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Abstract

The optimally growing initial errors (OGEs) of El Nifio events are found in the Community Earth System Model (CESM) by
the conditional nonlinear optimal perturbation (CNOP) method. Based on the characteristics of low-dimensional attractors
for ENSO (El Nifio Southern Oscillation) systems, we apply singular vector decomposition (SVD) to reduce the dimensions
of optimization problems and calculate the CNOP in a truncated phase space by the differential evolution (DE) algorithm.
In the CESM, we obtain three types of OGEs of El Nifio events with different intensities and diversities and call them type-
1, type-2 and type-3 initial errors. Among them, the type-1 initial error is characterized by negative SSTA errors in the
equatorial Pacific accompanied by a negative west—east slope of subsurface temperature from the subsurface to the surface
in the equatorial central-eastern Pacific. The type-2 initial error is similar to the type-1 initial error but with the opposite
sign. The type-3 initial error behaves as a basin-wide dipolar pattern of tropical sea temperature errors from the sea surface
to the subsurface, with positive errors in the upper layers of the equatorial eastern Pacific and negative errors in the lower
layers of the equatorial western Pacific. For the type-1 (type-2) initial error, the negative (positive) temperature errors in the
eastern equatorial Pacific develop locally into a mature La Nifia (El Nifio)-like mode. For the type-3 initial error, the negative
errors in the lower layers of the western equatorial Pacific propagate eastward with Kelvin waves and are intensified in the
eastern equatorial Pacific. Although the type-1 and type-3 initial errors have different spatial patterns and dynamic growing
mechanisms, both cause El Nifio events to be underpredicted as neutral states or La Nifia events. However, the type-2 initial
error makes a moderate El Nifio event to be predicted as an extremely strong event.

Keywords ENSO predictability - CESM - Optimally growing initial error - Conditional nonlinear optimal perturbation -
Optimization calculation

1 Introduction

The El Nifio-Southern Oscillation (ENSO) is characterized
by an interannual variability of sea surface temperature
(SST) in the tropical Pacific (Philander 1983; Ropelewski
and Halpert 1987). Although the ENSO phenomenon origi-
nates and develops in the tropical Pacific, it has global cli-
matic, ecological, economic and societal impacts through
ocean and atmospheric teleconnection (Rasmusson and
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Wallace 1983; Trenberth et al. 1998; Ham et al. 2014). Since
the extreme 1982/83 El Nifio event, considerable progress
has been made in the development of observing systems,
theories and numerical models related to ENSO (Wallace
et al. 1998; Wang 2018; Tang et al. 2018; Zhang et al. 2020).
These endeavors have deepened our understanding of ENSO
dynamics and improved the prediction skill of the ENSO,
and it is skillfully predictable with a 1-year lead time in
ENSO hindcast experiments (Zebiak and Cane 1987; Kirt-
man and Schopf 1998; Fedorov and Philander 2000; Yeh
et al. 2012). Despite this progress, there are still consider-
able uncertainties in real-time ENSO predictions (Jin et al.
2008; Luo et al. 2008; Tang et al. 2008). Especially after
the 1990s, El Nifio events have behaved more diversely. A
new type of El Nifio event, the central-Pacific El Nifio (CP-
El Nifio), occurs frequently and increases the difficulty in
ENSO forecasts (Ashok et al. 2007; Kao and Yu 2009; Kug
et al. 2009). The so-called CP-El Nifio events have warm
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SSTs concentrated in the central tropical Pacific, and their
spatial structures and evolution mechanisms are obviously
different from those of traditional El Nifio events with warm
SSTs concentrated in the eastern tropical Pacific.

Lorenz (1975) suggested that uncertainties in numerical
weather and climate predictions are mainly caused by both
initial and model errors and classified predictability prob-
lems into two types: the first type associated with initial
errors and the second type associated with model errors.
Many studies have described ENSO as a self-sustaining
oscillation and suggested that the model-based predictions
of ENSO depended dominantly on the initial conditions
(Latif et al. 1998; Chen et al. 2004). Therefore, many stud-
ies have explored ENSO predictability from the viewpoint of
initial error growth to find the initial error that has the larg-
est impact on the prediction of ENSO, that is, the optimally
growing initial error (OGE) (Moore and Kleeman 1996; Xue
et al. 1997a, b; Thompson 1998; Fan et al. 2000; Samelson
and Tziperman 2001). In these studies, the linear singular
vector (LSV) method is commonly used to solve the optimi-
zation problem. For example, Moore and Kleeman (1996)
and Xue et al. (1997a, b) used LSV to investigate the OGEs
that induce the largest uncertainties in ENSO prediction.
However, the LSV may not be a reasonable approximation
to the optimally growing initial perturbation in a nonlinear
model when the amplitude of the initial perturbation is large
and/or the forecast time is long.

To overcome these limitations in the LSV method, Mu
et al. (2003) proposed the concept of conditional nonlin-
ear optimal perturbation (CNOP) to study the predictability
problems of weather and climate events. CNOP represents a
perturbation which, under a given physical constraint, results
in the largest nonlinear error evolution at the prediction time.
If being superimposed on the initial fields of a weather and
climate event, it denotes the optimally growing initial error
that has the largest effect on the uncertainty of prediction
results. Presently, the CNOP method has been widely used
in a variety of ENSO models with multiple complexities
to search for the OGEs of ENSO and investigate the pre-
dictability problems concerned with initial errors, such as
the maximal prediction error (Xu and Duan 2008; Tao et al.
2017), the spring prediction barrier (Mu et al. 2007a, b; Yu
et al. 2009; Duan et al. 2009), and the sensitive area of target
observation (Tian and Duan 2016; Duan and Hu 2016; Duan
et al. 2018). Moreover, CNOP method is also extended to
investigate the ENSO predictability problems concerning the
uncertainties in model parameters and external forcings, that
is, find the optimal model parameter perturbations (Yu et al.
2012; Gao et al. 2018; Tao et al. 2019) and nonlinear optimal
external forcings (Duan and Zhao 2015; Tao et al. 2020)
which lead to the the largest growth of prediction error.

Mathematically, the essence of computing the CNOP is to
find the global maximum value of a nonlinear function with
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regard to initial perturbations, which can be transformed into
a minimum optimization problem. An appropriate nonlin-
ear optimization algorithm is then necessary to compute
the CNOP. There are two main types of optimization algo-
rithms. One type is the traditional optimization algorithm
that requires the gradient information of the cost function
with regard to initial perturbations. If the corresponding
adjoint model of a numerical model has been conducted,
the gradient will be efficiently calculated by the adjoint
model. The other type is the intelligent algorithm that does
not require gradient information and are adjoint-free. For
simple or intermediate complex models with relatively small
dimensions, these two types of optimization algorithms can
be used to calculate CNOP conveniently. However, compli-
cated coupled ocean—atmosphere numerical models usually
have no corresponding adjoint models. In particular, cod-
ing the adjoint model of a complex numerical model is a
large, tedious, and time-consuming job. Meanwhile, because
the degrees of freedom in complicated coupled models are
generally approximately 10°~107, the cost of computing
the CNOP directly using intelligent algorithms is usually
a formidable challenge and almost unacceptable. All these
reasons limit the further application of CNOPs in complex
coupled models. Therefore, how to calculate CNOPs in
numerical models, especially in complicated coupled mod-
els, remains a challenging problem.

Despite these difficulties, scientists have examined
numerous methods to compute CNOPs or their approxima-
tion. For some intermediate coupled models (ZC, Zebiak
and Cane 1987; ICM, Zhang et al. 2003), their adjoint
models are coded in advance to compute the gradient of
the cost function (Xu 2006; Gao et al. 2016), and then
CNOPs are computed by traditional optimization algo-
rithms (Mu et al. 2007b; Tao et al. 2017). Duan et al.
(2009) proposed an adjoint-free ensemble-based method
to look for a CNOP and found that the spatial pattern of a
CNOP obtained approximately by this ensemble method
is qualitatively similar to that computed by the adjoint
method. Their initial errors, superposed on the “true”
El Nifio events to be predicted, are generated by taking
the differences between the initial fields of the “true” El
Nifio events at the starting month and those in each month
of the dominant 4-year period of ENSO preceding each
reference year. Since then, the ensemble-based method
has been used in the complicated FGOALS-g (Flexible
Global Ocean Atmosphere Land System-gmail model
in IAP/LASG, Yan and Yu 2012), CESM (Community
Earth System Model in NCAR, Neale et al. 2012) and
GFDL_CM2p1 (Geophysical Fluid Dynamics Laboratory
Climate Model version 2pl, Delworth et al. 2006) mod-
els to compute CNOPs approximately and search for the
initial errors that induce an obvious spring predictability
barrier for the ENSO (Duan and Wei 2013; Duan and Hu
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2016; Qi 2018). However, for the ensemble-based method,
Combined Empirical Orthogonal Function (CEOF) analy-
sis is conducted on the selected error samples, composite
analysis is performed according to the sign of the time
series of CEOFs with larger variance, and then several
types of initial errors are obtained. Their results depend
heavily on the sample space, yet they cannot contain all
satisfying initial errors. Furthermore, even if the sample
space is large enough, the results obtained by CEOF and
composite analysis may be common (basic) characteristics
suitable for many cases but not the optimal solution for a
particular El Nifio event. As noted by Hu and Duan (2016),
a more effective algorithm must be developed to compute
CNOPs in complicated models.

In addition, to overcome the difficulties in writing
adjoint models but still compute CNOPs by optimization
algorithms, Wang and Tan (2010) applied an adjoint-free
ensemble projection (EP) algorithm to approximate the
gradient of cost function with respect to initial perturba-
tions and then computed the CNOP. The key of this EP
algorithm is to use a localization technique and assess
spurious correlations between observation stations and
model grids. However, this treatment will determine the
covariance of the localized Schur radii artificially and
empirically. To avoid the localization procedure of the EP
algorithm in Wang and Tan (2010), Chen et al. (2015b)
proposed a singular vector decomposition (SVD)-based
EP algorithm to compute the CNOP, which overcomes the
uncertainty caused by empirically choosing the localiza-
tion radius. The main concept is to construct CNOPs using
former main singular vectors of historical time series in
numerical models to greatly reduce the degrees of freedom
in the optimization problem. Thus, the optimized vari-
ables are the weight coefficients of the main SV modes
rather than the original physical variables, and the issue
of computing the CNOP is transformed into determining
the optimal weight coefficient combination of the main SV
modes. The SVD-based EP algorithm has been success-
fully applied to compute CNOPs in the intermediate ZC
model combined with traditional algorithms and intelli-
gent algorithms (Chen et al. 2015b; Wen 2015). Therefore,
we naturally ask whether the SVD-based EP algorithm can
be used in complex coupled ocean—atmosphere models to
compute CNOPs and explore the OGEs in El Nifio events.

In this study, we use the SVD-based EP algorithm to
compute CNOPs in the CESM and search for OGEs of
El Nifio events. This paper is organized as follows: The
CESM used in this study is depicted in Sect. 2. Section 3
introduces the definition of the CNOP and how to compute
the CNOP by the SVD-based EP algorithm. The valid-
ity of computing the CNOP in the CESM is verified in
Sect. 4. Section 5 gives numerical experimental results for
the OGEs of El Nifio events in detail. The related dynamic

mechanisms of error growth are explained in Sect. 6. Sec-
tion 7 summarizes the study and provides some discussion.

2 The community earth system model

The CESM (version 1.0.3) in this study, superseding version
4 of the Community Climate System Model (CCSM4), is a
fully coupled global climate model that provides state-of-
the-art simulations of the Earth’s past, present and future
climate states. The CESM consists of five component mod-
els: atmosphere, ocean, land, land ice, and sea ice, plus one
central flux coupler component that coordinates the models
and exchanges geophysical fluxes between them. Based on
the needs of researchers, the atmospheric components of
the CESM can be alternatively accessed as the Community
Atmosphere Model (CAM), the high-top atmosphere Whole
Atmosphere Community Climate Model (WACCM), or the
CAM with chemistry (CAM-CHEM). The Community
Atmosphere Model version 4 (CAM4) used in this study
has a finite-volume (FV) dynamic core with 26 vertical lay-
ers and a horizontal resolution of 0.9° (longitude) X 1.25°
(latitude). The model configuration is described in detail
in Neale et al. (2012). The ocean component is based on
the Parallel Ocean Program version 2 (POP2, Smith et al.
2010) from the Los Alamos National Laboratory (LANL),
which has 60 vertical levels with a layer thickness varying
from 10 m in the top 150 m to 250 m below 4000 m. It uses
spherical coordinates in the Southern Hemisphere and a dis-
placed pole grid in the Northern Hemisphere. The horizontal
resolution is approximately 1° (longitude) X 0.27° (latitude)
at the equator, with the domain ranging from 79°S to §9°N.
The CAM4 and POP2 are coupled through the version 7
coupler (CPL7, Craig et al. 2012) together with the Com-
munity Land Model version 4 (CLM4, Oleson et al. 2010),
the Community Ice Code version 4 (CICE4, Hunke and
Lipscomb 2008) of LANL, and the Glimmer Community
Ice Sheet Model version 1.6 (Glimmer-CISM1.6, Rutt et al.
2009; Lipscomb et al. 2013). More details of the CESM and
its simulation of the climate system are highlighted in Hur-
rell et al. (2013). Bellenger et al. (2014) noted that despite
some biases in the tropical Pacific interannual variability, the
CESM accurately simulates the fundamental characteristics
of observational ENSO events.

3 CNOP and SVD-based EP algorithm

The CNOP represents an initial perturbation, subjected to a
given constraint, and has the largest nonlinear evolution at
the end of the prediction time. The CNOP method is a natu-
ral generalization of the LSV to a nonlinear system. Here,
we briefly introduce the CNOP approach.
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Let M be a nonlinear propagation operator (i.e., the
numerical model) and x, be an initial perturbation super-
imposed on the reference state X (), which is a solution to
the nonlinear model and satisfies X(¢) = M(X), t,, ?), with
X, being the initial field of reference state X(¢) and #, being
the initial prediction time.

For selected norms ||-]|; and ||-||, the CNOP (x,,) is the
solution of the following optimization problem:

J(o5) = max [[M(X, + xou10, 1) — M(Xo.to, 1)|| )

ol <s

where ||x,||s < & is the initial constraint defined by the
selected norm ||-||; and 6 is a prescribed positive number
that defines the constraint radius of the initial perturbation
Xo. The norm [|-|| measures the evolution of perturbations.
To conveniently apply existing optimization algorithms, let
J,(xy) = =J(x,) and solve the equivalent minimization prob-
lem in Eq. (1) to compute the CNOP.

Both traditional algorithms and intelligent algorithms
are often used to solve the above optimization problem.
For traditional optimization algorithms, the key is to
obtain the gradient of the cost function with respect to the
initial perturbation x,. However, the CESM has no cor-
responding adjoint model, and the gradient cannot be effi-
ciently computed. Thus, adjoint-free intelligent algorithms
may be used to compute CNOPs. However, the number of
degrees of freedom in the CESM is very large, and the cost
of computing CNOPs directly using intelligent algorithms
is almost unacceptable. In this study, the CNOP will be
computed by the SVD-based EP method proposed by Chen
et al. (2015b).

The projection of a continuous system into a discrete

. N
numerical model can be expressed as x(r) = Y., ou;v7,

= [
where N is the degree of freedom of a numericlall modél,
o, is the singular value arranged from the highest to low-
est, u; is the spatial mode corresponding to v;, and v; is the
time series of u;.

A forced and dissipative dynamic system tends toward
a low-dimensional attractor after long evolution (Teman
1991; Osborne and Pastorello 1993; Foias 1997). The spa-
tial modes u; can be such that |o,| monotonously decreases
quickly enough as i increases. If m(m < N) former main
spatial modes are used as the bases to construct the
approximate state space of the whole system, the original
N-dimensional system can be truncated to an m-dimen-
sional approximate system.

SVD statistically provides a standard method that reduces
the dimension of the system effectively by choosing spatial
modes. If m spatial modes are chosen and combined linearly
to approximate the state vector of the discrete system, then
Xy = Z:’;l a;u;, and the optimization problem that computes
the CNOP is then transformed into the following:
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where ¢; is the weight coefficient of the chosen mode ;.
Because the selected spatial modes are orthonormal vectors,
the constrained condition becomes ||a||; < . This approach
searches for the optimal combinations of weight coefficients
for the chosen bases.

The ability of the SVD-based EP algorithm to compute
CNOP has been verified in the ZC model that has an adjoint
model. Chen et al. (2015b) combined the SVD-based EP
method with the traditional SPG2 algorithm (Birgin et al.
2000) to calculate the CNOP and explore the optimal pre-
cursor of ENSO events. The results show that the CNOP
obtained by the SVD-based EP algorithm can effectively
approximate the CNOP calculated by the adjoint method
and retain the general spatial characteristics of the latter.
Wen (2015) combined this method with four intelligent algo-
rithms to compute CNOPs in the ZC model. Their results
show that the spatial pattern of the CNOP obtained by the
new method looks similar to that obtained by the adjoint
method, and the variation trend of the cost function in dif-
ferent calendar months is almost the same as that of the
latter. These studies demonstrated that, independent of the
optimization algorithm, the SVD-based EP algorithm can be
used to approximately compute CNOPs.

Jy(az) = min <—HM(X0 + ) a1, 1) = M(Xo, £, 1)
i=1

4 Validity of computing a CNOP in the CESM

The CESM is a fully coupled earth system model that
includes ocean, atmosphere, land, sea ice, and land ice com-
ponents and has a very high dimensionality. The number of
grids on the upper tropical Pacific alone reaches 10°. There-
fore, it is necessary to reduce the dimensions of the model
to calculate the CNOP. Based on the characteristics of the
low-dimensional attractor for the ENSO system, we apply
the SVD-based EP algorithm to reduce the dimensions of
optimization problems, calculate the CNOP in a truncated
phase space and search for the OGEs in El Nifio events.

4.1 Experimental strategy

The fixed external data of tracer gases, insolation, aero-
sols and land cover in the year 2000 are used to force the
CESM for 179 years, and the Nifio 3.4 index of historical
data for the last 85 years (95-179) is analyzed (the figure is
neglected). We define the El Nifio (La Nifia) event when the
Nifio 3.4 index is greater (smaller) than 0.5 °C (- 0.5 °C)
in more than five consecutive months. During this 85-year
span, the ENSO simulated in the CESM behaves with 2- to
5-year periodic characteristics, and 22 El Nifio events and
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Fig. 1 EOF analysis results of
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24 La Nifia events occur. Among them, 21 El Nifio events
and 16 La Nifia events have the characteristics of phase lock,
that is, the peaks of the Nifio 3.4 indices occur in winter.
Figure 1 shows the Empirical Orthogonal Function (EOF)
analysis results of SSTA from the 85-year historical data. It
can be seen that the leading EOF (EOF1) of SSTA presents
a typical EP-EI Nifio-like mode, and can explain 71.64%
of the total variance. The second mode (EOF2) has warm
signals in the tropical central and western Pacific, with cold
signals in the tropical eastern-southern Pacific, which is sim-
ilar to the mature CP-El Nifio mode. The 6.86% explained
variance of EOF2 is obviously smaller than that of EOF1,
which means the EOF1 mode is more steady than EOF2.
Comparing the principal components (PC) of two modes,
PC1 behaves a stronger interannual variability than PC2,
which also illustrates that EP-El Nifio events simulated

150W

} -200+
90w 95

o

120W

0.01 0.02 0.03

by the CESM are usually much stronger than CP-El Nifio
events. All these results show that the CESM can capture
the characteristics of period, phase-locking and diversity of
ESNO events. Although some studies have pointed out that
the anomalous warm centers of El Nifio events are relatively
west, corresponding to observations (Capotondi 2013), and
the asymmetry of El Nifio and La Nifia is weak (Zhang and
Sun 2014), in general, the fundamental features of the model
simulation are consistent with those of observations. There-
fore, in this study, it is feasible that we can use the CESM to
study the ENSO OGEs.

There are many El Nifio events in the 85-year historical
run of the CESM. However, because calculating one CNOP
requires a large amount of computer time, we are limited by
the present computational conditions and cannot study each
ENSO event in detail. Thus, we focus on six selected El

Fig.2 Time-dependent Nifio3.4
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Nifio events with different intensities and diversities (Fig. 2),
and these events are denoted by EP,, EP,, EP, EP,, CP,, and
CP,. Among them, EP;, EP, and EP; are strong EP-EI Nifio
events, EP, is a relatively moderate EP-EIl Nifio event, and
CP, and CP, are weak CP-El Nifio events. Figure 3 shows
the evolutions of SSTA and sea surface wind anomalies for
EP,, EP, and CP,-El Nifio. EP, and EP, are typical EP-El
Nifio events. The SST warm anomaly occurs along the equa-
torial eastern Pacific coast, extends westward, and finally
matures in winter. For the CP,-El Nifio event, the warm
SSTA anomaly first appears in the tropical central and west-
ern Pacific and finally reaches the mature phase in winter.
CP,-El Nifio has no obvious propagating characteristics in
the developing process, which is consistent with the results
of the observed CP-El Nifio.

All these selected El Nifio events reached their peak
in the winter of the development year, consistent with the
observed phase-locked characteristics. In this context, we
use Year(0) to denote the year when El Nifio reaches the

(a) EP,~El Nifio

(b) EP,—EI Nifio

peak and Year(— 1/1) to signify the year before/after Year(0).
For each El Nifio event, we make 12-month predictions (i.e.,
lead time of 12 months) with the start months being January
(0) (Exactly speaking, January 1st) to assure that we can
focus on the predictions during the onset and growth phase
of El Nifio events.

To study the OGE of an El Nifio event, perfect model
experiments are conducted in this study. That is, the CESM
is assumed to be perfect. In this condition, the uncertain-
ties in El Nifio predictions are considered to be caused
only by initial errors that are superimposed on the initial
sea temperature fields of the six “true” El Nifio events. In
the following numerical experiments, the initial errors of
the sea temperature fields cover the region (19°S-19°N,
129.375°E-84.375°W), which includes the whole tropical
Pacific. To explore the role of subsurface processes, the ini-
tial errors extend from the surface to a 165 m depth, which is
approximately the bottom of the thermocline over the west-
ern equatorial Pacific.
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Fig.3 Evolutions of the SST anomaly (units: °C) and sea surface wind anomaly (units: m/s) of a EP,-El Nifio, b EP,-El Nifio and ¢ CP,-El Nifio
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Let Tf,',o(t) be the predicted SST, 77,,‘,0(0 be the “true” SST
to be predicted, and (i, j, 0) be the grid points in the pre-
dicted area of the sea surface. The prediction error is defined
as the difference between the SSTA in the tropical Pacific
for the predicted El Nifio and that of the “true” El Nifio
events, and its value is measured as follows:

|77y - T = \/ X T = T 0 3)

Then, the CNOP can be computed by solving the follow-
ing optimization problem:

JT )= max |70 - T'0)|}
(Tys) B |77(6) = T'@)|| &)
In Eq. 4, ' T(’) I& < ¢ is the constraint of initial errors and

is defined as follows:

2
cos @ T},
I73lls = | 2 <6—" <200 ©)

ij.k

where T} represents the initial error of sea temperature with
dimensions of 3.094 x 10°, i, j and k represent the grid posi-
tions of the zonal, meridional and vertical directions, respec-
tively, and @, ;. 0;;, and Ti:].’ , represent the latitude, standard
deviation and initial error of sea temperature at the grid (i,
Jj, k), respectively. The constraint 6 = 200 means that the
averaged absolute value of initial error in each grid point
does not exceed 0.36 X standard deviation.

As mentioned above, because the dimensions of the opti-
mization problem are very large, the cost that optimizes the
cost function directly is unacceptable. Therefore, we first
perform singular vector decomposition on the sea tempera-
ture anomaly in January for the long-term (95-179 year)
historical data of the CESM and then optimize the linear

combination of the weight coefficient of several modes with
the larger explained variance to obtain the CNOP. The cor-
responding concept has been fully discussed in Sect. 3. Fig-
ure 4 shows the distribution of the first 85 singular values
for the long-term historical data in the CESM. We can see
that the singular values decrease very rapidly as the mode
numbers increase. The maximum is larger than 3500 for the
first mode, and the singular value is less than 1000 from the
fourth mode number. Obviously, the more singular vectors
that are retained, the better the reducing-dimension space
approximates to the original; however, more computing cost
is required. Therefore, it is wise to set the mode number
so that the reduced space approximates well to that of the
original CESM and the computation cost is acceptable under
the current calculating conditions. In the following numeral
experiments, we truncate the former 10 modes with a larger
explained variance as the basement to build the approxi-
mating space. For these ten former singular vectors, their
cumulative explained variance reaches 79.27% and can cap-
ture the signals, including medium and large scales in the
original CESM.

It is important to select an appropriate optimization
algorithm to compute the CNOP. If the CESM is smooth,
the gradient of the cost function with regard to the optimi-
zation variables will exist. Then, traditional optimization
algorithms can be selected to implement optimization cal-
culations. In fact, because this type of algorithm searches
the minimum of the cost function along the direction indi-
cated by the gradient, the searching speed is relatively fast.
However, there are many parameterization processes in
the CESM, and some processes have switching properties,
which causes that the gradient of the objection function may
not exist. Figure 5 shows the relations between the evolu-
tion of prediction errors and the norm of initial errors. The
figure shows that when the random initial errors with the
norms 120, 60, 12, 6, 1.2, 0.6 and 0.12 are superimposed
in January (0) of the NR, neutral state (its Nifio 3.4 indices

1

1

Fig.4 Distribution of the 4000 T T
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95-179 year historical run in 3500
the CESM
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Fig.5 Evolutions of random 200
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are shown in Fig. 2), the corresponding prediction errors
do not decrease with a linear trend as the norm of initial
error tends to 0. That is, we may not find the gradient of
the cost function in the CESM, and it is necessary to adopt
optimization algorithms that do not require the gradients. As
mentioned above, some intelligent optimization algorithms
are appropriate choices. Moreover, they have been combined
with the dimension-reduction method to approximate the
CNOP effectively in the ZC model with intermediate com-
plexity (Wen 2015), which provides some useful references
and adds to our confidence in computing the CNOP in the
CESM.

In this study, the relatively new differential evolution
(reduced as DE) algorithm (Rainer and Kenneth 1997) is
combined with the reducing-dimension method to calculate
the CNOP. The DE algorithm uses the information between

(@)

Reference state

Selected —
spatial DE optimization loop
modes algorithm

Optimal coefficient
combination

Long-term | SVD
control run

40 60 80 100 120
Norm

candidate solutions to guide the search direction. The DE
algorithm, as a type of heuristic algorithm, has the following
advantages: (1) no requirement for smoothness of the cost
function; (2) ability to parallelize; and (3) good search for
the global minimum. In addition, this algorithm has fewer
control parameters (only three) and a relatively simple evo-
lution strategy, which makes it fit for coding. More impor-
tantly, this algorithm maintains the memory of the histori-
cal optimal solutions, which makes it highly suitable for a
problem that aims to seek a relatively satisfactory solution
rather than a strict optimal solution due to the calculation
cost or other reasons. Therefore, it is reasonable to select the
DE algorithm to carry out optimization calculations in the
complex CESM.

Figure 6 summarizes the schematic diagrams that the
reducing-dimension method is combined with the DE

(b) Generate an initial
coefficient population

Output optimal
coefficient combination

Evolution
(generate trial vectors)
Crossover
(generate new trial vectors)
CESM
Calculate
{ Reference state .X;
Selected spatial modes
Selection

(generate new
population members)

DE algorithm

Fig.6 Schematic diagrams of computing CNOPs in the CESM. a Experimental procedures that the SVD-based EP algorithm is combined with
DE optimization algorithm to compute the CNOP. b Flow chart of DE optimization algorithm
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optimization algorithm to compute the CNOP. Firstly, the
model is integrated for a long term as the control run. Sec-
ondly, SVD is performed on the optimized variables of con-
trol run and appropriate SVs are selected (10 SVs in this
study), based on the cumulative explained variance, as the
basement that constructs the CNOP. Thirdly, these selected
spatial modes, the CESM and reference states X, are called
by the DE algorithm to calculate the optimal combinations
of weighted coefficients. Finally, the CNOP is calculated
by combining the selected SVs linearly based on weighted
coefficients. Figure 6b illustrates the flow chart that the DE
algorithm searches for the optimal weighted coefficient
combination. The algorithm first initializes the population
of coefficient vectors randomly (the population size is 20
in this study), and then judges if this population meets stop
conditions. If stop conditions are met, the algorithm outputs
the optimal coefficient combination. If the answer is no, the
DE algorithm generates new trial vectors by evolution and
crossover. Each trial coefficient vector corresponds to an
initial perturbation x, superimposed on the initial field X,
of reference state, and its corresponding costfunction can
be calculated by the CESM. Then, during the selection pro-
cedure, the algorithm substitutes some population mem-
bers that have smaller costfunction with the trial coefficient
vectors that have larger costfunction, and generates a new
population. One iteration is then completed. For this new
population, the algorithm will repeat above iterative process,
until the stop conditions are met and the optimal weighted
coefficient combination is output.

4.2 Verifying results for computing CNOP

Before using the CNOP method to explore the OGEs of El
Nifio events in the CESM, it is necessary to check whether
the SVD-based EP algorithm is properly combined with
the DE algorithm to calculate the CNOP in the complex

coupled numerical model. This validity can be tested from
two aspects. In mathematics, as the iterative step increases,
the cost function J(x,) increases rapidly until it converges to
the maximum value. In addition, a CNOP and its develop-
ment should have physical meaning that accords with the
observations or numerical results in other ENSO models to
some degree. To attain the above two purposes, we deliber-
ately choose a neutral state that is close to the climatological
monthly mean state, denoted by NR, as the reference state
(Fig. 2) to compute the CNOP. In fact, this type of CNOP
has been studied in detail in the intermediate ZC model
(Duan et al. 2008; Duan et al. 2013). These results show that
because the observed ENSO events usually have asymmetri-
cal characteristics with strong El Nifio and relatively weak
La Nifia events, the CNOP calculated on a neutral state often
develops into a strong El Nifio event. This type of CNOP has
the most possibility to develop into an El Nifio event and is
considered as the optimal precursor of El Nifio. Then, if we
calculate a CNOP on the neutral state in the complex CESM
by the SVD-based EP algorithm and DE algorithm, can its
cost function increase rapidly and converge to a maximum?
Can the CNOP develop into a strong El Nifio event?
Figure 7 shows the varying trend of the cost function
as the iteration number of the optimization calculation
increases when the initial error is superimposed in January
(0) of the NR| neutral state. It can be seen that the cost func-
tion is approximately 1.2 x 10* at the first iteration, increases
rapidly as the iteration number becomes larger, and slows
after eight iterations. Although the value of the cost function
continues increasing and may eventually exceed 3.0 x 10*
with more iterations, the difference between the final value
and the cost function for the tenth iteration may not be very
large. Thus, to save computer time, when the value of the
cost function has not been obviously improved after several
successive iterations, the iterative calculation is stopped. For
this case, ten iteration steps are selected for the optimization
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Fig.8 12-lead evolution (units: 18N
°C) of the CNOP-type SST

perturbation superimposed in

January (0) of the NR, neutral

state 10N

calculation. These results show that the combination of the
reducing-dimension method and DE algorithm can math-
ematically approximate to find the maximum value of the
cost function J(x;) in the CESM and the CNOP that has
the largest development at the end time of the optimiza-
tion calculation. Figure 8 shows the spatial structure of the
12-month lead development of the CNOP. It can be seen
that the CNOP-type initial perturbation eventually develops
into a strong EP-EI Nifio event, which is consistent with the
results in the ZC model (Duan et al. 2013).

The above results demonstrate that the CNOP calculated
in the CESM is not only the maximum point of the cost
function in the phase space but also develops into a typi-
cal El Nifio event, which verifies the validity of the CNOP
calculation in the CESM by combining the SVD-based EP
algorithm with the DE algorithm. In the following section,
we utilize this method to compute the CNOP and explore the
OGE:s of El Nifio events.

5 Optimally growing initial errors of El Niio
events

As mentioned above, under the hypothesis perfect model
experiments, the uncertainties in El Nifio predictions are
considered to be caused only by initial errors. We first
investigate the characteristics of the spatial structures of
the OGEs for the six selected El Nifio events. Numerical
experimental results for the four EP-El Nifio events are
shown in Fig. 9. We can see that for the strong EP,-El Nifio
(Fig. 9a) and EP;-El Niiio (Fig. 9¢), the spatial structures
of the CNOPs are very similar, and their correlation coef-
ficient reaches 0.68. These OGEs possess negative SSTA
errors in the whole equatorial Pacific accompanied by a
negative west—east slope of subsurface temperature from
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the subsurface (approximately 160 m depth) to the surface
in the equatorial central-eastern Pacific. For the moderate
EP,-El Nifio event (Fig. 9d), the spatial structure of OGE
is similar to those of the EP, and EP; cases, except that the
sign is approximately opposite, and their correlation coef-
ficients reach — 0.61 and — 0.79, respectively. However,
the OGE of the strong EP,-El Nifio (Fig. 9b) is obviously
different and behaves as a basin-wide dipolar pattern of
tropical sea temperature errors from the sea surface to the
subsurface, with positive errors in the upper layers of the
equatorial eastern Pacific and negative errors in the lower
layers of the equatorial western Pacific. We also find that
the OGEs for the CP,-El Niiio (Fig. 9¢) and CP,-El Nifio
(Fig. 9f) have similar spatial structures to those for the
EP,- and EP,-El Nifio.

The development processes of these OGEs are further
investigated. We integrate the CESM with the initial fields
being the initial sea temperature of each “true” El Nifio event
plus the OGEs, and then, by subtracting the “true” state, we
obtain the evolutions of the prediction errors caused by these
OGEs. For the strong EP,- and EP;-El Nifio, the develop-
ing processes of OGEs are also very similar, and the aver-
aged results are shown in Fig. 10a. It can be seen that the
initial negative temperature errors, existing in the tropical
central-eastern Pacific, are locally and rapidly amplified dur-
ing several months and eventually evolve into a prediction
error similar to the mature phase of La Nifia. That is, the
development of this type of initial error presents a growth
behavior similar to a La Nifia-like evolving mode. For the
moderate EP,-El Nifio (Fig. 10b), the developing process
of CNOP error is also similar to those of the EP, and EP;
cases, except that positive sea temperature errors exist in the
tropical central-eastern Pacific and develop into a prediction
error similar to the mature phase of El Nifio. However, for
the strong EP,-El Nifio (Fig. 10c), the positive SST errors in
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the upper layers of the tropical eastern Pacific decay rapidly,
and the negative sea temperature errors in the lower layers
of the equatorial western Pacific propagate to the equato-
rial eastern Pacific and sea surface, amplify persistently and
eventually also cause a prediction error similar to the mature
phase of La Nifia. This type of error initially experiences an
El Nifio-like decaying phase, subsequently exhibits a transi-
tion to a cold phase, and finally evolves into a La Nifia-like
mode. For the weak CP,- and CP,-El Nifio, their developing
processes of CNOP-type initial errors are similar to those of
the strong EP,- and EP;-El Nifio (Fig. 10a), and correspond-
ing figures are not given for simplicity.

The impacts of El Nifio events on global weather and
climate are related to not only their intensity but also their
spatial patterns. Thus, it is necessary to further investigate
the effects of OGEs on the intensity and spatial structure of
El Nifio events. Figure 11 shows the “true” and predicted

Fig. 11 SSTA of a control run,
b prediction results and c differ-

(a) Control

SST anomalies at the end of the prediction time for six El
Nifio events. It is shown that when the OGEs are super-
posed on the “true” El Nifio events, the strong EP,-, EP,-
and EP;-El Nifio will be predicted as neutral states. For the
moderate EP,-El Nifio, the development of OGEs eventually
overestimates it as an extremely strong El Nifio event, which
may be because the intensity of the EP,-El Nifio event is
moderate, so there is still considerable room to enhance the
intensity of the event. When OGE:s are added to the CP; and
CP, reference states, the two weak CP-El Nifio events tend
to be predicted as La Nifia events. Figure 11c shows the dif-
ferences between the prediction results and those “true” El
Nifio events, which also shows that except for the OGE of
EP,-El Nifio, which causes a mature El Nifio-like prediction
error, others lead to mature La Nifia-like prediction errors
and cause El Nifio events to be predicted as neutral states or
even La Nifia events.

(b) Control+CNOP (c) Difference

ence between (a) and (b) at the

end month of December(0) for
six El Nifio events, where the
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Optimally growing initial errors of El Nifio events in the CESM

We notice that, although EP, and EP,-El Nifio have lit-
tle differences in intensity, the spatial structures of initial
sea temperature errors identified by CNOP method are
completely different from each other (shown in Fig. 9a and
Fig. 9d). How to explain this phenomenon? In our previous
studies, Xu and Duan (2008) found that the structures of
CNOPs superimposed on the onset phase of EP-EI Nifio,
and their effects on El Nifio predictions are sensitive to the
intensities of events. Due to nonlinear saturation, no matter
what kind of initial fields, the intensities of El Nifio and La
Nifia events can not exceed a limit, which causes the satu-
ration of initial error growth. Then for strong EP-EIl Nifio
events, the CNOP-type initial errors lead to underestimate
the intensities of EP-EIl Nifio events or predicts them as La
Nifa events. The CNOP includes the SSTA pattern that has a
zonal dipolar structure with positive errors in the equatorial
central-western Pacific and negative errors in the equatorial
eastern Pacific, and the negative thermocline depth errors
along the equator (somewhat similar to the OGE of EP,-El
Nifio in Fig. 9a). However, for a weak EP-EI Nifio, the
CNOP may behave as a similar pattern but with the oppo-
site sign (somewhat similar to the OGE of EP,-El Nifio in
Fig. 9d) and tends to yield a false alarm of a strong EP-EIl
Nifio event. Duan et al. (2009) further pointed out that, for
weak El Nifio events, it is very difficult to determine which
type of initial errors leads to worse predictions. All these
results demonstrate that, for strong EP-El Nifio events, the
direction of OGE growth points to cold SST errors, how-
ever, for relatively weak EP-EI Nifio events, there exist more
uncertainties in the structures of CNOP and it is arduous to
find some conditions that determine the direction of error
growth into warm or cold SST errors. Despite these results
are model dependent, they may explain, to some extent, why
the structures of CNOP-type initial errors of EP; and EP,-El
Nifio events are quite different from each other though the
intensity of the former is only slightly larger than that of the
latter. Specifically for the EP,-El Nifio, although its inten-
sity is not very weak (see Figs. 2b, 3), the warm center of
SSTA in mature and decaying phase locates in the equatorial
central Pacific (see Fig. 2b), and the largest positive SSTA
error growth occurs in the equatorial eastern Pacific (see
Fig. 11c). That is to say, there are considerable rooms for
the CNOP to develop into large warm SST errors and make
the EP,-El Nifio predicted as a strong EI Nifio event. Based
on above analysis, we hold that the CNOP of EP,-El Nifio
has physical meaning rather than a mathematical artifact.

The above results demonstrate that we have found three
types of OGEs for El Nifio events with different intensi-
ties and diversity in the CESM. Among them, two types
of initial errors in sea temperature have the same spatial
structures, except for the opposite sign, and are claimed as
type-1 and type-2 OGEs, respectively. The type-1 (type-
2) OGE possesses negative (positive) SSTA errors in the

whole equatorial Pacific accompanied by a negative (posi-
tive) west—east slope of subsurface temperature from the
subsurface (approximately 160 m depth) to the surface in
the equatorial central-eastern Pacific. The negative (posi-
tive) sea temperature errors are locally amplified for several
months and eventually evolve into a La Nifia (El Nifio)-like
mode. The type-1 OGE tends to induce the “true” strong
EP-El Nifio event to be predicted as a neutral state or induce
the “true” weak CP-El Nifio event to be predicted as a La
Nifia event. The type-2 OGE tends to induce a moderate
EP-EIl Nifio event to be predicted as an extremely strong
EP-El Nifo event. Although the third type of OGE also
develops into a mature La Nifia-like mode and induces the
“true” strong EP-EI Nifio to be predicted as a neutral state,
its spatial structure is obviously different from that of the
type-1 OGE and behaves as a basin-wide dipolar pattern of
tropical sea temperature errors from the sea surface to the
subsurface, with the positive errors in the upper layers of
the equatorial eastern Pacific and the negative errors in the
lower layers of the equatorial western Pacific. The negative
sea temperature error in the lower layers of the equatorial
western Pacific propagates to the eastern Pacific, amplifies
and eventually causes a prediction error similar to a La Nifia-
like mode. We call this kind of initial error a type-3 OGE.

6 Dynamic mechanisms of OGEs

As demonstrated in Sect. 5, there are three types of initial
errors that often induce the largest uncertainties in the pre-
dictions of El Nifio events and especially affect the predic-
tion of the intensity and spatial structure of El Nifio events.
For the type-1 (type-2) initial error, the cold (warm) sea tem-
perature errors are mainly concentrated in the eastern tropi-
cal Pacific and develop locally into a La Nifia (El Nifio)-like
mode. The type-3 initial error shows a basin-wide dipolar
structure in the tropical Pacific Ocean from the subsurface
to the surface, the warm pole in the eastern tropical Pacific
decays gradually, and the cold pole in the subsurface of the
western tropical Pacific propagates eastward and grows
continuously into a La Nifia-like mode. The developmen-
tal processes of these three types of initial errors are quite
different. What dynamic mechanisms support the develop-
ing processes of these OGEs? To illustrate this question,
we explore the time-dependent SST, sea surface wind and
equatorial subsurface temperature components of the predic-
tion errors caused by three types of OGEs (Fig. 10).
Physically, when the type-1 (type-2) OGE is superposed
on the initial field of an El Nifio event, a weak negative (pos-
itive) SSTA error initially occurs in the equatorial Pacific,
and a larger negative (positive) subsurface temperature is
located in the greater depths of the central-eastern equato-
rial Pacific (see the top panel of Fig. 10a, b). Their dynamic
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growing mechanisms can be explained by the Bjerknes posi-
tive feedback (Bjerknes 1969). On the one hand, the negative
(positive) SST errors lead to anomalous easterly (westerly)
along the equator, acting as a trigger of the Bjerknes positive
feedback, intensify (weaken) the easterly trade wind over
the equatorial Pacific and the upwelling in the equatorial
eastern Pacific, which means a positive (negative) upwelling
error. Meanwhile, lots of cold (warm) waters in the subsur-
face layer of the eastern equatorial Pacific are transported
upward by upwelling until they reach the surface. Both of
these factors contribute to the sustained growth of the nega-
tive (positive) SSTA errors in the eastern equatorial Pacific.
That is, the Bjerknes positive feedback mechanism plays
a dominant role and causes the negative (positive) SSTA
errors in the eastern tropical Pacific to be further amplified,
ultimately evolving into a mature La Nifia (El Nifio)-like
mode and yielding negative (positive) prediction errors for
El Nifio events.

For the type-3 OGE (Fig. 10c), although the initial posi-
tive sea temperature errors in the central and eastern equa-
torial Pacific generate zonal westerly in the central equa-
torial Pacific by the Bjerknes positive feedback process,
this westerly is too weak to intensify the weak warm SST
error (the top panel in Fig. 10c). Meanwhile, the relatively
larger negative subsurface temperature errors in the western
equatorial Pacific make the thermocline shallow and inspire
upwelling Kelvin waves that propagate eastward and carry
cold water with them. When the upwelling Kelwin waves
arrive at the eastern equatorial Pacific, they cause a negative
SST perturbation. This SST cooling associated with wave
dynamics competes with the weak warming by the Bjerknes
positive feedback. Soon, the former defeats the latter, and
then the positive SST errors in the eastern equatorial Pacific
start to decay gradually. Once the positive SST errors disap-
pear, the negative SST errors subsequently occurring over
the eastern equatorial Pacific are further intensified through
the easterlies and stronger upwelling due to the Bjerknes
positive feedback and develop into a La Nifia-like mode
that underestimates the El Nifio events. In short, during the
earlier developing process of the type-3 OGE, the negative
feedback associated with equatorial Kelvin waves traveling
from the western equatorial Pacific to the east equatorial
Pacific plays an important role, once negative SST errors in
the eastern equatorial Pacific appear, the Bjerknes positive
feedback becomes the most important growing mechanism
that makes the negative SST error ultimately evolve into a
mature La Nifia-like mode.
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7 Conclusions and discussion

In this study, we use the CESM in NCAR to investigate the
optimally growing initial errors that cause the largest uncer-
tainty in El Nifio predictions by the conditional nonlinear
optimal perturbation method. To overcome the difficulties
in computing a CNOP without an adjoint CESM, we apply
the SVD-based EP algorithm (Chen et al. 2015b) to calculate
the CNOP of El Nifo in the CESM. Based on the character-
istics of low-dimensional attractors for the ENSO system,
for the 85-year historical data of the CESM, we truncate the
former 10 modes as the basements to build the approximat-
ing space. The cumulative explained variance of these ten
former singular vectors reaches 79.27% and can capture the
signals with medium and large scales in the original model
and reflect the CESM dynamics. Then, physical variables
are treated as the combinations of selected bases, and the
optimization problem of the cost function with regard to
initial fields is transformed into one concerning the combi-
nation coefficients. Hence, the dimension of the optimization
problems can be largely reduced from 10° to 10. Then, we
calculate the CNOP in a truncated phase space by the DE
intelligent optimization algorithm. Numerical experimen-
tal results demonstrate that the CNOP superimposed on a
neutral state can develop remarkably into a strong El Nifio
event, which verifies the validity of computing a CNOP in
the CESM by combining the concepts of reducing dimen-
sions and an optimization algorithm.

For six El Nifio events with different intensities and diver-
sities, this study finds three types of OGEs in the CESM and
calls them type-1, type-2 and type-3 initial errors. Among
them, the type-1 and type-2 initial errors have similar spatial
structures and dynamic growing mechanisms, except that
the errors have the opposite sign. The type-1 (type-2) initial
error is characterized by negative (positive) SSTA errors in
the equatorial Pacific accompanied by a negative (positive)
west—east slope of subsurface temperature from the subsur-
face to the surface in the equatorial central-eastern Pacific.
For these two types of OGEs, the negative (positive) sea
temperature errors in the eastern tropical Pacific are locally
intensified and eventually cause a prediction error similar to
a mature La Nifia (El Nifio)-like mode by the Bjerknes posi-
tive feedback mechanism. The type-3 initial error behaves
as a basin-wide dipolar pattern of tropical sea temperature
errors from the sea surface to the subsurface, with positive
errors in the upper layers of the equatorial eastern Pacific
and negative errors in the lower layers of the equatorial west-
ern Pacific. During the earlier period, the negative feedback
associated with equatorial Kelvin waves traveling from
the western equatorial Pacific to the east equatorial Pacific
plays an important role, while once negative SST errors in
the eastern equatorial Pacific appear, the Bjerknes positive
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feedback mechanism becomes the leading factor and makes
the negative SST error ultimately also evolve into a mature
La Nifia-like mode. Although the type-1 and type-3 initial
errors have different spatial patterns, both eventually induce
a prediction error similar to the mature La Nifia-like mode
at the end of prediction time and cause El Nifio events to
be underpredicted or even predicted as neutral states or La
Nifia events. The type-2 initial error evolves into a mature
El Nifio-like mode, which may lead to a relatively weak El
Nifio event to be predicted as an extremely strong El Nifio
event.

As mentioned in the introduction, many endeavors have
previously been made to explore the OGEs of El Nifio events
based on CNOP approach. These results can be strongly
model dependent, ranging from intermediate coupled mod-
els, to comprehensive coupled general circulation models.
Mu et al. (2007b) and Yu et al. (2009) used adjoint methods
to calculate the CNOP-type errors of EP-EI Nifio in the ZC
model and identified two types of OGEs. One type possesses
an SSTA pattern with positive errors in the central-western
equatorial Pacific and negative errors in the eastern equato-
rial Pacific and a thermocline depth pattern with negative
errors along the equator. Another type possesses spatial pat-
terns that are almost opposite to those of the former type. In
their results, the initial negative (positive) SST errors in the
eastern equatorial Pacific develop locally into a La Nifa (El
Nifio)-like mode by the Bjerknes positive feedback mecha-
nism, which are somewhat similar to the developing pro-
cesses of the type-1 and type-2 OGE:s in this study. However,
due to the limitation of the simplicity of the ZC model, they
cannot identify the type-3 OGE, emphasizing the propaga-
tion and development of the negative subsurface temperature
errors located in the western equatorial Pacific. It is worth
mentioning that, in this study, the OGEs for some EP-El
Nifio and CP-El Nifio events have similar spatial patterns
and development processes. Tian and Duan (2016) also sug-
gested the same opinion based on the results in the corrected
ZC model. Although their EP-type-1 and CP-type-1 CNOP
errors developed into El Nifio-like modes and induced both
EP-El Nifio and CP-El Nifio to be predicted as extremely
strong EP-El Nifio events, the type-1 OGE in the CESM
develops into a La Nifia-like mode and induces two types
of predicted El Nifio events to be predicted as neutral states
or La Nifia events.

Based on another intermediate coupled model (ICM,
Zhang et al 2003), Tao et al (2017) also calculated CNOP
by an adjoint method and investigated the largest error
growth in El Nifio predictions. Obviously different from
those derived from the ZC model and CESM, their
CNOP-type initial errors in SSTAs and sea level anoma-
lies (SLAs) possess the characteristic of seasonal varia-
tion, rather than sensitive to the phase and intensity of El
Nifio. For the SSTA components of four seasonal CNOPs,

negative errors can be clearly seen near the dateline in the
equatorial Pacific, however, the structures off the equator
are totally different. Compared with CNOP-type SSTA
errors, the optimal SLA errors are relatively less sensitive
to the season and share a dipolar pattern along 10°N, with
a positive error in the west and a negative error in the east.
Besides, a strong negative SLA CNOP in the equatorial
eastern Pacific is distinct in autumn, winter and spring,
while a weak positive signal in summer. For the reasons
that CNOPs in the ICM depend on the annual cycle, rather
than the phase and intensity of El Nifio, Tao et al (2017)
hold the view that this may be due to that the statistical
relationship between the wind stress anomaly and SSTA
depends on the season in the ICM, and the relationship
between the temperature anomalies 7, of subsurface waters
entrained into the mixed layer and the thermocline dis-
placement are nonlocal, which makes the largest entrain-
ment temperature anomalies 7, occurred in the equato-
rial central Pacific. Then, the optimal initial errors in the
ICM depend on the start season and the SSTA CNOPs are
distinct in the equatorial central Pacific. Though CNOPs
in the ICM vary seasonally, there are some similarities
between them and type-1 OGE in this study. All of them
have negative SSTA errors in the equatorial central Pacific.
In addition, in the equatorial eastern Pacific, the optimal
SLA errors in the ICM are negative except for in sum-
mer, and type-1 OGE in the CESM is also negative from
the subsurface to surface, which means, in this region,
they have the negative heat content errors in the upper
ocean. All these CNOP-type initial errors evolve into the
La Nifla modes and tend to make the El Nifio events to be
underpredicted.

Duan and Hu (2016) used an ensemble-based method to
find two types of initial errors that induce significant spring
predictability barriers for EP-EI Nifio events in the CESM.
Comparing the numerical results of two studies, it is obvi-
ous that the two types of initial errors found in Duan and
Hu (2016) correspond qualitatively to the type-1 and type-3
OGE:s in this study, regardless of their spatial structures and
development processes. The reason that they cannot find the
type-2 OGE, which develops into an El Nifio-like mode and
tends to predict the “true” El Nifio as an extremely strong
event, may be because they focused only on the strong EP-El
Nifio events, whereas we paid attention to both strong and
relatively moderate El Nifio events (for example, the EP,
case). Although the results for the two studies are somewhat
similar, they are quite different. First, the purposes of the two
studies are different. This study aims to find the initial errors
that produce the largest prediction error at the prediction
time, that is, OGE. However, Duan and Hu (2016) focused
on finding the initial errors that produce a significant spring
predictability barrier (SPB). Although such initial errors also
produce large prediction errors, they may not be the initial
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errors that have the greatest impact on the forecast results.
Second, the methods used in the two studies are different.
In this study, the optimization algorithm is used to directly
compute OGE. Duan and Hu (2016) used an ensemble-based
method to obtain two types of initial errors that produce
a significant SPB. As mentioned in the introduction, their
results depend on the sample space, which cannot cover all
realistic initial errors that yield a significant SPB. In addi-
tion, the results obtained by CEOF and composite analysis
may be common (basic) characteristics suitable for many
cases but may not be the optimal solution for a particular El
Nifio event. In any case, the similarities between the results
in Duan and Hu (2016) and those in the present study estab-
lish the reasonability and validity of our results. However,
this study avoids the difficulty of coding the adjoint model
and computes the CNOP directly in the complex CESM by
combining the concepts of reducing dimensions and the DE
intelligent algorithm, which may provide another way to
extend the application of the CNOP method in complicated
coupled models.

Three types of OGEs with different spatial features, for
El Nifo predictions, are found in this study. According to
the spatial modes and dynamical growth mechanisms, initial
sea temperature errors that lead to large prediction errors,
mainly originate from two regions. One locates in the upper
layers of the tropical eastern Pacific, and the other locates
in the subsurface of the equatorial western Pacific. Based on
the hindcast/forecast data from the North American Multi-
model Ensemble (NMME) system (Kirtman et al. 2014),
Hua and Su (2020) found that the main SST initial errors
leading to the failure of El Nifio forecast are mainly from
the tropical southeast Pacific, which supports our results.
In addition, Duan and Wei (2013) used the realistic fore-
cast data generated by the complicated coupled FGOALS-g
model (Yan and Yu 2012) and pointed out that the initial
errors that grow in a manner similar to El Nifio or La Nifia
events were most likely to result in large prediction errors
for El Nifio forecasts. In other words, these initial errors have
the similar growth mechanism to those of ENSO events.
Many studies have shown that, one of main developing
mechanisms of ENSO is that initial anomalous signals occur
in the subsurface of the equatorial western Pacific, and then
propagate eastward through the equatorial Kelvin wave (Bat-
tisti and Hirst 1989; Ballester et al. 2015; Lai et al. 2015),
which emphasizes the role of the subsurface of the equatorial
western Pacific and supports the results in this study.

It is worthing noting that this study reduces the dimen-
sions of optimization problem and calculates CNOPs in
a truncated phase space. It is different from the method
that reduces the dimensions of the CESM directly and cal-
culates the CNOP of a truncated model. The dimensions
of complex coupled models can be decreased directly by
reducing model resolution. If the reduction of resolution
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is not very large, the cost that calculates CNOP directly
using intelligent optimization algorithms is still very high.
It is necessary to decrease the resolution to a certain extent
to ensure that CNOP can be directly calculated. However,
too low resolutions will seriously affect the simulation and
prediction ability of the model. As a result, it is difficult
to guarantee that the calculated CNOP can represent that
in the original complicated model. However, the dimen-
sion reduction based on SVD-based EP algorithm in this
study can not only retain the simulation ability of original
models, but also assure that the appropriate number of
SV modes are selected under present calculating condi-
tions, so as to succeed in computing CNOPs and grasping
their main characteristics. As Chen et al. (2015b) pointed
out, the distributions of significant SV modes are closely
related to physical problems. Compared with low-reso-
lution models, the number of SVs selected to construct
CNOPs will not increase sharply as the number of grid
points increases in high-resolution models. The method
used in this studies is suitable for solving the nonlinear
optimization problems in complex models with high
dimensions.

This work is a preliminary study, and only six El Nifio
events with different intensities and diversities are selected
to compute the CNOP in the CESM. For La Nifia events
and neutral conditions, the predictability problems related
to initial errors are also important. Hu and Duan (2016) and
Hu et al. (2019) found that there exist similarities between
optimal precursory perturbations superimposed on the
neutral states and most likely to evolve into ENSO events,
and OGEs associated with ENSO events in the CESM, and
emphasized that the off-equatorial regions around 10°N in
the central Pacific may also be the important error resources
for La Nifia predictions. These results are equally obtained
by the EOF-based ensemble method and need to be fur-
ther studied by the optimization method. More importantly,
many researches, including this study, are based on perfect
model hypothesis, it is necessary to validate these results in
hindcast experiments or realistic forecasts of ENSO events.
In addition, this study mainly focuses on the effect of initial
errors in the tropical Pacific on El Nifio prediction. However,
many studies have shown that ENSO is often influenced by
processes outside the tropical Pacific. Kao and Yu (2009)
and Yu and Kim (2011) showed that wind forcing from the
subtropical and extratropical atmosphere may affect the
occurrence of CP-El Nifio events by the seasonal footprint-
ing mechanism and emphasized that the signals in the north
Pacific are important for some CP-El Nifio events. Saji et al.
(1999) and Zhou et al. (2015) noted that the variability of the
Indian Ocean dipole (IOD) can affect El Nifio in the tropical
Pacific through both the Indonesian through flow and atmos-
pheric bridges. In this sense, initial errors in these regions
may also affect El Nifio predictions. In addition, we only
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emphasize the effect of oceanic initial error on the largest
uncertainties in ENSO predictions. Apparently, atmospheric
initial conditions and external forcings also affect the predic-
tion skills of ENSO events. Zheng and Zhu (2010) suggested
that the coupled assimilation of wind data can decrease the
initial errors in ocean currents and improve SST forecast
skills. Chen et al. (2015a) demonstrated that the random
occurrence of westerly wind bursts (WWBs) in the tropical
western Pacific may be an important factor that predicts the
diversity of El Nifio events successfully. In the future, we
will select more ENSO cases, explore more important ini-
tial variables, and perturb initial variables in more extensive
areas to study ENSO predictability, including spring predic-
tion barriers and target observations.
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