Pacific 
decays gradually, and the cold pole in the subsurface of the 
western tropical Pacific propagates eastward and grows 
continuously into a La Niña-like mode. The developmen-
tal processes of these three types of initial errors are quite 
different. What dynamic mechanisms support the develop-
ing processes of these OGEs? To illustrate this question, 
we explore the time-dependent SST, sea surface wind and 
equatorial subsurface temperature components of the predic-
tion errors caused by three types of OGEs (Fig. 10).

Physically, when the type-1 (type-2) OGE is superposed 
on the initial field of an El Niño event, a weak negative (pos-
itive) SSTA error initially occurs in the equatorial Pacific, 
and a larger negative (positive) subsurface temperature is 
located in the greater depths of the central-eastern equato-
rial Pacific (see the top panel of Fig. 10a, b). Their dynamic 
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growing mechanisms can be explained by the Bjerknes posi-
tive feedback (Bjerknes 1969). On the one hand, the negative 
(positive) SST errors lead to anomalous easterly (westerly) 
along the equator, acting as a trigger of the Bjerknes positive 
feedback, intensify (weaken) the easterly trade wind over 
the equatorial Pacific and the upwelling in the equatorial 
eastern Pacific, which means a positive (negative) upwelling 
error. Meanwhile, lots of cold (warm) waters in the subsur-
face layer of the eastern equatorial Pacific are transported 
upward by upwelling until they reach the surface. Both of 
these factors contribute to the sustained growth of the nega-
tive (positive) SSTA errors in the eastern equatorial Pacific. 
That is, the Bjerknes positive feedback mechanism plays 
a dominant role and causes the negative (positive) SSTA 
errors in the eastern tropical Pacific to be further amplified, 
ultimately evolving into a mature La Niña (El Niño)-like 
mode and yielding negative (positive) prediction errors for 
El Niño events.

For the type-3 OGE (Fig. 10c), although the initial posi-
tive sea temperature errors in the central and eastern equa-
torial Pacific generate zonal westerly in the central equa-
torial Pacific by the Bjerknes positive feedback process, 
this westerly is too weak to intensify the weak warm SST 
error (the top panel in Fig. 10c). Meanwhile, the relatively 
larger negative subsurface temperature errors in the western 
equatorial Pacific make the thermocline shallow and inspire 
upwelling Kelvin waves that propagate eastward and carry 
cold water with them. When the upwelling Kelwin waves 
arrive at the eastern equatorial Pacific, they cause a negative 
SST perturbation. This SST cooling associated with wave 
dynamics competes with the weak warming by the Bjerknes 
positive feedback. Soon, the former defeats the latter, and 
then the positive SST errors in the eastern equatorial Pacific 
start to decay gradually. Once the positive SST errors disap-
pear, the negative SST errors subsequently occurring over 
the eastern equatorial Pacific are further intensified through 
the easterlies and stronger upwelling due to the Bjerknes 
positive feedback and develop into a La Niña-like mode 
that underestimates the El Niño events. In short, during the 
earlier developing process of the type-3 OGE, the negative 
feedback associated with equatorial Kelvin waves traveling 
from the western equatorial Pacific to the east equatorial 
Pacific plays an important role, once negative SST errors in 
the eastern equatorial Pacific appear, the Bjerknes positive 
feedback becomes the most important growing mechanism 
that makes the negative SST error ultimately evolve into a 
mature La Niña-like mode.

7 � Conclusions and discussion

In this study, we use the CESM in NCAR to investigate the 
optimally growing initial errors that cause the largest uncer-
tainty in El Niño predictions by the conditional nonlinear 
optimal perturbation method. To overcome the difficulties 
in computing a CNOP without an adjoint CESM, we apply 
the SVD-based EP algorithm (Chen et al. 2015b) to calculate 
the CNOP of El Niño in the CESM. Based on the character-
istics of low-dimensional attractors for the ENSO system, 
for the 85-year historical data of the CESM, we truncate the 
former 10 modes as the basements to build the approximat-
ing space. The cumulative explained variance of these ten 
former singular vectors reaches 79.27% and can capture the 
signals with medium and large scales in the original model 
and reflect the CESM dynamics. Then, physical variables 
are treated as the combinations of selected bases, and the 
optimization problem of the cost function with regard to 
initial fields is transformed into one concerning the combi-
nation coefficients. Hence, the dimension of the optimization 
problems can be largely reduced from 105 to 10. Then, we 
calculate the CNOP in a truncated phase space by the DE 
intelligent optimization algorithm. Numerical experimen-
tal results demonstrate that the CNOP superimposed on a 
neutral state can develop remarkably into a strong El Niño 
event, which verifies the validity of computing a CNOP in 
the CESM by combining the concepts of reducing dimen-
sions and an optimization algorithm.

For six El Niño events with different intensities and diver-
sities, this study finds three types of OGEs in the CESM and 
calls them type-1, type-2 and type-3 initial errors. Among 
them, the type-1 and type-2 initial errors have similar spatial 
structures and dynamic growing mechanisms, except that 
the errors have the opposite sign. The type-1 (type-2) initial 
error is characterized by negative (positive) SSTA errors in 
the equatorial Pacific accompanied by a negative (positive) 
west–east slope of subsurface temperature from the subsur-
face to the surface in the equatorial central-eastern Pacific. 
For these two types of OGEs, the negative (positive) sea 
temperature errors in the eastern tropical Pacific are locally 
intensified and eventually cause a prediction error similar to 
a mature La Niña (El Niño)-like mode by the Bjerknes posi-
tive feedback mechanism. The type-3 initial error behaves 
as a basin-wide dipolar pattern of tropical sea temperature 
errors from the sea surface to the subsurface, with positive 
errors in the upper layers of the equatorial eastern Pacific 
and negative errors in the lower layers of the equatorial west-
ern Pacific. During the earlier period, the negative feedback 
associated with equatorial Kelvin waves traveling from 
the western equatorial Pacific to the east equatorial Pacific 
plays an important role, while once negative SST errors in 
the eastern equatorial Pacific appear, the Bjerknes positive 
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feedback mechanism becomes the leading factor and makes 
the negative SST error ultimately also evolve into a mature 
La Niña-like mode. Although the type-1 and type-3 initial 
errors have different spatial patterns, both eventually induce 
a prediction error similar to the mature La Niña-like mode 
at the end of prediction time and cause El Niño events to 
be underpredicted or even predicted as neutral states or La 
Niña events. The type-2 initial error evolves into a mature 
El Niño-like mode, which may lead to a relatively weak El 
Niño event to be predicted as an extremely strong El Niño 
event.

As mentioned in the introduction, many endeavors have 
previously been made to explore the OGEs of El Niño events 
based on CNOP approach. These results can be strongly 
model dependent, ranging from intermediate coupled mod-
els, to comprehensive coupled general circulation models. 
Mu et al. (2007b) and Yu et al. (2009) used adjoint methods 
to calculate the CNOP-type errors of EP-El Niño in the ZC 
model and identified two types of OGEs. One type possesses 
an SSTA pattern with positive errors in the central-western 
equatorial Pacific and negative errors in the eastern equato-
rial Pacific and a thermocline depth pattern with negative 
errors along the equator. Another type possesses spatial pat-
terns that are almost opposite to those of the former type. In 
their results, the initial negative (positive) SST errors in the 
eastern equatorial Pacific develop locally into a La Niña (El 
Niño)-like mode by the Bjerknes positive feedback mecha-
nism, which are somewhat similar to the developing pro-
cesses of the type-1 and type-2 OGEs in this study. However, 
due to the limitation of the simplicity of the ZC model, they 
cannot identify the type-3 OGE, emphasizing the propaga-
tion and development of the negative subsurface temperature 
errors located in the western equatorial Pacific. It is worth 
mentioning that, in this study, the OGEs for some EP-El 
Niño and CP-El Niño events have similar spatial patterns 
and development processes. Tian and Duan (2016) also sug-
gested the same opinion based on the results in the corrected 
ZC model. Although their EP-type-1 and CP-type-1 CNOP 
errors developed into El Niño-like modes and induced both 
EP-El Niño and CP-El Niño to be predicted as extremely 
strong EP-El Niño events, the type-1 OGE in the CESM 
develops into a La Niña-like mode and induces two types 
of predicted El Niño events to be predicted as neutral states 
or La Niña events.

Based on another intermediate coupled model (ICM, 
Zhang et al 2003), Tao et al (2017) also calculated CNOP 
by an adjoint method and investigated the largest error 
growth in El Niño predictions. Obviously different from 
those derived from the ZC model and CESM, their 
CNOP-type initial errors in SSTAs and sea level anoma-
lies (SLAs) possess the characteristic of seasonal varia-
tion, rather than sensitive to the phase and intensity of El 
Niño. For the SSTA components of four seasonal CNOPs, 

negative errors can be clearly seen near the dateline in the 
equatorial Pacific, however, the structures off the equator 
are totally different. Compared with CNOP-type SSTA 
errors, the optimal SLA errors are relatively less sensitive 
to the season and share a dipolar pattern along 10°N, with 
a positive error in the west and a negative error in the east. 
Besides, a strong negative SLA CNOP in the equatorial 
eastern Pacific is distinct in autumn, winter and spring, 
while a weak positive signal in summer. For the reasons 
that CNOPs in the ICM depend on the annual cycle, rather 
than the phase and intensity of El Niño, Tao et al (2017) 
hold the view that this may be due to that the statistical 
relationship between the wind stress anomaly and SSTA 
depends on the season in the ICM, and the relationship 
between the temperature anomalies Te of subsurface waters 
entrained into the mixed layer and the thermocline dis-
placement are nonlocal, which makes the largest entrain-
ment temperature anomalies Te occurred in the equato-
rial central Pacific. Then, the optimal initial errors in the 
ICM depend on the start season and the SSTA CNOPs are 
distinct in the equatorial central Pacific. Though CNOPs 
in the ICM vary seasonally, there are some similarities 
between them and type-1 OGE in this study. All of them 
have negative SSTA errors in the equatorial central Pacific. 
In addition, in the equatorial eastern Pacific, the optimal 
SLA errors in the ICM are negative except for in sum-
mer, and type-1 OGE in the CESM is also negative from 
the subsurface to surface, which means, in this region, 
they have the negative heat content errors in the upper 
ocean. All these CNOP-type initial errors evolve into the 
La Niña modes and tend to make the El Niño events to be 
underpredicted.

Duan and Hu (2016) used an ensemble-based method to 
find two types of initial errors that induce significant spring 
predictability barriers for EP-El Niño events in the CESM. 
Comparing the numerical results of two studies, it is obvi-
ous that the two types of initial errors found in Duan and 
Hu (2016) correspond qualitatively to the type-1 and type-3 
OGEs in this study, regardless of their spatial structures and 
development processes. The reason that they cannot find the 
type-2 OGE, which develops into an El Niño-like mode and 
tends to predict the “true” El Niño as an extremely strong 
event, may be because they focused only on the strong EP-El 
Niño events, whereas we paid attention to both strong and 
relatively moderate El Niño events (for example, the EP4 
case). Although the results for the two studies are somewhat 
similar, they are quite different. First, the purposes of the two 
studies are different. This study aims to find the initial errors 
that produce the largest prediction error at the prediction 
time, that is, OGE. However, Duan and Hu (2016) focused 
on finding the initial errors that produce a significant spring 
predictability barrier (SPB). Although such initial errors also 
produce large prediction errors, they may not be the initial 
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errors that have the greatest impact on the forecast results. 
Second, the methods used in the two studies are different. 
In this study, the optimization algorithm is used to directly 
compute OGE. Duan and Hu (2016) used an ensemble-based 
method to obtain two types of initial errors that produce 
a significant SPB. As mentioned in the introduction, their 
results depend on the sample space, which cannot cover all 
realistic initial errors that yield a significant SPB. In addi-
tion, the results obtained by CEOF and composite analysis 
may be common (basic) characteristics suitable for many 
cases but may not be the optimal solution for a particular El 
Niño event. In any case, the similarities between the results 
in Duan and Hu (2016) and those in the present study estab-
lish the reasonability and validity of our results. However, 
this study avoids the difficulty of coding the adjoint model 
and computes the CNOP directly in the complex CESM by 
combining the concepts of reducing dimensions and the DE 
intelligent algorithm, which may provide another way to 
extend the application of the CNOP method in complicated 
coupled models.

Three types of OGEs with different spatial features, for 
El Niño predictions, are found in this study. According to 
the spatial modes and dynamical growth mechanisms, initial 
sea temperature errors that lead to large prediction errors, 
mainly originate from two regions. One locates in the upper 
layers of the tropical eastern Pacific, and the other locates 
in the subsurface of the equatorial western Pacific. Based on 
the hindcast/forecast data from the North American Multi-
model Ensemble (NMME) system (Kirtman et al. 2014), 
Hua and Su (2020) found that the main SST initial errors 
leading to the failure of El Niño forecast are mainly from 
the tropical southeast Pacific, which supports our results. 
In addition, Duan and Wei (2013) used the realistic fore-
cast data generated by the complicated coupled FGOALS-g 
model (Yan and Yu 2012) and pointed out that the initial 
errors that grow in a manner similar to El Niño or La Niña 
events were most likely to result in large prediction errors 
for El Niño forecasts. In other words, these initial errors have 
the similar growth mechanism to those of ENSO events. 
Many studies have shown that, one of main developing 
mechanisms of ENSO is that initial anomalous signals occur 
in the subsurface of the equatorial western Pacific, and then 
propagate eastward through the equatorial Kelvin wave (Bat-
tisti and Hirst 1989; Ballester et al. 2015; Lai et al. 2015), 
which emphasizes the role of the subsurface of the equatorial 
western Pacific and supports the results in this study.

It is worthing noting that this study reduces the dimen-
sions of optimization problem and calculates CNOPs in 
a truncated phase space. It is different from the method 
that reduces the dimensions of the CESM directly and cal-
culates the CNOP of a truncated model. The dimensions 
of complex coupled models can be decreased directly by 
reducing model resolution. If the reduction of resolution 

is not very large, the cost that calculates CNOP directly 
using intelligent optimization algorithms is still very high. 
It is necessary to decrease the resolution to a certain extent 
to ensure that CNOP can be directly calculated. However, 
too low resolutions will seriously affect the simulation and 
prediction ability of the model. As a result, it is difficult 
to guarantee that the calculated CNOP can represent that 
in the original complicated model. However, the dimen-
sion reduction based on SVD-based EP algorithm in this 
study can not only retain the simulation ability of original 
models, but also assure that the appropriate number of 
SV modes are selected under present calculating condi-
tions, so as to succeed in computing CNOPs and grasping 
their main characteristics. As Chen et al. (2015b) pointed 
out, the distributions of significant SV modes are closely 
related to physical problems. Compared with low-reso-
lution models, the number of SVs selected to construct 
CNOPs will not increase sharply as the number of grid 
points increases in high-resolution models. The method 
used in this studies is suitable for solving the nonlinear 
optimization problems in complex models with high 
dimensions.

This work is a preliminary study, and only six El Niño 
events with different intensities and diversities are selected 
to compute the CNOP in the CESM. For La Niña events 
and neutral conditions, the predictability problems related 
to initial errors are also important. Hu and Duan (2016) and 
Hu et al. (2019) found that there exist similarities between 
optimal precursory perturbations superimposed on the 
neutral states and most likely to evolve into ENSO events, 
and OGEs associated with ENSO events in the CESM, and 
emphasized that the off-equatorial regions around 10°N in 
the central Pacific may also be the important error resources 
for La Niña predictions. These results are equally obtained 
by the EOF-based ensemble method and need to be fur-
ther studied by the optimization method. More importantly, 
many researches, including this study, are based on perfect 
model hypothesis, it is necessary to validate these results in 
hindcast experiments or realistic forecasts of ENSO events. 
In addition, this study mainly focuses on the effect of initial 
errors in the tropical Pacific on El Niño prediction. However, 
many studies have shown that ENSO is often influenced by 
processes outside the tropical Pacific. Kao and Yu (2009) 
and Yu and Kim (2011) showed that wind forcing from the 
subtropical and extratropical atmosphere may affect the 
occurrence of CP-El Niño events by the seasonal footprint-
ing mechanism and emphasized that the signals in the north 
Pacific are important for some CP-El Niño events. Saji et al. 
(1999) and Zhou et al. (2015) noted that the variability of the 
Indian Ocean dipole (IOD) can affect El Niño in the tropical 
Pacific through both the Indonesian through flow and atmos-
pheric bridges. In this sense, initial errors in these regions 
may also affect El Niño predictions. In addition, we only 
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emphasize the effect of oceanic initial error on the largest 
uncertainties in ENSO predictions. Apparently, atmospheric 
initial conditions and external forcings also affect the predic-
tion skills of ENSO events. Zheng and Zhu (2010) suggested 
that the coupled assimilation of wind data can decrease the 
initial errors in ocean currents and improve SST forecast 
skills. Chen et al. (2015a) demonstrated that the random 
occurrence of westerly wind bursts (WWBs) in the tropical 
western Pacific may be an important factor that predicts the 
diversity of El Niño events successfully. In the future, we 
will select more ENSO cases, explore more important ini-
tial variables, and perturb initial variables in more extensive 
areas to study ENSO predictability, including spring predic-
tion barriers and target observations.
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