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ABSTRACT

Nonlinear forcing singular vector (NFSV)-based assimilation is adopted to determine the model

tendency errors that represent the combined effect of different kinds of model errors; then, an NFSV-

tendency error forecast model is formulated. This error forecast model is coupled with an intermediate

complex model (ICM) and makes the ICM output closer to the observations; finally, an NFSV-ICM

forecast model for ENSO is constructed. The competing aspect of the NFSV-ICM is to consider not only

model errors but also the interaction between model errors and initial errors because of the mathe-

matical nature of the NFSV-tendency errors. Based on the prediction experiments for tropical SSTAs

during either the training period (1960–96; i.e., when the NFSV-ICM is formulated) or the cross-

validation period (1997–2016), the NFSV-ICM is determined to have a much higher forecast skill in

predicting ENSO that, specifically, extends the skillful predictions of ENSO from a lead time of 6 months

in the original ICM to a lead time of 12 months. The higher skill of the NFSV-ICM is especially reflected

in the predictions of SSTAs in the central and western Pacific. For the well-known spring predictability

barrier (SPB) phenomenon that greatly limits ENSO forecasting skill, the NFSV-ICM also shows great

abilities in suppressing its negative effect on ENSO predictions. Although the NFSV-ICM is presently

only involved with the NFSV-related assimilation of SSTs, it has shown its usefulness in predicting

ENSO. It is clear that the NFSV-based assimilation approach is effective in dealing with the effect of

model errors on ENSO forecasts.

1. Introduction

El Niño–Southern Oscillation (ENSO), which is

known as the dominant interannual mode in the tropical

Pacific, has been the focus of scientists and the public

over the past several decades because of its global

impact on climate/weather (McPhaden et al. 2006).

Through efforts over the decades, there has been sig-

nificant progress toward observing, understanding, and

simulating ENSO (Zebiak and Cane 1987; Jin 1997a,b;

McPhaden et al. 1998; Timmermann et al. 2018). Con-

sequently, the skillful predictions of Niño-3.4 SST

anomalies related to ENSO have been achieved 6–

12 months in advance (even up to 2 years) in hindcast

experiments (Chen and Cane 2008; Luo et al. 2008).

To date, more than 20 climate models have been used

to routinely predict ENSO in real time (see the website

at https://iri.columbia.edu/our-expertise/climate/enso/).

However, the skillful and realistic forecasting of

ENSO can only be made with, at most, a 6-month lead

(Barnston et al. 2012).

Initial errors have been recognized as one of the main

factors that limit ENSO forecast skills. To reduce the

impact of initial errors, great efforts have been made to

optimize initial conditions under model constraints and

observations by data assimilation (e.g., Chen et al. 1997;

Behringer et al. 1998; Sugiura et al. 2008; Gao et al. 2016;

etc.). In addition, intensified observations in some key

areas (i.e., targeted observations) were suggested to

provide the most useful observations for data assimi-

lation to suppress initial error growth and provide a
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skillful prediction of ENSO (Mu et al. 2015; Duan and

Hu 2016; Hu and Duan 2016; Duan and Feng 2017; Tao

et al. 2017, 2018). For example, Morss and Battisti

(2004a,b), based on the observation system simulation

experiment (OSSE), suggested that for ENSO fore-

casting longer than a few months, the most important

area for observations is the eastern equatorial Pacific

and its south; the secondary region of importance is

the western equatorial Pacific. By using sequential

importance sampling assimilation method, Kramer

and Dijkstra (2013) also showed that the optimal ob-

servation locations for SST are located in the eastern

tropical Pacific for minimizing the uncertainty in the

Niño-3 index.

In addition to initial errors, an increasing number of

studies have also emphasized the importance of model

errors in yielding ENSO prediction uncertainties (Latif

et al. 2001; Stainforth et al. 2005; Zheng et al. 2009a; Wu

et al. 2016; Tao et al. 2019). For instance, Jin et al. (2008)

noted that the accuracy of ENSO variability is related to

the simulated climatology as a result of a poor prediction

skill when using models with climatological biases.

As one source of model errors, the model parametric

errors (MPEs) were also found to have a role in yielding

model systematic errors and influencing ENSO vari-

ability (Bejarano and Jin 2008; Macmynowski and

Tziperman 2008; Zhu and Zhang 2018). Tao et al. (2019)

investigated the impact of MPEs on ENSO predictions

from the perspective of optimal error growth and indi-

cated that MPEs have the potential to influence the

strength of the Bjerknes feedback, which is crucial to

the development of SST anomalies, thus disturbing

ENSO predictions. In addition, they also demon-

strated that the spring predictability barrier (SPB)

phenomenon of ENSO can also be caused by MPEs

besides initial errors. To reduce the effect of the

model errors caused by the MPEs, Zhang et al. (2018)

made a skillful hindcast of the strong El Niño event in

2015 by optimizing two key parameters associated

with Bjerknes feedback. In particular, Wu et al. (2016)

reduced the SPB phenomenon of ENSO and extended

the valid lead time by considering multiple physical

parameters determined by the ensemble adjustment

of the Kalman filter.

Missing some processes in models also tends to induce

model errors and affect ENSO simulations and predic-

tions. For example, westerly wind bursts (WWBs) have

been shown to have the ability to excite the onset of

El Niño events (Chen et al. 2015). Lopez and Kirtman

(2014) demonstrated that the inclusivity of state-

dependent WWBs in an ENSO model can greatly im-

prove the ENSO prediction skill. Therefore, when the

model lacks the WWB effect and yields model errors,

the ENSO forecast skill can be largely influenced.

Yu et al. (2003) suggested that the characteristics of

WWBs depend on the large-scale SST field and there-

fore indicated that the model errors induced by the lack

of WWBs may be of a certain structure and significantly

disturb the predictions of ENSO. Of course, model er-

rors are not only caused by some physical processes that

do not appear in models but also due to those that are

highly simplified. For an intermediate coupled model,

model errors are significant and from different sources

(Qi et al. 2017); moreover, it is hard to distinguish their

effects in predictions. Therefore, improving some pro-

cesses in models may fail to enhance the ENSO pre-

diction skills due to the interaction of other model

errors. Finding a way to obtain or filter the combined

effect of kinds of model errors is promising to improve

the ENSO prediction.

To this end, Zheng and Zhu (2016) considered syn-

thetically the model uncertainties and developed a first-

order Markov stochastic model that is added to the

tendency equation for SST in the intermediate complex

model (ICM) in an attempt to depict the approximately

combined effect of model uncertainties. Such an ap-

proach has the ability to filter unpredictable stochastic

processes and capture more realistic ENSO evolutions

(Zheng et al. 2009a). But there are still large systematic

biases since the Markov stochastic model perturbation

cannot approximate the effect of all model errors to the

greatest extent (Qi et al. 2017). Therefore, an optimal

method was suggested to represent the combined effect

of different kinds of model errors. Duan and Zhou

(2013) extended the (linear) forcing singular vector

(Barkmeijer et al. 2003) to a nonlinear field and pro-

posed the approach of a nonlinear forcing singular

vector (NFSV), which depicts themodel tendency errors

that have the largest effect on prediction uncertainty

(Duan et al. 2016; Qi. et al. 2017). Then with the idea of

data assimilation, Duan et al. (2014) improved the

NFSV approach so that it can be used to extract the

comprehensive tendency errors (see section 2). Using

the NFSV-related assimilation, they obtained the ten-

dency errors of the Zebiak–Cane model (Zebiak and

Cane 1987), which was in turn forced on the SST equa-

tion of the Zebiak–Cane model in an attempt to offset

the effects of the model errors. As a result, they suc-

cessfully simulated realistic ENSO evolutions using the

Zebiak–Cane model equipped with the NFSV-related

assimilation.

The impressive effect of NFSV on correcting model

stimulates us to apply the NFSV to improve the ENSO

prediction. It should be pointed out that the model er-

rors are time dependent and the NFSV-tendency errors

during predictions are case dependent. Thus, to improve
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the prediction, we have to obtain the mode tendency

errors in advance. The observation data are available so

that we can obtain the NFSV-tendency errors during the

assimilation period. However, the NFSV-tendency er-

rors beyond the assimilation period are unavailable due

to unavailable observations. Therefore, can we use the

NFSV-related assimilation for predictions? If yes, how do

we do it? In doing so, can the prediction skill be greatly

improved by using the NFSV-related assimilation?

To address these above questions, we develop an ap-

proach to apply the NFSV-related assimilation in ENSO

predictions and establish a new ENSO forecast system by

using an intermediate coupledmodel. The study is classified

into two parts: the first part introduces the new ENSO

forecast system,with theNFSV-related assimilation, and its

performance in ENSO predictions; the second part exam-

ines the prediction skill in distinguishing El Niño types (i.e.,
the EP and CP El Niño) to explain the physical reasons for

improving the prediction skill associated with the various

types of ENSO. In the present article, we focus on the first

part (i.e., the new ENSO forecast system and its perfor-

mance in ENSO predictions).

The remainder of this paper is organized as follows.

Section 2 provides a description of the NFSV approach

and its related assimilation. Section 3 describes the in-

termediate coupled model for ENSO (ICM) used in the

present study. In section 4, we develop the new ENSO

forecast system based on the NFSV-related assimilation

and the ICM. In section 5, the performance of the

NFSV-ICM is examined. Finally, we present a summary

and a discussion in section 6.

2. Methods

In the present study, we use the NFSV-related as-

similation approach to correct the ENSO model and

establish the ENSO forecast system. For convenience,

we briefly describe the idea behind the NFSV and

NFSV-related assimilation.

a. The NFSV approach

TheNFSV is a nonlinear extension of the (linear) forcing

singular vector proposed by Barkmeijer et al. (2003). It

considers the combined effect of different kinds of model

errors and represents the tendency error that causes the

largest prediction error at the prediction time (Duan and

Zhou 2013; Duan and Zhao 2015). The NFSV f* can be

derived from the maximization problem shown in Eq. (1):

J(f*)5max
f2V

kM
t
(f)(u

0
)2M

t
(0)(u

0
)k , (1)

where Mt(0) represents the propagator of a nonlinear

model [Eq. (2)] and Mt(f) represents that of the

nonlinear model but with a tendency perturbation f [see

Eq. (3)]; u represents the state variable and u0 denotes

its initial state. The term J represents the cost function

that measures the deviation in the state from the

reference stateMt(0)(u0) in terms of the norm k�k due
to the effect of the tendency perturbation f. Here, f 2
V tells the constraint of the tendency perturbation.

Usually, we define kfk# d, which means the tendency

error is less than d [d is a positive number; the details

can be seen in Duan and Zhou (2013) and Duan et al.

(2016)]: 8><
>:

›u

›t
5F(u, t)

uj
t50

5 u
0

, (2)

8><
>:

›u

›t
5F(u, t)1 f

uj
t50

5u
0

. (3)

From Eq. (1), it is easily known that if Mt(0)(u0) is a

control forecast, the NFSV represents one kind of op-

timal tendency perturbation of the control forecast and

has the potential to cause the perturbed forecast largest

departure from the control forecast at the prediction

time. That is, the control forecast Mt(0)(u0) is most

sensitive to the NFSV-tendency perturbation, which

may provide information on correcting the control

forecast skill. Of course, we can also modify the cost

function of the NFSV according to a particular physical

problem. For example, to obtain a tendency perturba-

tion that can induce the largest uncertainties within the

prediction period from t0 to t, the cost function can be

modified as

J(f*)5max
f2V �

t

t5t0

kM
t
(f)(u

0
)2M

t
(0)(u

0
)k . (4)

In this case, the cost function J gives the largest accu-

mulated departure from the control forecast that is

merely induced by the tendency error.

b. The NFSV-related assimilation

Based on the NFSV approach, Duan et al. (2014)

proposed an optimal forcing vector (OFV) approach to

offset the model errors and improve the model simula-

tion ability, in which they simply modified the cost

function J of the NFSV approach [see Eq. (5)]. TheOFV

represents total tendency perturbation, which is super-

imposed on the tendency equation of the model and

makes the model simulation closest to the observations.

The OFV, which is denoted by fo, is related to a mini-

mization (or assimilation) problem:

OCTOBER 2019 L I NG J I ANG AND WANSUO 1323



J(fo)5min
f
�
t

t5t0

kM
t
(f)(u

0
)2 uobs(x, t)k, (5)

where uobs(x, t) denotes the time series of the observa-

tion data andMt(f)(u0) represents the model simulation

result at the t month, which is obtained by integrating

Eq. (3) with an initial state u0.

The assimilation problem Eq. (5) is identical to the

following optimization problem:

J(fo)5max
f2V �

t

t5t0

[kM
t
(f)(u

0
)2M

t
(0)(u

0
)k] ,

V5

(
f

�����J(f)5min�
t

t5t0

[kM
t
(f)(u

0
)2 uobs(x, t)k]

)
.

(6)

That is, the OFV derived by Eq. (5) satisfies Eq. (6),

while Eq. (6) bears greatly resemblance to Eq. (4) for

the NFSV approach. In this situation, the OFV can be

understood as a tendency perturbation that is con-

strained by f 2 V, which makes the perturbed forecast

depart from the control forecast (i.e., the unperturbed

forecast) at the greatest extent but remain closest to the

observation due to the constraint condition. In this

sense, the OFV is mathematically consistent with the idea

of the NFSV. For convenience, here, we rename the

‘‘OFV’’ as the ‘‘NFSV’’, and the related calculation is

called the ‘‘NFSV-related assimilation.’’ The NFSV-

related assimilation (which is used to treat model errors)

can show its difference from the initial value assimilation

(which is being used to deal with the initial errors). In the

present study, we use the NFSV-related assimilation to

correct the ICM for ENSO and establish a new ENSO

forecast system.

3. ENSO model and data

The ENSO model adopted here is an ICM developed

by Zhang et al. (2003), and its forecast results have been

presented on the International Research Institute for

Climate and Society (IRI) web page, showing real-time

ENSO forecast results generated by more than 20

models across the globe (see https://iri.columbia.edu/our-

expertise/climate/forecasts/enso/current/?enso_tab5enso-

sst_table). The ICM is an air–sea coupled model that

consists of a statistical wind stress model, an in-

termediate dynamic ocean model (Keenlyside and

Kleeman 2002), and an SST anomaly model that rep-

resents surface ocean thermodynamics. The wind stress

model is constructed from the singular value de-

composition (SVD) approach that determines the re-

lationship between the SST and the wind field from

1963 to 1996. To represent the effect of thermocline

fluctuations on SST variability, an empirical model is

developed to parameterize the temperature of the

subsurface water entrained into the mixed layer (Te)

from the sea surface height. As a result, the SST

anomaly model with the Te model can capture the re-

alistic features of ENSO evolution, including the pe-

riod and amplitude (Zhang et al. 2005). However, since

some processes are missing in this model, such as the

effects of freshwater flux and salinity, which were

found to have a role in the amplitude of ENSO (e.g.,

Zhang et al. 2012), the ICM fails to well capture the

strength of ENSO in realistic predictions (Zhang and

Gao 2016; Zheng and Zhu 2016). In addition, the ICM

only represents the air–sea interaction in the tropical

Pacific and ignores the effect of the extratropical

Pacific; therefore, considerable model errors still

exist in the model itself for realistic prediction. Zheng

et al. (2009a) found that initial perturbations-related

ensemble predictions have small effect on improving

ENSO predictions using the ICM, while model

perturbations-based ensemble predictions show large

improvement in ENSO predictions. Especially, Qi

et al. (2017) showed that model errors in the ICM are

more important than initial errors in realistic pre-

diction. All these studies encourage us to use the

NFSV approach to optimally capture the model er-

rors so as to improve the ENSO prediction skills.

Observational and/or reanalysis data are required

to initialize and evaluate the ICM in ENSO forecasting.

In the present study, we follow Zhang et al. (2005)

and adopt a simple nudging procedure to initialize the

ICM by using SST observations (Barnett et al. 1993).

The wind stress anomaly is reconstructed from the

SST field during the period from 1854 to the start time

of the forecast via the SVD-based historical SST–

wind relation. Then, the reconstructed wind field

is used to force the ocean model to initialize the

ocean dynamic states. In addition, the observed SST

anomalies are nudged into the SST anomaly model

to generate the initial SST field. Here, the observed

monthly SST field is from the National Oceanic and

Atmospheric Administration (NOAA) Extended

Reconstructed SST, version 3b dataset [ERSSTv3b;

(Smith et al. 2008)], and the monthly wind stress

field is from the National Centers for Environmental

Prediction–National Center for Atmospheric Research

(NCEP–NCAR) reanalysis (Kalnay et al. 1996). The

former observed SST data span from 1854 to present,

and the latter wind stress field spans from 1949 to the

present.

As for other configurations of the ICM, the readers

can refer to Zhang et al. (2005).
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4. ENSO forecast system of the NFSV-related
assimilation

Based on the ICM and its initial assimilation de-

scribed in section 3, we develop the ENSO forecast

system using the NFSV-related assimilation associated

with the model error correction. The main idea is as

follows. An NFSV-tendency error forecast model is

built up and then coupled with the ICM, with the initial

assimilation in section 3, to correct the ICM and

achieve a useful skill that is substantially higher than

that of the ICM that only has the initial assimilation. The

ENSO forecast system with the NFSV-tendency error

model can be achieved through the following three

steps: (i) reveal the NFSV-type tendency error that

makes the model simulation for SST anomalies closest

to those that are observed by using the NFSV-related

assimilation approach, (ii) derive a tendency error

forecast model by considering a function of the pre-

determined NFSV-tendency errors as the observed ini-

tial SST, and (iii) couple the NFSV-type tendency error

forecast model with the ICM and finally establish

the ENSO forecast system, which not only predicts

the SSTA but also estimates the future tendency

error.

a. The NFSV-type tendency error

Focusing on the SST predictions, we attribute the

combined effect of themodel errors to the SST tendency

errors. The NFSV-related assimilation problem is con-

structed as follows:

J(f
t
*)5min �

t01nDt

t5t0

kX(f
t
, u

0
)2Xobs(t)k, (7)

where Xobs and X denote the observed and simulated

monthly SST anomalies within a 1-yr assimilation win-

dow [t0, t0 1nDt] (Dt5 1month, n 5 12) and u0 repre-

sents the initial analysis obtained by the initial value

assimilation. Here f t* represents the NFSV-type ten-

dency error that can lead the model to output accurate

SST anomalies. Here, the tendency errors are monthly

dependent in the 1-yr assimilation window. That is,

the tendency error is constant within one month to

guarantee the mutually adjustment of ocean and

atmospheric variables (Duan et al. 2014). Thus, ac-

cording to Eq. (7), we can obtain a set of NFSV-type

tendency errors with twelve components [i.e.,

f t0,12Dt
* 5 (f t01Dt

* , . . . , f t0112Dt
* )] in the 1-yr assimilation

window, namely, each month has one tendency error.

Obviously, the NFSV-type tendency errors are some-

what different due to the different assimilation windows

and initial times. For the period from 1854 to 2017,

we take each month as the initial month of the 1-yr as-

similation window and calculate the NFSV-type ten-

dency error based on the NFSV-related assimilation.

Figure 1 shows a sketch diagram of the NFSV-related

assimilation for different initial months. Then, we

obtain a set of monthly dependent NFSV-type tendency

errors with respect to the 12 components. For theNFSV-

type tendency errors of different assimilation windows,

we perform a composite analysis on the components

whose months overlap in different assimilation win-

dows. Then, we can obtain 164 monthly tendency errors

during the period from 1854 to 2017.

A snapshot of the winter components of the NFSV-

type tendency errors during El Niño episodes is dis-

played in Fig. 2. It is shown that large NFSV-type

tendency errors are found near the north and south

boundaries of the model. This is probably because the

ICM is a regional model that has low skill in simulating

the climate state near the model boundaries. It is also

found that large tendency errors arise in the eastern

Pacific cold tongue, which indicates that the intensity of

the El Niño event simulated by the ICMhas large errors.

When further examining the relationship between the

evolution of the observed SST anomalies and the

corresponding NFSV-type tendency errors along

the equator (see Fig. 3), it is illustrated that the NFSV-

tendency errors exhibit an ENSO-like oscillation, of

which the tendency errors are mainly located east of

1608W; furthermore, these errors are positive (negative)

when the observed SSTs are warming (cooling). From

the definition of the NFSV-type tendency errors in

Eq. (7), it is inferred that the ICM tends to underesti-

mate both El Niño and La Niña events in terms of their

amplitudes due to the effects of model errors, while the

NFSV-tendency errors can offset such effects (see Duan

et al. 2014).

b. The NFSV-type tendency error forecast model

In step i, we obtain the NFSV-type tendency errors

during different assimilation windows, which can correct

the ICM to simulate the observed ENSO cycle. Note that

the time-dependent observations adopted to determine

the NFSV-tendency errors are available during the as-

similation windows. However, for predictions, we do not

have access to observations during the prediction time

period and, thus, cannot obtain the correspondingNFSV-

tendency errors by the approach in step i. By realizing the

usefulness of the NFSV-related assimilation in correcting

the model errors, we hope this assimilation can be used

for the predictions. Therefore, how do we make the

predictions via this type of assimilation?

According to Eq. (7), it is known that NFSV-tendency

errors are dependent on the known observed SST
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anomalies. Furthermore, we find that the related ob-

servation series during different assimilation windows

correspond to different NFSV-tendency errors. That is,

the NFSV-tendency errors are flow dependent. Figure 3

shows that a certain flow-dependent relation exists be-

tween the NFSV-type tendency error and the observed

SST anomaly (see section 4a). That is, the NFSV-type

tendency errors are positive (negative) in the eastern

FIG. 1. Schematic diagram illustrating the NFSV-related assimilation windows and the strategy of

the composite NFSV-tendency errors. The twelve blue shaded boxes in each row cover one assimi-

lationwindow, with the initial monthmarked on the vertical axis, which denote the 12members of the

NFSV-tendency errors during the 1-yr assimilation window. The red shaded boxes on the last row

represent the 164monthly tendency errors during the period from1854 to 2017, which are obtained by

taking the ensemble mean of the members whose months overlap in different assimilation windows.

FIG. 2. Horizontal distributions of the NFSV-type tendency errors (1026 8C s21) during December of (a) the 1987

El Niño year, (b) the 1997 El Niño year, (c) the 2009 El Niño year, and (d) the 2015 El Niño year.
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tropical Pacific when the observed SSTs are warming

(cooling). This relation encourages us to construct an

equation that addresses the dependence of the NFSV-

tendency errors on the observed SST anomalies. Then,

we can use this equation to forecast futureNFSV-tendency

errors according to known observations.

The SVD approach is used to clarify the flow-

dependent relation between the NSFV-type tendency

errors and the observed SSTs. We can build up a lead–

lag relationship between the observed SST anomalies

and the NFSV-tendency errors by the SVD. That is, we

develop an equation to describe the sensitivity of the

lagged NFSV-tendency errors to the lead observations,

which allows for the estimation of the NFSV-tendency

errors during the forecast period using the current ob-

servations. To achieve this, the covarianceC in the SVD

analysis is calculated from the matrix including the

observed SST anomalies and the lag NFSV-tendency

errors [see Eq. (8)]:

C
l
(i, j)5

1

N2 1
�
tn

t5t1

SST(t, i, j)NFSV(t1 l, i, j), (8)

where (i, j) represents the model grid, l represents the

lagged months of the NFSV-type tendency errors rela-

tive to the SST anomalies, and N represents the time

FIG. 3. Time-dependent section along the equator of the (a) observed SST anomalies (8C) and (b) NFSV-

tendency errors (1026 8C s21). The NFSV-tendency errors show an ENSO-like oscillation for the SST

component.
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length for computing the covariance C. Then, the

lead–lag relation is obtained by performing the SVD

technique on the covariance matrix C (Bretherton et al.

1992), which can be written as

TE
l
5aF

l
(SST) , (9)

where Fl describes the relationship between the lag-

ged NFSV and the l month lead SST anomaly and TE

represents the NFSV-tendency error estimated by

Eq. (9) with the l month lead observed by the SST

anomaly field. Such a lead–lag relationship provides

the possibility of estimating NFSV-tendency ten-

dency errors in advance. That is, when the prediction

is initialized at one month, the future NFSV-tendency

errors can be forecasted through this lead–lag re-

lation by inputting the known initial observations.

Thus, an NFSV-tendency error forecast model can be

constructed.

The NFSV-tendency error forecast model, as shown

in the last paragraph, can be constructed using the

known SST observations and predetermined NFSVs. To

examine its validity, we take the period from 1960 to

1996 as the training period to determine the NFSV-

tendency error forecast model and the period 1997–2017

as the cross-validation period. In the training period, 10

leading SVDmodes are used to construct Fl in Eq. (9),

while the remaining SVD modes are discarded due to

their nearly stochastic and unrelated properties. Since

the truncation of the SVD modes may reduce the

variance in the NFSV-tendency errors, a scalar co-

efficient a is introduced to scale the strength of the

tendency errors. In the present study, the coefficient a

is taken as 0.6 and verified to be more applicable than

other values in predicting ENSO. The experiments

for determining a and SVD modes are referred to in

the appendix.

Now, we use theNFSV-tendency error forecast model

to predict the NFSV-type tendency errors during the

cross-validation period. As mentioned above, tendency

errors are significant along the equator and northern

boundary of the model. Thus, to demonstrate the ef-

fectiveness of the NFSV-tendency error forecast model,

we present the predicted NFSV-tendency errors along

the equator (Fig. 4a) and northern boundary of the

model (Fig. 4b). In particular, Fig. 4 displays the pre-

dicted NFSV-tendency errors at the 6-month lead time

during the period 1990–2001, which includes 1990–96 as

part of the training period and 1997–2001 as part of the

cross-validation period. It is shown that the predicted

NFSV-type tendency errors during the training period

1990–96 are almost identical to the NFSV-type tendency

errors predetermined by the NFSV assimilation along

both the equator and northern boundary of the model,

suggesting that the lead–lag relationship between the

observed SST and NFSV-type tendency errors is well

captured by the function Fl in Eq. (9). For the cross-

validation period 1996–2001, it is also found that

the predicted NFSV-tendency errors are well ap-

proximated compared to the predetermined NFSV-

tendency errors, including the amplitudes and locations.

In particular, the phase change in the NFSV-tendency

errors fits the predetermined errors very well. All of

these results suggest that the constructed NFSV-

SST relation [i.e., Eq. (9)] has the ability to predict

future NFSV-tendency errors from the current SST

field. Therefore, it can be confidently said that the

NFSV-tendency error can reduce the model un-

certainties and make a better prediction when its

related tendency error forecast model is coupled

with the ICM.

c. The ENSO forecast system of the NFSV
assimilation

We combine the original ICM with its initial assimi-

lation and the NFSV-tendency error forecast model

determined by the NFSV-assimilation approach and fi-

nally formulate a new ENSO forecast system by super-

imposing the predicted NFSV-tendency error on the

SST tendency of the ICM. Figure 5 shows a schematic

diagram of the new ENSO forecast system (hereafter

NFSV-ICM). The initialization scheme in the NFSV-

ICM is the same as that in ICM (section 3). Specifically,

we run the oceanic component of the ICM forced by

the reconstructed wind before the prediction begins,

nudge the observed SST to the model, and then finally

obtain the initial states of the predictions. Using these

initial states, we integrate the NFSV-ICM and make

the ENSO predictions. The predicted NFSV-tendency

errors are superimposed on the total tendency of the

SST equation in the ICM with the initial value as-

similation, which then perturbs the predicted SST

anomalies at each time step of the model integral. As

such, the predicted NFSV-tendency errors also sup-

press the effects of the initial errors on the prediction

uncertainties. Theoretically, the NFSV-tendency er-

rors consider the interaction between the model errors

and initial errors.

5. The performance of the NFSV-ICM

The predictions of SST anomalies (SSTAs) associated

with ENSO are made with 1-, 2-, 3-, . . . , 12-month lead

times for the period 1960–2016. For comparison, the

prediction results from both the original ICM and

NFSV-ICM are output, and their skill scores are
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evaluated against the observed monthly mean SST

anomalies. In addition, we note that theNFSV-tendency

error forecast model embedded in the NFSV-ICM is

obtained by the NFSV-related assimilation for the

observed SST during the training period of 1960–96.

Hence, the NFSV-ICM should be first validated by

predicting ENSO during the training period of 1960–

96 and then try to show whether the feedback among

state variables is reasonable. Then, the model should

be tested by forecasting ENSO during the cross-

validation period of 1997–2016 and examining its

accountability in more realistic predictions.

FIG. 4. Time-dependent NFSV-tendency errors determined by the NFSV-related assimilation (shaded)

and those estimated from the NFSV-tendency error forecast model with a 6-month lead time (contours)

along (a) the equator and (b) the northern boundary of the model. The purple dashed lines distinguish the

training period (1991–96) from the cross-validation period (1997–2001). The shaded regions either during

the training period or cross-validation period coincide well with those marked by contours, which indicates

that the NFSV-tendency error forecast model is valid in estimating future NFSV-tendency errors. The

contour interval is 2 3 1026 8C s21.

OCTOBER 2019 L I NG J I ANG AND WANSUO 1329



a. Predictions of ENSO during the training period
of 1960–96

To examine the prediction skill of SSTAs, two fre-

quently used measurements are selected. One is the

root-mean-square error (RMSE), which represents the

deviation in the predictions from the observations, and

the other is the anomaly correlation coefficient (ACC)

that measures how parallel predictions and observations

reach. Figures 6 and 7 illustrate the spatial distributions

of the ACC and RMSE for predicted SST anomalies

against those for the observed SSTAs in the tropical

Pacific, respectively. It is shown that, for all lead times,

the NFSV-ICM shows a much higher prediction skill

(either in the ACC or RMSE) in the central tropical

Pacific than the ICM. The NFSV-ICM also demon-

strates skillful predictions of SSTAs in the far western

tropical Pacific, while the ICM fails to do so. In the

meridional direction, the skillful predictions generated

by the NFSV-ICM cover almost the whole tropical

Pacific, especially for short lead times. However, the

ICM only shows skill in the region between 108N and

108S; furthermore, with increasing lead times, the skills

drop quickly in the eastern tropical Pacific and near the

equator. When the lead time is up to 9 months, the ICM

predictions lose useful skill in almost the whole tropical

Pacific and even show a negative ACC off the equator

(Fig. 6c1). Comparatively, the ACC of the NFSV-ICM

predictions is still greater than 0.6 in the central tropical

Pacific at this lead time (Fig. 6c2).

From the perspective of the RMSE, it can be seen that

the prediction errors are much larger along the equator

when the predictions are made using the ICM (left panels

of Fig. 7). At short lead times, the prediction errors are

mainly concentrated near the coast of Peru and, with

increasing lead times, such prediction errors in the eastern

Pacific become large and extend toward the west. In ad-

dition, large prediction errors are also found near the

model boundaries; these errors propagate to the central

equatorial Pacific with time and increase to 1.28C at the

12-month lead time. However, when using the NFSV-

ICM, all of these prediction errors are significantly de-

creased, especially over regions near the equator. It is

obvious that the NFSV-ICMpossesses smaller prediction

errors than the ICM in predicting SSTAs in the tropical

Pacific.

The anomaly correlations between the observed and

predicted SSTAs in the Niño-3.4 area are plotted in

Fig. 8a1 as a function of the lead time. The prediction

skill of the ICM declines faster than that of the NFSV-

ICM, and the differences between the ICM and NFSV-

ICM in the ACCs gradually increase from 0.1 at the

3-month lead time to 0.3 at the 12-month lead time, with

the NFSV-ICM showing a much larger ACC. Further-

more, it is at all lead times that the skill of NFSV-ICM

defeats that of ICM and persistence prediction. If the

skillful predictions are regarded as theACCbeing larger

than 0.6, the predicable time length for the Niño-3.4
index can be increased from 6 months using the ICM to

12 months using the NFSV-ICM. A similar improve-

ment is also shown in the RMSE (see Fig. 8b1), espe-

cially for predictions with a 12-month lead time. These

results indicate that the NFSV-ICM is more skillful than

the ICM in predicting Niño-3.4 index.

To reveal the season-dependent prediction skill, the

anomaly correlations for the Niño-3.4 index are also

calculated as a function of both start months and lead

times. The results for the ICM and NFSV-ICM are

shown in Figs. 9a1 and b1, respectively. It is clearly

FIG. 5. A schematic diagram showing the new ENSO forecast model NFSV-ICM. The

NFSV-ICM is obtained by the ICM coupled with an NFSV-tendency error forecast model. The

ICM is a tropical Pacific coupled model and consists of a dynamical ocean model, a statistical

atmospheric model, and an SST anomaly model embedded with a Te model describing the

temperature of the subsurface water entrained into the mixed layer.
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shown that the prediction skill is significantly dependent

on the season. Specifically, both the ICM and NFSV-

ICMpredictions show high skill in boreal winter and low

skill in spring. However, in either winter or spring, the

former predictions always present lower skills than the

latter predictions in predicting the Niño-3.4 index.

The low prediction skill in spring is generally referred to

as the well-known SPB phenomenon. The SPB is defined

as a rapid decline in the anomaly correlation coefficient

when the prediction is made across boreal spring. From

the above results, it can be deduced that although both

the ICM and NFSV-ICM suffer from the SPB phenom-

enon, the NFSV-ICM notably reduces the effect of the

SPB in predicting tropical Pacific SST anomalies and

gives a more accurate prediction than the ICM.

In summary, we demonstrate here that the NFSV-

ICMhas greater abilities than the ICM in predicting SST

anomalies associated with ENSO during the training

period. In particular, the SPB phenomenon is weakened

in the NFSV-ICM, and the related prediction skills are

FIG. 6.Horizontal distributions of theACCbetween the observed and predicted SST anomalies at (a) 3-, (b) 6-,

(c) 9-, and (d) 12-month lead times. (left) The ICM and (right) the NFSV-ICM during the training period of

1960–97. The contour interval is 0.1.
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highly improved in the central and western tropical

Pacific. These results indicate that the NFSV-ICM

describes the dynamical and physical feedback asso-

ciated with ENSO.

b. Predictions of ENSO during the cross-validation
period of 1997–2016

In the last section, we have validated the NFSV-ICM

in improving ENSO prediction during the training pe-

riod from 1960 to 1996. The NFSV-tendency error fore-

cast model is obtained by assimilating the observation

information during this period. It is therefore under-

standable that the NFSV-ICM provides a significant

improvement in ENSO predictions during 1960–96. In

fact, a cross-validation experiment is much more real-

istic for examining the validity of the NFSV-ICM in

predicting ENSO. The cross-validation experiment here

refers to the fact that the NFSV-tendency error fore-

cast model obtained during 1960–96 is inserted into

the ICM to predict the SSTAs during the period of

1997-2016. That means we use the same NFSV-ICM in

the last section to examine the improvement of the

FIG. 7. As in Fig. 6, but for the RMSE. The contour interval is 0.28C.
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prediction skill of the NFSV-ICM against the ICM in

predicting ENSO.

The ACC and RMSE for the prediction experiments

are presented in Figs. 10 and 11, respectively. It is shown

that the anomaly correlation obtained from the NFSV-

ICM is obviously larger than that from the ICM at lead

times of 1, 2, 3, . . . , 12 months, and the RMSE is much

smaller than that of the ICM. This indicates that the

NFSV-ICM outperforms the ICM in predicting SST

anomalies. In particular, the NFSV-ICM still provides

useful skill at a 12-month lead time, with an ACC

larger than 0.6 (Fig. 8a2). Although the SPB phe-

nomenon also occurred in the cross-validation period

of 1997–2016, it was weaker in the NFSV-ICM than

the ICM (Figs. 9a2 and 9b2). Similar to the training

period, the prediction skills for SSTAs in the central

and western tropical Pacific are also significantly im-

proved in the NFSV-ICM compared with the original

ICM (Fig. 10). These results show that the NFSV-ICM

is valid for reaching high prediction skills of SSTAs

during the cross-validation period. Therefore, the

NFSV-ICM can be a useful forecast system for realistic

ENSO events.

c. Prediction skills for two types of ENSO

The fact that the NFSV-ICM shows high performance

in central Pacific implies that the new model can well

predict the central Pacific warming events known as CP

El Niño. Such warming events that occur frequently in

recent decades are found to show different climate ef-

fect compared with the traditional El Niño (denoted as

EPElNiño) (Ashok et al. 2007). So, predicting the space

structures, especially distinguishing two kinds of El Niño
events are also important.

Predictions for two kinds of El Niño events are shown

in Figs. 12 and 13, respectively. Although the ICM has

the ability to predict the amplitude of EP El Niño, the
ICM tends to predict a cooler-than-normal SST anomaly

in subtropical Pacific. By contrast, the NFSV-ICM can-

not only predict the amplitude but also capture the space

structures of the EP El Niño events. Furthermore, an

evident improvement is found in CP El Niño prediction

using the NFSV-ICM. The ICM tends to lose skill in

predicting CP El Niño at 6-month lead time and usually

predicts a cooling event. While the NFSV-ICM still has

skills in predicting the spatial distributions of CP

FIG. 8. (a) ACC and (b) RMSE of the predicted Niño-3.4 SST anomalies with respect to the observed SST

anomalies as a function of lead time. (left) The training period (1960–96) and (right) the cross-validation period

(1997–2016). The lines with open (filled) circles are for the ICM (persistence), and those with asterisks are for the

NFSV-ICM.
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El Niño events. From the above, it is indicated that the

ICM equipped with the NFSV-assimilation is likely to

have advantage in discerning and predicting different

types of El Niño events.

6. Conclusions and discussion

The predictions of ENSO events are generally influ-

enced by both initial errors and model uncertainties. In

particular, an ICM usually neglects or simplifies some

physical processes, which induces largemodel errors and

influences the accuracy of the predictions of ENSO (Qi

et al. 2017). In the present study, we focus on the model

errors and develop a new ENSO forecast system (NFSV-

ICM) consisting of an ICM and an NFSV-tendency error

forecast model that is used to estimate the combined

effect of the model errors. The prediction experiments

are performed for tropical SSTAs during both the

training period (1960–1996) and the cross-validation

period (1997–2016). The results commonly show that

the NFSV-ICM tends to possess a much higher forecast

skill compared with the original ICM. In particular, a

considerable improvement in the forecast skill is re-

flected in the central and western tropical Pacific. Fur-

thermore, the well-known SPB phenomenon is also

obviously weakened in the NFSV-ICM. The NFSV-

ICM shows useful skill in ENSO forecasting and can

be a promising ENSO forecast system.

The high skill of the NFSV-ICM in predicting ENSO

is mainly due to the embedded NFSV-tendency error

FIG. 9. ACC of the predicted Niño-3.4 SST anomalies as a function of start month and lead time. The predictions

are made by the (a) ICM and (b) NFSV-ICM during the (left) training period (1960–96) and (right) validation

period (1997–2016). The contour interval is 0.1.
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forecast model. Since the model errors are from dif-

ferent model error sources and their effects are mixed

in the prediction uncertainties (Jin et al. 2008; Zheng

and Zhu 2016), it is difficult to distinguish them and

study them separately. The NFSV-tendency error

forecast model considers the effect of model errors

from a macro perspective and proposes the approach

of describing the combined effect of different model

errors by the NFSV-tendency perturbation. The

NFSV-tendency perturbation is superimposed on

each time step of the model integrals and therefore

also suppresses the effect of the initial errors. The

NFSV-tendency perturbation tries to reach the opti-

mal tendency error by using an NFSV-related assim-

ilation and is sufficient for estimating the interaction

between model errors and initial errors, which

therefore corrects the ICM forecasts to the greatest

extent and makes the NFSV-ICM obtain high skill in

predicting ENSO. The NFSV-ICM can consider not

only the effect of model errors but also the effect of

the initial errors. This is the competing aspect of the

NFSV-ICM compared with the traditional initial value

FIG. 10. As in Fig. 6, but for the cross-validation period (1997–2016).
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assimilation. Because theNFSV-tendency error forecast

model is constructed based on the SVD relationship

between SST and NFSV. An undeniable fact is that

the trained SST–NFSV relation is dependent on the

historical data and the uncertainties of the SVD ana-

lyses. Therefore, sensitivity experiments regarding

to the NFSV-tendency error model are implemented

to explore the prediction skills influenced by the un-

certainties of the SST–NFSV relation (see the appen-

dix). The fact that the SST–NFSV relation is essentially

nonlinear implies the uncertainties of the relation

constructed by the linear SVD approach. More in-

telligent and advanced methods (e.g., machine learning)

are expected to be adopted to make the SST–NFSV

relation more robust (Reichstein et al. 2019).

It is pointed out that the ICM-based ensemble pre-

diction system (EPS-ICM; see Zheng et al. 2009b) shows

skill almost equivalent to that in the NFSV-ICM for SST

predictions. Note that the EPS-ICM is constructed not

only using ensemble Kalman filter (EnKF) data assim-

ilation with SST fields to generate the initial ensemble

conditions but also a model-error model to characterize

FIG. 11. As in Fig. 7, but for the cross-validation period (1997–2016).
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the model uncertainties. The model-error model is a

zero-mean first-order Markov stochastic model that is

developed by analyzing historical model errors. That is,

the EPS-ICM is an ensemble forecast system involving

initial and model errors and using a relatively advance

data assimilation. However, the NFSV-ICM is only in-

volved with a deterministic prediction system, where the

SST observations are only used to initialize the model

with simple data assimilation (i.e., the nudging method).

Obviously, the NFSV-tendency error forecast model is

the one that plays an important role in improving the

level of predictions generated by the NFSV-ICM. The

NFSV-tendency error forecast model, due to its optimal

NFSV-tendency perturbation, possesses more possibil-

ities in correcting the model and greatly improving the

prediction skill. On the other hand, it is worth men-

tioning that Zheng and Zhu (2016) considered the cou-

pling of atmosphere and ocean in initialization of the

EPS-ICM and used an advanced EnKF assimilation

approach to initialize the model, finally achieving

much higher forecast skill of ENSO. This encourages

us to equip the NFSV-ICM with EnKF and consider

the air–sea coupling in initialization, and then en-

hance greatly the forecast skill of the NFSV-ICM

with respect to the types of ENSO. Exactly, such an

idea is under investigation.

In addition, after the 1990s, a new flavor of El Niño,
with its warm center in the central tropical Pacific

(known as CP El Niño) in comparison with the tradi-

tional El Niño (EP El Niño), which has a warm center in

the eastern tropical Pacific, occurred frequently, giving

rise to additional model errors and proposing new

challenges to the simulations and predictions of ENSO

(Kim et al. 2012; Tian and Duan 2016; Duan et al. 2018).

Although some models, including the ICM used in the

present study, are equipped with advanced assimilation

techniques to optimize the initial fields, they still showed

low forecast skill for CP ENSO due to model error

FIG. 12. The horizontal distributions of SST anomalies in (a) observations, (b) ICM prediction, and (c) NFSV-ICM prediction at 6-month

lead time predictions for the mature phase of EP-type El Niño events.
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effects (Hendon et al. 2009; Duan et al. 2014). In the

present study, we have shown that the NFSV-ICM

shows great improvement in the prediction skills for

SSTs in the central and western tropical Pacific. And we

find that the ICM equipped with the NFSV assimilation

greatly improve the capacity of discernments and pre-

dictions for two kinds of El Niño events. Thus, the

NFSV-ICM may provide a promising way to study

predictability in terms of the EP and CP El Niño events.

In addition, we have not addressed why and how the

NFSV-tendency errors work in the SST predictions,

especially for the high prediction skill in the central

Pacific. These issues will be focused on and addressed in

the next paper.

Acknowledgments. The authors wish to appreciate

anonymous reviewers for their very insightful comments

and suggestions. This work was supported by the

National Natural Science Foundation of China (Grants

41525017 and 41690124).

APPENDIX

Sensitivity of NFSV-ICM to the Error Forecast
Model

The success of the NFSV-ICM is sensitive to the

constructed NFSV-tendency error model. In addition to

the training periods, the error model is also dependent

on the intensity of the error forcing and the statistical

method [Eq. (9)]. As mentioned above, since only some

leading SVD modes are retained, part of the informa-

tion and variance is lost. Thus, it is very important to

obtain a reasonable a that represents the strength of the

tendency error and limited SVD modes to facilitate the

error model. On the one hand, a high amay exorbitantly

estimate the model errors against the ENSO prediction,

while a too low a is not enough to produce tendency

errors that offset the model uncertainties in predictions.

On the other hand, if too many SVDmodes are retained

in statistical relation, the noise that has nothing to do with

FIG. 13. As in Fig. 12, but for the mature phase of CP-type El Niño events.
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the SST–NFSV relation will be included. As a result, the

constructed error model has low skill in estimating the

tendency errors during the period that is not overlapping

the training period. Thus, this section will further examine

the sensitivity of the NFSV-ICM to the strength of the

error forcing and the retained SVD modes.

The structure of the tendency errors that are estimated

using the SST anomaly is highly dependent on how many

SVD modes are retained. To estimate the error model in

terms of the spatial structure during the training period

(i.e., 1960–97), a mean spatial similarity (MSS) be-

tween predicted tendency errors (NFSVp) and NFSVs is

used defined as MSS5 (1/N)�tN
t5t1

[NFSV(t)NFSVp(t)]/

[jNFSV(t)jjNFSVp(t)j], in which N is 373 12 (months).

The result is presented in Fig. A1. It is clear that more

SVD modes retained in constructing the NFSV-error

model has a better ability to capture the patterns of the

tendency errors. Particularly, the skill is improved

gently when more than 6 leading modes are reserved.

That is, the high-order modes have small role in the

SST–NFSV relation. Besides, retaining high-order

modes will contain the noise that harms the estima-

tion of the tendency error using the SST information. In

this sense, retaining reasonable SVDmodes can filter out

noise and extract the robust relation for SST–NFSV.

The truncation of the SVDmodes necessarily changes

the strength of the tendency errors estimated. The sen-

sitivity to the SVD modes and the corresponding

strength of the error forcing to the ICM is analyzed from

the perspective of the predictions for the SST anomaly.

The anomaly correlations between predicted and ob-

served SST anomaly as a function of lead time during the

period 1960–1996 are shown in Fig. A2. In short time

FIG. A1. Themean spatial similarity betweenNFSVs and statistical

determined NFSVs as a function of retained SVD modes.

FIG. A2. Correlations of the Niño-3.4 SST anomaly during the period 1960–97, as a function of retained SVDmodes and intensity of the

error forcing (i.e., a). Each panel denotes the result at a certain lead time. The x coordinate is the value of the a (e.g., 6a denotes a5 0:6).

The y coordinate is the number of the leading SVD modes retained in the NFSV-tendency error model (e.g., 10m denotes 10 modes).
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(e.g., 1-month lead time) predictions, the predicted re-

sults are insensitive to the SVD modes and the error

strength since the model errors play small role in

short time predictions. As the prediction length is

increased, the performance of the NFSV-ICM is

dependent on the SVD modes and a. As shown in

Fig. A2, the NFSV-ICM possesses largest skill when

a5 0:6 or a5 0:8, where the correlation is larger than

0.65 even predicting 12 months. In addition, the

dependence of the model skill on SVD modes is

prominent with lead time increased. Consistent with

Fig. A1, the NFSV-ICM with higher modes retained

tends to show higher skill in SST predictions. But the

skill using 10 SVDmodes are identical to that using 12

SVD modes.

As discussed above, a success of the NFSV-ICM

cannot only improve the prediction during the training

period but also can make sense in other periods without

overlapping the training period. Therefore, the sensi-

tivity of the model skill to the SVD modes and a during

the period 1997–2016 is shown in Fig. A3. Similar to

Fig. A2, limited SVD modes and a certain a allow the

improvement of the ICM equipped with the NFSV-

tendency error model. The skill of the NFSV-ICM reach

the peak when the 10 SVD modes are retained and

a5 0:6 or a5 0:4. Also, significant decrease of the

prediction error is achieved (not shown).

From the above, the new ENSO forecast system

has the largest skill in ENSO prediction when the

NFSV-tendency error model is determined by 10 lead-

ing SVD modes and a5 0:6.
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