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ABSTRACT: Based on 36-yr hindcasts from the fifth-generation seasonal forecast system of the European Centre for
Medium-Range Weather Forecasts (SEASS5), the most predictable patterns of the wintertime 2-m air temperature (T2m) in
the extratropical Northern Hemisphere are extracted via the maximum signal-to-noise (MSN) empirical orthogonal
function (EOF) analysis, and their associated predictability sources are identified. The MSN EOF1 captures the warming
trend that amplifies over the Arctic but misses the associated warm Arctic—cold continent pattern. The MSN EOF2
delineates a wavelike T2m pattern over the Pacific-North America region, which is rooted in the tropical forcing of the
eastern Pacific-type El Niflo-Southern Oscillation (ENSO). The MSN EOF3 shows a wavelike T2m pattern over the
Pacific-North America region, which has an approximately 90° phase difference from that associated with MSN EOF2,
and a loading center over midlatitude Eurasia. Its sources of predictability include the central Pacific-type ENSO and
Eurasian snow cover. The MSN EOF4 reflects T2m variability surrounding the Tibetan Plateau, which is plausibly linked to
the remote forcing of the Arctic sea ice. The information on the leading predictable patterns and their sources of pre-
dictability is further used to develop a calibration scheme to improve the prediction skill of T2m. The calibrated prediction
skill in terms of the anomaly correlation coefficient improves significantly over midlatitude Eurasia in a leave-one-out cross-
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validation, implying a possible way to improve the wintertime T2m prediction in the SEASS.
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1. Introduction

A reliable numerical weather forecast is usually limited to
about two weeks (Bauer et al. 2015; Simmons and Hollingsworth
2002) because of the chaotic dynamics of atmospheric circula-
tion (Lorenz 1963). The latter is also the main source of uncer-
tainties or noises in seasonal climate predictions. In contrast, the
existence of slowly varying atmospheric boundaries such as sea
surface temperature (SST), sea ice, and snow cover gives rise to
the feasibility of seasonal predictions (e.g., Charney and Shukla
1981; Doblas-Reyes et al. 2013; Kim et al. 2012) because they can
alter the likelihood of residence in atmosphere attractors and
thereby constrain the behaviors of the atmosphere on monthly
and longer time scales (Palmer 1993). Accordingly, the changes
in the atmosphere that are associated with these external factors
could be regarded as potentially predictable, whereas the re-
maining part of changes be regarded as potentially unpredict-
able in seasonal predictions.

Seasonal climate predictability has been widely investigated
regarding its spatial pattern and predictability sources using
dynamical models. Various approaches, such as signal-to-noise
metrics, have been proposed to quantify the seasonal predict-
ability (Rowell 1998). However, assessing seasonal predict-
ability using only one snapshot map makes it difficult to detect
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the predictability sources because it lacks information on
temporal evolutions. Besides, certain spatial or temporal
structures may still be predictable with an optimized method
despite the low predictability in some areas (e.g., middle and
high latitudes). These inadequacies inspired a unified frame-
work for investigating predictability based on information
theory, in which the key approach is the maximized signal-to-
noise (MSN) empirical orthogonal function (EOF) analysis
(Allen and Smith 1997; DelSole and Tippett 2007). This
framework provides reliable estimations of predictability by
considering nonlinear factors, and it is convenient to explore
the spatial and temporal structures of predictability through
which the involved mechanism can be revealed. For example,
Tang et al. (2014, 2015) extracted the first and second pre-
dictable patterns of the North American surface air tempera-
ture via the MSN EOF analysis and attributed them to El
Nifio-Southern Oscillation (ENSO) and global warming, re-
spectively. They further suggested that the first predictable
pattern is inherent to the most predictable patterns of the SST
and 500-hPa geopotential height. Scholars also use the MSN
EOF analysis to investigate the predictable patterns of mon-
soon precipitation (e.g., Liang et al. 2008; Zuo et al. 2013), the
tropical Indian Ocean SST (e.g., Wu and Tang 2019; Zhu et al.
2015), and the tropical Atlantic Ocean SST (e.g., Huang 2004),
among others, confirming the efficiency of the methodology.
Skillful seasonal prediction is crucial for Eurasia, where the
population density is high, and the natural hazard is frequent.
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In contrast to the climate of the Pacific-North America (PNA) re-
gion that is tightly related to ENSO (e.g., Horel and Wallace 1981;
Zhu et al. 2013, 2017; Tang et al. 2014, 2015), the Eurasian climate is
less influenced by ENSO on the interannual time scale because of
the complex processes and nonstationary footprint of ENSO (e.g.,
Ineson and Scaife 2008; Kumar et al. 1999; Wu and Wang 2002; Jia
et al. 2017; Wang et al. 2008; Gong et al. 2019; Xie et al. 2016).
Meanwhile, the involvement of other active boundary forcing such
as snow cover and sea ice (e.g., Cohen and Fletcher 2007; Cohen
et al. 2014; Zuo et al. 2011, 2015) further increases the complexity
and uncertainty of the seasonal prediction over Eurasia. Moreover, it
remains unclear what the predictable patterns of the Eurasian cli-
mate and their sources are, motiving a careful investigation via the
state-of-the-art seasonal forecast systems. In this study, the leading
predictable patterns of the wintertime surface air temperature in the
whole extratropical Northern Hemisphere, with the emphasis on the
Eurasian region, and their predictability sources are investi-
gated based on the outputs of the latest seasonal forecast sys-
tem of the European Centre for Medium-Range Weather
Forecasts (ECMWEF). Given the above understanding, a cali-
bration scheme for seasonal prediction is proposed, which
turns out to evidently improve the prediction skill of surface air
temperature over the Eurasian region.

This paper is laid out as follows. Section 2 describes the da-
tasets and methodologies used in this study. Sections 3 and 4
identify the most predictable pattern of surface air temperature
in the extratropical Northern Hemisphere and their predict-
ability sources, respectively. Section 5 develops a calibration
scheme to improve the prediction skill of surface air temperature
by reinforcing the information of the leading predictable pat-
terns. Finally, section 6 concludes the key findings and discusses
some remaining issues.

2. Data and methods

The retrospective seasonal forecast (hindcast) data used in
this work are from the fifth-generation seasonal forecast sys-
tem (SEASS; Johnson et al. 2019) of the ECMWF, which
consists of 25 ensemble members for the 36-yr hindcast period
1981-2016. The data have a horizontal resolution of 1° X 1° and
11 vertical pressure levels extending from 925 to 10hPa. As a
state-of-the-art seasonal forecast system, the SEASS is a fully
coupled general circulation models initialized on the first day
of every month and integrated continuously for seven months
(Johnson et al. 2019). It uses the Integrated Forecast System
(IFS) atmospheric model cycle 43r1 as its atmospheric com-
ponent and the Nucleus for European Modeling of the Ocean
(NEMO) model version 3.4.1 as its oceanic component. It also
includes a prognostic sea ice model, the Louvain-la-Neuve sea
ice model version 2 (LIM2), under the NEMO modeling
framework to improve the land-ice interactions. The atmo-
sphere, ocean, snow, sea ice, and other land fields are per-
turbed using an ensemble of data assimilations to represent
uncertainty in the initial state and ensemble spread. Compared
with its predecessor, System 4, the SEASS shows many im-
portant improvements, such as a better ENSO prediction skill.
More details can be found in Johnson et al. (2019) and the
SEASS user guide via https://www.ecmwf.int/sites/default/
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files/medialibrary/2017-10/SystemS5_guide.pdf. This study uses the
monthly mean hindcast data initialized on 1 November, which is the
most informative for the winter season. The use of the one-month
lead hindcasts is because it can balance between incorporating the
latest observed information into the seasonal forecast system and
guaranteeing enough time to take precautions for the coming season.

Several reanalysis and observational datasets are used to
evaluate and verify the results of hindcasts. The atmospheric
data are the monthly mean atmospheric reanalysis data from
the ERA-Interim dataset (Dee et al. 2011), which has a hori-
zontal resolution of 1° X 1° and 37 vertical pressure levels from
1000 to 1 hPa. The snow depth data are also from the ERA-
Interim dataset. The oceanic data are the observed monthly
mean SST and sea ice concentration (SIC) data from Hadley
Centre Sea Ice and Sea Surface Temperature dataset, version 1
(HadISST1; Rayner et al. 2003), which has a 1° X 1° resolution
and spans from 1870 to the present. These data are referred to
as “‘observation” hereafter.

This study focuses on the boreal winter that is defined as the
mean of December, January, and February. Climatology is de-
fined as the 36-yr (1981-2016) mean of the 25-member ensemble
mean in the SEASS and as the 36-yr mean in observational and
reanalysis datasets. The winter of 1981 refers to the 1981/82 win-
ter. The anomaly is calculated by removing the climatology from
the raw data. The two-tailed Student’s ¢ test is used to evaluate the
significance of regression, correlation, linear trend, and the dif-
ferences between two linear trends (Santer et al. 2000). The Fisher
z transformation is used to evaluate the significance of differences
between two correlation coefficients (Conlon and Thomas 1993).

The most predictable patterns were extracted by applying
the MSN EOF (Allen and Smith 1997; DelSole and Tippett
2007; Tang et al. 2014) to the hindcast data from the SEASS as
follows. The MSN EOF method assumes that the ensemble
mean X, of seasonal mean anomalies X can be decomposed
into a forced (i.e., predictable) component Xy and a random
(i.e., unpredictable) component (noise) Xg:

X, =X, + X, )

To find the optimal pattern (i.e., the leading MSN EOFs) of Xp,
the key procedure is to eliminate the spatial covariance of
noise by transforming the internal variation into spatially white
noise, known as the prewhitening transformation. In practice,
this approach is realized by performing the EOF analysis to the
ensemble deviations X' = X — Xy:

C.=E,AEL, 2)

where Cy is the covariance matrices of X', Ag is the diagonal
matrix ranking the eigenvalues in decreasing order, Eg is the
eigenvectors, and the superscript T indicates the transpose of
the matrix. The prewhitened matrix X}, can be obtained by
projecting X, onto the kth highest-ranked eigenvectors E%() :

X, = n2(AP) EVTX . 3)

where 7 is the ensemble size. Note that k should be neither too big
nor too small to obtain the well-determined noise EOF space.
Here k is taken as 30 after a series of experiments, consistent with
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FIG. 1. (a) The ACC between observed and ensemble mean of the predicted winter mean
T2m for the period 1981-2016. (b) The zonal mean of the ACC. (c) The signal-to-noise ratio
of the predicted winter mean T2m, with values exceeding 1 highlighted by white contours
[contour interval (CI) = 3] in (c). Dots in (a) indicate the 5% significance level based on the
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two-tailed Student’s ¢ test.

Huang (2004). Next, a singular value decomposition (SVD)
analysis is performed on the prewhitened matrix X},

X), =FvP’, 4)

where F' is the left singular vectors, v’ is the diagonal matrix
ranking the eigenvalues in the decreasing orders, and the
highest-ranked right singular vector P is the optimized time
series we are looking for. Finally, the most predictable pattern
e (i.e., the optimal pattern with maximized signal-to-noise ra-
tio) can be obtained by projecting X,, onto the optimized time
series PT. In this procedure, the weight in space is considered
(North et al. 1982), and the F test is used to evaluate the sig-
nificance of the MSN EOF (Huang 2004).

3. Leading predictable patterns of the surface air
temperature

Before analyzing the predictable patterns, we first evaluate the
prediction skill of the surface air temperature in the SEASS.
Figure 1a shows the anomaly correlation coefficient (ACC) of the
winter mean air temperature 2 m above the surface (T2m hereafter)
between the predicted ensemble mean and observation. The ACC
generally exceeds 0.3 over broad regions of the Northern
Hemisphere. High ACC is located in the regions to the south of
approximately 30°N, North America between 40° and 60°N, the
North Pacific, and the North Atlantic. It is surprising that the
ACC over the Arctic and Greenland is also high, especially over
the Barents Sea, possibly due to the inclusion of the sea ice

model in the SEASS. In contrast, the ACC over the Eurasian
continent to the north of approximately 40°N is very low and
even negative. This feature is also apparent in the zonal mean
ACC of T2m (Fig. 1b), which shows the lowest ACC between
40° and 70°N. In addition to the linear ACC, the signal-to-noise
metrics (Rowell 1998) is also used to evaluate the predictability.
The signal-to-noise ratio of predicted T2m (Fig. 1c) shows a
similar pattern to the ACC with high values over the tropics,
subtropics, and the North Pacific (Fig. 1a). It is lower than 1 in
many regions of the Arctic and North Atlantic (Fig. 1c) despite
the high prediction skill (Fig. la). Nevertheless, a common
feature between the signal-to-noise ratio and the ACC is the low
predictability and skill over the Eurasian continent, especially to
the north of 40°N.

Figure 2 shows the four leading predictable patterns of the
winter mean T2m in the extratropical Northern Hemisphere
(20°-89°N) and the time series of their corresponding principal
components [MPCs hereafter; P in Eq. (4)] obtained via the MSN
EOF analysis. The three patterns explain 53.2%, 15.9%, and
9.3% of the total variance, respectively. They all exceed the 5%
significance level based on the F test (Huang 2004), suggesting
that they are significantly predictable modes. The MSN EOF1
is a monopole warming pattern in the Northern Hemisphere,
and its maximum is over the Barents Sea (Fig. 2a). Its time
series (MPC1) shows a prominent upward trend with some
interannual variability (Fig. 2b), reminiscent of the global
warming signal. These results suggest that the MSN EOF1 is
likely a sign of the Arctic amplification (e.g., Fig. 2 in Cohen
et al. 2014). The MSN EOF2 features warm anomalies over the
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FI1G. 2. (a) The MSN EOF1 of the winter mean T2m over the Northern Hemisphere (20°-89°N) in the SEASS. (b) The normalized
principal components of the MSN EOF1 (i.e., MPC1). (c) The percent of variance (%) of the predicted T2m explained by the MSN EOF1.
(d)—(f),(g)-(1),(G)—(1) As in (a)—(c), but for the MSN EOF2, MSN EOF3, and MSN EOF4, respectively. The variance explained by the
MSN EOFs is denoted in the upper-right corner of (a), (d), (g), and (j).

northwestern North America and cold anomalies over the North
Pacific, subtropical North America, and the Barents Sea (Fig. 2d).
This pattern resembles that associated with the conventional eastern
Pacific (EP) El Nifo (e.g., Fig. 3 in Bréonnimann 2007) and implies its
plausible link to ENSO. The MSN EOF3 manifests two cold centers
stretching from northern Eurasia to the subtropical central Pacific
and over eastern North America, respectively, and two warm centers
surrounding Alaska and Iceland (Fig. 2g). It has a third warm center
over the Tibetan Plateau, but the spatial scale of this center is rela-
tively small. The MSN EOF3 resembles the leading mode of the
Eurasian surface air temperature on the interannual time scale over
Eurasia (e.g., Fig. 92 in Wang et al. 2019) and the signal of the central
Pacific (CP) ENSO over the PNA region (e.g., Figs. 3b and 3d in Gu
and Adler 2019), implying its linkage to the CP ENSO and internal
variability over Eurasia. The MSN EOF4 is characterized by cold
anomalies centered over the Tibetan Plateau, the Bering Strait, the
Labrador Strait, and Mexico and warm anomalies centered over the
Barents Sea and midlatitude North America (Fig. 2j). This pattern
does not remind us of any known climate variability, but it might be
related to the forcing of the Tibetan Plateau or the changes in the
Arctic sea ice because of the locations of its centers. In the next
section, the atmospheric external forcing associated with the four
MSN EOFs are investigated in detail to reveal the possible pre-
dictability sources of these leading predictable patterns.

4. Predictability sources of the leading predictable
patterns

a. MSN EOFI

The MSN EOF1 dominates the Arctic T2m variability and
explains over 50% of the T2m variance over large areas of the

Arctic (Fig. 2¢). Its monopole pattern with large loading over
the Barents Sea (Fig. 2a) and the upward trend during the past
decades (Fig. 2b) implies its possible origin from global
warming and the associated Arctic Amplification. To confirm
this inference, the long-term trend of winter mean T2m in the
SEASS was calculated, and it shows hemispheric warming with
centers over the Barents Sea and northeast North America
(Fig. 3a), which is almost identical to the MSN EOF1 (Fig. 2a).
The trend pattern in Fig. 3a was further projected onto the T2m
in the SEASS to get its time evolution (not shown), which has a
clear upward trend and is highly correlated to the MPC1 (r =
0.98). These results confirm that the MSN EOF1 reflects the
global warming signal in the SEASS. A comparison of the T2m
trend in the SEASS with that in the observation (Fig. 3b)
suggests that the SEASS underestimates the warming trends over
the Arctic and northeastern North America and fails to capture
the cooling trend over central Eurasia (Fig. 3c). The failure to
capture the observed warm Arctic—cold continent pattern
(Overland et al. 2011), also manifested as the EOF2 of the
observed T2m (€5 hereafter) over the extratropical Northern
Hemisphere (Fig. 3d), may be an essential reason for the low
prediction skill of T2m over central Eurasia in the SEASS (Fig. 1a).

The long-term trend in the near-surface temperature during
the past decades arises from the radiative forcing due to in-
creased greenhouse gas concentrations (e.g., Stocker et al.
2013). The amplified Arctic warming has been attributed to
local radiative effects, ice-albedo feedback, extratropical in-
fluences, and other processes (e.g., Chylek et al. 2009; Ding
et al. 2014; Graversen et al. 2008), whereas the continental
cooling may arise from the Arctic influences or the internal
variability within the climate system (e.g., Cohen et al. 2014,
2020). In the SEASS, the greenhouse gas radiative forcing is
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FIG. 3. Linear trends of the (a) predicted and (b) observed T2m [°C (10yr)™!] during winters 1981-2016.
(c) Differences between (a) and (b). (d) The EOF2 of the observed winter mean T2m over the extratropical
Northern Hemisphere (20°-89°N) derived from the period 1981-2016. Dots denote the linear trends, the difference
between the linear trends and the linear regression coefficients exceed the 5% significance level in (a)-(d),

respectively.

the zonally averaged seasonal varying climatology (Johnson
et al. 2019). It lacks the uneven spatial distribution and the
variation from year to year and thereby may cause the un-
derestimation of the T2m trend over the Arctic. Meanwhile,
the introduction of the LIM2 model introduces excess Arctic
sea ice and thereby cold bias over the Arctic in the SEASS,
although it improves the skill in predicting the interannual
variability in sea ice (Johnson et al. 2019). This may be another
reason to underestimate the warming trend over the Arctic and
thereby the cooling trend over Eurasia. Besides, the biases in
the winter temperature trends may also arise from the imper-
fection of models in simulating the snow cover variability and
the corresponding stratosphere—troposphere coupling (e.g.,
Cohen et al. 2012), but this is out of the scope of the current
study and needs further investigation in the future.

b. MSN EOF2

The MSN EOF2 dominates the T2m variability over the
PNA region and explains approximately 50% of the T2m
variance over the central North Pacific and western and central
North America (Fig. 2f). Its associated T2m anomalies re-
semble those during the conventional EP El Nifo (Fig. 3 in
Bronnimann 2007) and imply its likely link to the EP ENSO.
To seek its sources of predictability, the predicted winter mean
SST is regressed onto the MPC2 of T2m, which shows a
prominent EP El Nifio pattern. The SST warming is located in
the tropical central and eastern Pacific and the Indian Ocean,
and the SST cooling is over the subtropical Pacific (Fig. 4a).
The associated 5S00-hPa geopotential height anomalies manifest a
PNA-like wave train emanating from the subtropical central
Pacific (Fig. 4b). This wave train is equivalent barotropic (Fig. 4c),
and it could induce anomalous warming over northwestern North
America and cooling over the central North Pacific and south-
eastern North America via temperature advection (Fig. 4c). These
results suggest that the predictability of MSN EOF?2 is very likely
rooted in the EP ENSO forcing. To further confirm this inter-
pretation, the conventional EOF analysis was applied to the

predicted winter mean SST in the tropical Pacific (30°S-30°N,
110°E-70°W). The EOF1 of predicted SST shows a conventional
EP El Nifio pattern (Fig. 4d), and its associated 500-hPa geo-
potential height anomalies (Fig. 4e) and T2m anomalies (Fig. 4f)
quite resemble those associated with the MSN EOF2 of T2m
(Figs. 4b,c). The correlation coefficient between MPC2 of T2m
and PC1 of SST, referred to as PClggr, is 0.87, exceeding the 1%
significance level. Hence, the EP ENSO is a crucial source of
predictability for the T2m’s MSN EOF2. This result is
overall consistent with Tang et al. (2014) that ENSO’s SST
forcing dominates the most predictable T2m pattern over
the PNA region.

In addition to the EP ENSO forcing from the tropical
Pacific, the MSN EOF2 of T2m is also closely related to the
wintertime snow depth over North America (not shown). The
correlation coefficient between the MPC2 and the predicted
area-averaged (40°-60°N, 170°-60°W) snow depth index is
pretty high (—0.77). However, the regression of the wintertime
T2m onto the above snow depth index after removing the
ENSO signal does not show much significant signal in the PNA
region. Here, the removal of the ENSO signal is realized by
subtracting the regression coefficient of the predicted snow
depth index onto the simultaneous predicted Nifio-3.4 index
from the predicted snow depth index (Wang et al. 2007; Chen
et al. 2013). This result suggests that the North America snow
anomalies are more like a passive response to EP ENSO rather
than an independent atmospheric external forcing for the
MSN EOF2 of T2m.

c. MSN EOF3

The MSN EOF3 mainly influences the T2m variability over
the North Pacific and Eurasia, and it explains approximately
25% and 15% of the T2m variance over the northwestern
Pacific and central northern Eurasia (Fig. 2i), respectively. Its
associated T2m anomalies are similar to those associated with
the CP ENSO over the PNA region (e.g., Figs. 3b and 3d in
Gu and Adler 2019). It is directly induced by a barotropic
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FI1G. 4. Regression coefficients of the predicted winter mean (a) SST, (b) 500-hPa geopotential height (contours; CI = 5
gpm) and the associated wave-activity flux (Takaya and Nakamura 2001; arrow; m*s~2), and (c) T2m [shading; shading
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in (a)—(c), but regressed onto the normalized PC1 of the predicted winter mean SST in the tropical Pacific (30°S-30°N,
110°E-70°W). Dots in (a), (c), (d), and (f) and shading in (b) and (c) indicate the 5% significance level based on the two-

tailed Student’s ¢ test. The arrows whose magnitudes are smaller than 0.2 m?s~ 2 are masked out in (b) and (e).

PNA-like wave train emanating from the subtropical central
Pacific (Fig. 5b), which has a rough 90° phase difference from
that associated with the MSN EOF?2 (Fig. 4b). Linear regres-
sion of the predicted SST onto the MPC3 reveals anomalous
SST warming in the tropical central Pacific and cooling in the
tropical western and eastern Pacific (Fig. 5a), manifesting a CP
ENSO pattern (Ashok et al. 2007). These results suggest that
the third predictable pattern of T2m likely originates from the
SST forcing of the CP ENSO. The CP ENSO is captured by the
EOF?2 of predicted SST (Fig. 5d), and its associated 500-hPa
geopotential height anomalies (Fig. 5¢) and T2m anomalies
(Fig. 5f) resemble those associated with the MSN EOF3 of
T2m over the PNA region (Figs. 5b,c). The correlation coef-
ficient between MPC3 of T2m and PC2 of SST, referred to as
PC2gsr, is 0.75, exceeding the 1% significance level. These
results suggest that the CP ENSO is an essential source of
predictability for the T2m’s MSN EOF3, especially over the
PNA region.

Although the CP ENSO explains the MSN EOF3’s source of
predictability over the PNA region, it cannot well explain that
over the Eurasian continent (Figs. 5c,f), suggesting that other
factors should play a role. The MSN EOF3 over Eurasia re-
sembles the leading mode of the Eurasian surface air temper-
ature on the interannual time scale (e.g., Fig. 9a in Wang et al.
2019), which is closely related to the Eurasian snow cover (e.g.,

Allen and Zender 2011). So its possible linkage to the snow
cover is examined. Figure 6a shows the predicted winter mean
snow depth associated with the MPC3. Reduced snow depth is
observed along the Arctic rim of Eurasia to the west of 130°E
and increased snow depth over the rest of Eurasia to the north
of approximately 40°N, with maximum centers over the central
Siberian Plateau, surrounding the Altai Mountains, and to the
north of the Black Sea, respectively. This pattern is almost
identical to the EOF1 of the predicted winter mean snow depth
over Eurasia (Fig. 6b). The correlation coefficient between
T2m’s MPC3 and the PC1 of the predicted winter mean snow
depth over Eurasia, referred to as PClg,oy, is 0.46, exceeding
the 1% significance level. Moreover, the regressed sea level
pressure and T2m onto PCly,,., (Fig. 6¢) quite resemble those
associated with the MSN EOF3 (Fig. 5¢), although the T2m
anomalies over the Ural Mountains region have smaller mag-
nitude (Figs. 5c and 6¢). These results suggest that the Eurasian
snow cover is an essential source of predictability for the T2m’s
MSN EOF3 over Eurasia.

d. MSN EOF4

Compared with the first three MSN EOFs, the MSN EOF4
explains less variance of T2m over most regions of the
Northern Hemisphere except over subtropical Africa and Asia
(Fig. 21), where it accounts for approximately 30% of the
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FI1G. 5. (a)—(c) As in Figs. 4a—c, but for the MPC3. (d)—(f) As in Figs. 4d—f, but for the PC2 of the SST. The arrows
whose magnitudes are smaller than 0.05m?s 2 are masked out in (b) and (e).

variance. It delineates a seesaw-like anomalous T2m pattern,
with significant cooling surrounding the Tibetan Plateau and
warming over the Barents-Kara Seas (Fig. 7b). This temper-
ature pattern is associated with a midtropospheric wavelike
anomaly from the Arctic to the Tibetan Plateau (Fig. 7b),
implying its plausible linkage to the Arctic. Inspection of the
Arctic sea ice indicates that the MSN EOF4 is closely related to
changes in the winter mean SIC over the Barents Sea and
Norwegian Sea (Fig. 7a). This MSN EOF4-related SIC pat-
tern is almost identical to the EOF1 of the winter mean SIC
over the Arctic (70°-89°N) (Fig. 7c). The correlation coeffi-
cient between the MPC4 of T2m and the PC1 of the winter
mean Arctic SIC, referred to as PClgc, is —0.51, exceeding
the 1% significance level. However, the regressed T2m onto
PClgic (Fig. 7d) shows an opposite sign to that onto the
MPC4 surrounding the Tibetan Plateau, although they are
quite alike over the Arctic region (Fig. 7b). Note the observed
wintertime Arctic and Tibetan T2m vary in phase (e.g., Gu
et al. 2018; Zhang et al. 2019), consistent with Fig. 7d,
not Fig. 7b. Hence, this result implies the uncertain role of
the Arctic SIC in the sources of the predictability for the
MSN EOF4.

The cause-and-effect relationship between the Arctic sea ice
and the midlatitude climate is complex and has not reached a
consensus (Cohen et al. 2020). This complexity is also reflected
in the first four MSN EOFs, all of which show similar patterns
over the Barents Sea and different patterns over the midlati-
tudes (Figs. 2a,d,g,j). The correlation coefficients between the

PClg;c and the four MPC:s all exceed the 5% significance level
(Table 1), and the highest correlation is between PClgc and
MPC4. This result implies that the plausible forcing of the
Arctic sea ice on the wintertime T2m, if any, is most realized
through the MSN EOF4 although the MSN EOF4 cannot re-
produce the observed Arctic-Tibetan connection of T2m, as
discussed in the previous paragraph. Nevertheless, the T2m
signals in Figs. 7b and 7d are consistent surrounding the Ural
Mountain region. This result suggests that the Arctic SIC may
serve as a source of predictability for the T2m variations sur-
rounding the Ural Mountain.

5. Improved predictions over Eurasia by incorporating
the predictable patterns

It is essential to identify the leading predictable patterns and
their sources of predictability because it helps to understand
the T2m variability in the SEASS. It will be practically bene-
ficial if such understanding can be used to improve the pre-
diction skill. To this end, a scheme is developed as an attempt
to improve the prediction skill of T2m in the SEASS. The as-
sumption behind this scheme is that the model can capture the
sources of predictability for T2m and that it is incapable of
predicting T2m skillfully because it misrepresents the atmo-
spheric responses to these external forcing. Hence, the pre-
diction skill may be improved by incorporating the information
related to the leading predictable patterns in a statistical
manner. In practice, the prediction is reconstructed based on
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FIG. 6. Regression coefficients of the predicted winter mean
snow depth onto the normalized (a) MPC3 and (b) PClgyow, the
time series of the EOF1 of winter mean snow depth over Eurasia
(20°-130°E, 45°-75°N). (c) As in (b), but for the predicted winter
mean T2m (shading; shading interval = 0.1°C) and sea level pres-
sure (contours; contour interval = 0.1 hPa). Dots indicate the 5%
significance level based on the two-tailed Student’s ¢ test.

the spatial patterns of leading predictable patterns and time
series of the identified predictability sources:

=eS™MPCl,, +ePCl,, +ePCl  +ePCl,. ()

SST

snow

where T; is the reconstructed T2m prediction based on the ith
leading predictable pattern e; and the time series of the cor-
responding predictability source t;. The second to fourth e are
exactly the spatial patterns of the second to fourth MSN EOFs
(Figs. 2d,g,j), and their corresponding t; are the PClggr,
PCl,0w, and PClg;c discussed in sections 4b, 4c, and 4d, re-
spectively. One exception is for e; and t;. Here the spatial
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pattern of MSN EOF1 (Fig. 2a) is not used in the recon-
struction because it underestimates the warming trend over
the Arctic and misses the cooling trend over Eurasia
(Fig. 3¢). Instead, the observed EOF2 of the extratropical
wintertime T2m (e9*; Fig. 3d) is used. The €5, not the
pattern of T2m’s trend (Fig. 3b), is used for the easier ex-
tracting patterns in cross-validation. More importantly, the
e5s can well represent the observed pattern of T2m’s trend
(Fig. 3b), and its time series is highly correlated (r = 0.92) to
that of the observed T2m’s trend, which is obtained by pro-
jecting the observed T2m onto the observed T2m’s trend
(Fig. 3b). Here t; equals MPCl,,, that is obtained by pro-
jecting the MSN EOF1 onto the predicted T2m over the ex-
tratropical Northern Hemisphere (20°-89°N). The use of
MPCl1 1, guarantees that the time series of t; can be gener-
ated within the model for the prediction purpose, although
the spatial pattern is replaced by the observation (€5"). The
PC2gst was not used to replace t; because the focus is on
Eurasia, where the prediction skill is low (Fig. 1a), and the in-
fluence of the CP ENSO is relatively weak (Fig. 5f). The am-
plitudes of t; are adjusted prior to the reconstruction to match
their substitutes using the standard deviations of the substitutes.

To test the capability of the calibration scheme, the leave-
one-out cross-validation method (Michaelsen 1987) was em-
ployed. This method reconstructs the wintertime T2m in a
specific year based on the remaining years other than this year
using the forecast model in Eq. (5). For example, the MSN
EOF and EOF analyses are performed during the years 1981-
90 combined with 1992-2016, and the resultant information
is used to reconstruct the T2m in the year 1991. The above
approaches are repeated so that T2m in every year during
1981-2016 is reconstructed. Figure 8a shows the ACC between
observed and reconstructed T2m using the first four MSN
EOFs in the leave-one-out cross-validation. The ACC gener-
ally exceeds 0.3 over large areas of midlatitude Eurasia. This
performance is in sharp contrast to the low and even negative
ACC based on the ensemble mean of direct model outputs in
this region (Fig. 1a). It suggests that the reconstructed T2m
shows apparent improvement in the prediction skill over
midlatitude Eurasia (e.g., between 45° and 70°N) compared
with the direct ensemble mean of the SEASS, especially in
regions to the east of Ural Mountains (Fig. 8b). The im-
provement of the ACC (Fig. 8b) projects well onto the pattern
of the MSN EOF3 (Fig. 2¢g) and e5™ (Fig. 3d), implying its
primary origins from the Eurasian snow cover and the warm
Arctic—cold continent pattern. Inspection of the effects of in-
dividual factors on the ACC confirms this inference (Fig. 9).
Meanwhile, it is noteworthy that the prediction skill of re-
constructed T2m is worse than the direct ensemble means of
the SEASS in most of the Northern Hemisphere other than
Eurasia. On the one hand, this result is understandable because
the performance of the SEASS is already good in regions
outside Eurasia. It is insufficient to use only four predictable
modes for the reconstruction in these regions. On the other
hand, this result suggests that it is very likely an efficient way to
replace the model predicted T2m with reconstructed T2m over
midlatitude Eurasia to improve the prediction skill of winter-
time T2m in the SEASS.
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FIG. 7. Regression coefficients of the predicted winter mean (a) SIC and (b) T2m (shading; shading interval =

0.02) and 500-hPa geopotential height (contour; contour interval = 1 gpm) onto the normalized MPC4. (c),(d) Asin
(a) and (b), but regressed onto the normalized PC1 of the predicted winter mean SIC in the Arctic (70°-89°N). Dots
indicate the 5% significance level of the (top) SIC and (bottom) T2m based on the two-tailed Student’s ¢ test. The

regression coefficients in (c) and (d) have been multiplied by —1 for the convenience of comparison.

6. Conclusions and discussion

Slow-varying atmospheric boundaries are the main sources
of seasonal climate predictions, and their footprints on climate
variables may be captured as predictable patterns. Based on
the 36-yr hindcast data from the SEASS, the latest ECMWF
seasonal forecast system, this study extracted the leading pre-
dictable patterns of the extratropical Northern Hemisphere
T2m in boreal winter via the MSN EOF analysis and identified
their sources of predictability. The MSN EOF1, the dominant
predictable pattern, explains 53.2% of the total variance and
reflects the long-term warming trend of T2m. The SEASS
underestimates the observed magnitude of the warming trend
and misses the observed warm Arctic—cold continent pattern.
The MSN EOF2 and MSN EOF3, which explain 15.9% and
9.3% of the total variance, respectively, manifest a wavelike
T2m pattern over the PNA region. Their sources of predict-
ability can be traced to the tropical forcing associated with the
EP and CP ENSO, respectively. In addition, the MSN EOF3
has large loading over the midlatitude Eurasia that cannot be
explained by the CP ENSO. Inspection suggests that this T2m
variability over Eurasia can be attributed to the forcing from the
Eurasian snow. The MSN EOF4 explains only 5.1% of the total
variance, and it delineates T2m variability surrounding the
Tibetan Plateau. Its source of predictability can be partially
traced to the Arctic sea ice in the Barents and Norwegian Seas
with some uncertainty. The SEAS5’s prediction skill of the

wintertime T2m is overall good in the extratropical Northern
Hemisphere except over midlatitude Eurasia. A calibration
scheme is developed as an attempt to improve the prediction
skill of T2m by reinforcing the information of the first four MSN
EOFs and their sources of predictability. It reveals that the
prediction skill in terms of the ACC improves significantly over
midlatitude Eurasia in a leave-one-out cross-validation. This
result confirms the importance of the predictable patterns and
their sources in the seasonal predictions and implies a possible
way to improve the wintertime T2m prediction over Eurasia.
In this study, the wintertime atmospheric external forcing
was identified as a source of predictability for the leading
predictable patterns. This approach is usually acceptable for
remote forcing such as that from ENSO, but it may be ques-
tioned for the in situ atmospheric boundaries such as midlati-
tude snow cover and sea ice because of their strong
interactions with the atmosphere. On the one hand, such
questions are reasonable to some extent because there are

TABLE 1. Correlation coefficients between the predicted PClg;c
and the four MPCs during winters 1981-2016. Values exceeding the
5% and 1% significance levels based on the two-tailed Student’s ¢
test are denoted by one and two asterisks, respectively (* and **).

MPC1
—0.40%*

MPC2
0.33*

MPC3
—0.40%

MPC4
—0.51%*

PClgic
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FIG. 8. (a) The prediction skill of reconstructed T2m using the first four MSN EOFs measured by the ACC
between observed T2m and reconstructed T2m. See text for details of the reconstruction. (b) The difference of
ACC between reconstructed T2m prediction skill (Fig. 8a) and direct T2m prediction skill in the SEASS
(Fig. 2a). Dots indicate the 5% and 10% significance level based on the two-tailed Student’s ¢ test in (a) and (b),

respectively.

indeed interactions between the extratropical atmosphere and
the underlying snow cover or sea ice. Strictly speaking, the sig-
nals of wintertime Eurasia snow cover and Arctic sea ice used in
this study are the results of these interactions. On the other hand,
it is reasonable to regard these wintertime signals as relative
external forcing because they indeed force the atmosphere in the
interaction with the atmosphere. As a result, reconstructed T2m
by incorporating these forcing signals improves the prediction
skill significantly over Eurasia. Nevertheless, it is noteworthy
that the SEASS is a coupled model that does not have boundary
forcing. Hence, the identified atmospheric external forcing and,
thereby, the predictability sources should finally be from initial
fields of long memory. It is meaningful to track these initial

90N

60N

30N

0 30E 60E 90E 120E 150E 180

90N

90N

conditions for the predictable patterns, but it cannot be done in
this study because of the unavailability of related data. Last but
not least, this study is based on the SEASS. It would be mean-
ingful to examine the robustness of the results in other seasonal
forecast systems, and this will be done in the future.
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