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ABSTRACT

Nonlinear forcing singular vector (NFSV)-based assimilation is adopted to determine the model
tendency errors that represent the combined effect of different kinds of model errors; then, an NFSV-
tendency error forecast model is formulated. This error forecast model is coupled with an intermediate
complex model (ICM) and makes the ICM output closer to the observations; finally, an NFSV-ICM
forecast model for ENSO is constructed. The competing aspect of the NFSV-ICM is to consider not only
model errors but also the interaction between model errors and initial errors because of the mathe-
matical nature of the NFSV-tendency errors. Based on the prediction experiments for tropical SSTAs
during either the training period (1960-96; i.e., when the NFSV-ICM is formulated) or the cross-
validation period (1997-2016), the NFSV-ICM is determined to have a much higher forecast skill in
predicting ENSO that, specifically, extends the skillful predictions of ENSO from a lead time of 6 months
in the original ICM to a lead time of 12 months. The higher skill of the NFSV-ICM is especially reflected
in the predictions of SSTAs in the central and western Pacific. For the well-known spring predictability
barrier (SPB) phenomenon that greatly limits ENSO forecasting skill, the NFSV-ICM also shows great
abilities in suppressing its negative effect on ENSO predictions. Although the NFSV-ICM is presently
only involved with the NFSV-related assimilation of SSTs, it has shown its usefulness in predicting
ENSO. It is clear that the NFSV-based assimilation approach is effective in dealing with the effect of
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model errors on ENSO forecasts.

1. Introduction

El Nifio-Southern Oscillation (ENSO), which is
known as the dominant interannual mode in the tropical
Pacific, has been the focus of scientists and the public
over the past several decades because of its global
impact on climate/weather (McPhaden et al. 2006).
Through efforts over the decades, there has been sig-
nificant progress toward observing, understanding, and
simulating ENSO (Zebiak and Cane 1987; Jin 1997a,b;
McPhaden et al. 1998; Timmermann et al. 2018). Con-
sequently, the skillful predictions of Nifio-3.4 SST
anomalies related to ENSO have been achieved 6-
12 months in advance (even up to 2 years) in hindcast
experiments (Chen and Cane 2008; Luo et al. 2008).
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To date, more than 20 climate models have been used
to routinely predict ENSO in real time (see the website
at https://iri.columbia.edu/our-expertise/climate/enso/).
However, the skillful and realistic forecasting of
ENSO can only be made with, at most, a 6-month lead
(Barnston et al. 2012).

Initial errors have been recognized as one of the main
factors that limit ENSO forecast skills. To reduce the
impact of initial errors, great efforts have been made to
optimize initial conditions under model constraints and
observations by data assimilation (e.g., Chen et al. 1997,
Behringer et al. 1998; Sugiura et al. 2008; Gao et al. 2016;
etc.). In addition, intensified observations in some key
areas (i.e., targeted observations) were suggested to
provide the most useful observations for data assimi-
lation to suppress initial error growth and provide a
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skillful prediction of ENSO (Mu et al. 2015; Duan and
Hu 2016; Hu and Duan 2016; Duan and Feng 2017; Tao
et al. 2017, 2018). For example, Morss and Battisti
(2004a,b), based on the observation system simulation
experiment (OSSE), suggested that for ENSO fore-
casting longer than a few months, the most important
area for observations is the eastern equatorial Pacific
and its south; the secondary region of importance is
the western equatorial Pacific. By using sequential
importance sampling assimilation method, Kramer
and Dijkstra (2013) also showed that the optimal ob-
servation locations for SST are located in the eastern
tropical Pacific for minimizing the uncertainty in the
Nifio-3 index.

In addition to initial errors, an increasing number of
studies have also emphasized the importance of model
errors in yielding ENSO prediction uncertainties (Latif
et al. 2001; Stainforth et al. 2005; Zheng et al. 2009a; Wu
etal.2016; Tao et al. 2019). For instance, Jin et al. (2008)
noted that the accuracy of ENSO variability is related to
the simulated climatology as a result of a poor prediction
skill when using models with climatological biases.

As one source of model errors, the model parametric
errors (MPEs) were also found to have a role in yielding
model systematic errors and influencing ENSO vari-
ability (Bejarano and Jin 2008; Macmynowski and
Tziperman 2008; Zhu and Zhang 2018). Tao et al. (2019)
investigated the impact of MPEs on ENSO predictions
from the perspective of optimal error growth and indi-
cated that MPEs have the potential to influence the
strength of the Bjerknes feedback, which is crucial to
the development of SST anomalies, thus disturbing
ENSO predictions. In addition, they also demon-
strated that the spring predictability barrier (SPB)
phenomenon of ENSO can also be caused by MPEs
besides initial errors. To reduce the effect of the
model errors caused by the MPEs, Zhang et al. (2018)
made a skillful hindcast of the strong El Nifio event in
2015 by optimizing two key parameters associated
with Bjerknes feedback. In particular, Wu et al. (2016)
reduced the SPB phenomenon of ENSO and extended
the valid lead time by considering multiple physical
parameters determined by the ensemble adjustment
of the Kalman filter.

Missing some processes in models also tends to induce
model errors and affect ENSO simulations and predic-
tions. For example, westerly wind bursts (WWBs) have
been shown to have the ability to excite the onset of
El Nifo events (Chen et al. 2015). Lopez and Kirtman
(2014) demonstrated that the inclusivity of state-
dependent WWBs in an ENSO model can greatly im-
prove the ENSO prediction skill. Therefore, when the
model lacks the WWB effect and yields model errors,
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the ENSO forecast skill can be largely influenced.
Yu et al. (2003) suggested that the characteristics of
WWBs depend on the large-scale SST field and there-
fore indicated that the model errors induced by the lack
of WWBs may be of a certain structure and significantly
disturb the predictions of ENSO. Of course, model er-
rors are not only caused by some physical processes that
do not appear in models but also due to those that are
highly simplified. For an intermediate coupled model,
model errors are significant and from different sources
(Qi et al. 2017); moreover, it is hard to distinguish their
effects in predictions. Therefore, improving some pro-
cesses in models may fail to enhance the ENSO pre-
diction skills due to the interaction of other model
errors. Finding a way to obtain or filter the combined
effect of kinds of model errors is promising to improve
the ENSO prediction.

To this end, Zheng and Zhu (2016) considered syn-
thetically the model uncertainties and developed a first-
order Markov stochastic model that is added to the
tendency equation for SST in the intermediate complex
model (ICM) in an attempt to depict the approximately
combined effect of model uncertainties. Such an ap-
proach has the ability to filter unpredictable stochastic
processes and capture more realistic ENSO evolutions
(Zheng et al. 2009a). But there are still large systematic
biases since the Markov stochastic model perturbation
cannot approximate the effect of all model errors to the
greatest extent (Qi et al. 2017). Therefore, an optimal
method was suggested to represent the combined effect
of different kinds of model errors. Duan and Zhou
(2013) extended the (linear) forcing singular vector
(Barkmeijer et al. 2003) to a nonlinear field and pro-
posed the approach of a nonlinear forcing singular
vector (NFSV), which depicts the model tendency errors
that have the largest effect on prediction uncertainty
(Duan et al. 2016; Qi. et al. 2017). Then with the idea of
data assimilation, Duan et al. (2014) improved the
NFSV approach so that it can be used to extract the
comprehensive tendency errors (see section 2). Using
the NFSV-related assimilation, they obtained the ten-
dency errors of the Zebiak—-Cane model (Zebiak and
Cane 1987), which was in turn forced on the SST equa-
tion of the Zebiak—Cane model in an attempt to offset
the effects of the model errors. As a result, they suc-
cessfully simulated realistic ENSO evolutions using the
Zebiak—Cane model equipped with the NFSV-related
assimilation.

The impressive effect of NFSV on correcting model
stimulates us to apply the NFSV to improve the ENSO
prediction. It should be pointed out that the model er-
rors are time dependent and the NFSV-tendency errors
during predictions are case dependent. Thus, to improve
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the prediction, we have to obtain the mode tendency
errors in advance. The observation data are available so
that we can obtain the NFSV-tendency errors during the
assimilation period. However, the NFSV-tendency er-
rors beyond the assimilation period are unavailable due
to unavailable observations. Therefore, can we use the
NFSV-related assimilation for predictions? If yes, how do
we do it? In doing so, can the prediction skill be greatly
improved by using the NFSV-related assimilation?

To address these above questions, we develop an ap-
proach to apply the NFSV-related assimilation in ENSO
predictions and establish a new ENSO forecast system by
using an intermediate coupled model. The study is classified
into two parts: the first part introduces the new ENSO
forecast system, with the NFSV-related assimilation, and its
performance in ENSO predictions; the second part exam-
ines the prediction skill in distinguishing El Nifio types (i.e.,
the EP and CP El Nifio) to explain the physical reasons for
improving the prediction skill associated with the various
types of ENSO. In the present article, we focus on the first
part (i.e., the new ENSO forecast system and its perfor-
mance in ENSO predictions).

The remainder of this paper is organized as follows.
Section 2 provides a description of the NFSV approach
and its related assimilation. Section 3 describes the in-
termediate coupled model for ENSO (ICM) used in the
present study. In section 4, we develop the new ENSO
forecast system based on the NFSV-related assimilation
and the ICM. In section 5, the performance of the
NFSV-ICM is examined. Finally, we present a summary
and a discussion in section 6.

2. Methods

In the present study, we use the NFSV-related as-
similation approach to correct the ENSO model and
establish the ENSO forecast system. For convenience,
we briefly describe the idea behind the NFSV and
NFSV-related assimilation.

a. The NFSV approach

The NFSV is a nonlinear extension of the (linear) forcing
singular vector proposed by Barkmeijer et al. (2003). It
considers the combined effect of different kinds of model
errors and represents the tendency error that causes the
largest prediction error at the prediction time (Duan and
Zhou 2013; Duan and Zhao 2015). The NFSV f* can be
derived from the maximization problem shown in Eq. (1):

J(E) = max| ML @) ~ MOl (1)

where M, (0) represents the propagator of a nonlinear
model [Eq. (2)] and M, (f) represents that of the
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nonlinear model but with a tendency perturbation f [see
Eq. (3)]; u represents the state variable and uy denotes
its initial state. The term J represents the cost function
that measures the deviation in the state from the
reference state M, (0)(up) in terms of the norm ||-|| due
to the effect of the tendency perturbation f. Here, f €
Q) tells the constraint of the tendency perturbation.
Usually, we define ||/f|| =<8, which means the tendency
error is less than & [ is a positive number; the details
can be seen in Duan and Zhou (2013) and Duan et al.
(2016)]:
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From Eq. (1), it is easily known that if M,(0)(uy) is a
control forecast, the NFSV represents one kind of op-
timal tendency perturbation of the control forecast and
has the potential to cause the perturbed forecast largest
departure from the control forecast at the prediction
time. That is, the control forecast M, (0)(up) is most
sensitive to the NFSV-tendency perturbation, which
may provide information on correcting the control
forecast skill. Of course, we can also modify the cost
function of the NFSV according to a particular physical
problem. For example, to obtain a tendency perturba-
tion that can induce the largest uncertainties within the
prediction period from £, to 7, the cost function can be
modified as

I = max Y. MO@) ~MO@). @)

In this case, the cost function J gives the largest accu-
mulated departure from the control forecast that is
merely induced by the tendency error.

b. The NESV-related assimilation

Based on the NFSV approach, Duan et al. (2014)
proposed an optimal forcing vector (OFV) approach to
offset the model errors and improve the model simula-
tion ability, in which they simply modified the cost
function J of the NFSV approach [see Eq. (5)]. The OFV
represents total tendency perturbation, which is super-
imposed on the tendency equation of the model and
makes the model simulation closest to the observations.
The OFV, which is denoted by f°, is related to a mini-
mization (or assimilation) problem:
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where u®™(x, f) denotes the time series of the observa-
tion data and M,(f)(uy) represents the model simulation
result at the  month, which is obtained by integrating
Eq. (3) with an initial state uy.

The assimilation problem Eq. (5) is identical to the
following optimization problem:

1) = a3 [IM,(0)(,) M, 0),) ]
Q= {f J(£) = mintg [[IM,(F)(u,) — u(x, t)||]}.
©)

That is, the OFV derived by Eq. (5) satisfies Eq. (6),
while Eq. (6) bears greatly resemblance to Eq. (4) for
the NFSV approach. In this situation, the OFV can be
understood as a tendency perturbation that is con-
strained by f € ), which makes the perturbed forecast
depart from the control forecast (i.e., the unperturbed
forecast) at the greatest extent but remain closest to the
observation due to the constraint condition. In this
sense, the OFV is mathematically consistent with the idea
of the NFSV. For convenience, here, we rename the
“OFV” as the “NFSV”, and the related calculation is
called the “NFSV-related assimilation.” The NFSV-
related assimilation (which is used to treat model errors)
can show its difference from the initial value assimilation
(which is being used to deal with the initial errors). In the
present study, we use the NFSV-related assimilation to
correct the ICM for ENSO and establish a new ENSO
forecast system.

3. ENSO model and data

The ENSO model adopted here is an ICM developed
by Zhang et al. (2003), and its forecast results have been
presented on the International Research Institute for
Climate and Society (IRI) web page, showing real-time
ENSO forecast results generated by more than 20
models across the globe (see https://iri.columbia.edu/our-
expertise/climate/forecasts/enso/current/?enso_tab=enso-
sst_table). The ICM is an air-sea coupled model that
consists of a statistical wind stress model, an in-
termediate dynamic ocean model (Keenlyside and
Kleeman 2002), and an SST anomaly model that rep-
resents surface ocean thermodynamics. The wind stress
model is constructed from the singular value de-
composition (SVD) approach that determines the re-
lationship between the SST and the wind field from
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1963 to 1996. To represent the effect of thermocline
fluctuations on SST variability, an empirical model is
developed to parameterize the temperature of the
subsurface water entrained into the mixed layer (7T,)
from the sea surface height. As a result, the SST
anomaly model with the 7, model can capture the re-
alistic features of ENSO evolution, including the pe-
riod and amplitude (Zhang et al. 2005). However, since
some processes are missing in this model, such as the
effects of freshwater flux and salinity, which were
found to have a role in the amplitude of ENSO (e.g.,
Zhang et al. 2012), the ICM fails to well capture the
strength of ENSO in realistic predictions (Zhang and
Gao 2016; Zheng and Zhu 2016). In addition, the ICM
only represents the air—sea interaction in the tropical
Pacific and ignores the effect of the extratropical
Pacific; therefore, considerable model errors still
exist in the model itself for realistic prediction. Zheng
et al. (2009a) found that initial perturbations-related
ensemble predictions have small effect on improving
ENSO predictions using the ICM, while model
perturbations-based ensemble predictions show large
improvement in ENSO predictions. Especially, Qi
et al. (2017) showed that model errors in the ICM are
more important than initial errors in realistic pre-
diction. All these studies encourage us to use the
NFSV approach to optimally capture the model er-
rors so as to improve the ENSO prediction skills.

Observational and/or reanalysis data are required
to initialize and evaluate the ICM in ENSO forecasting.
In the present study, we follow Zhang et al. (2005)
and adopt a simple nudging procedure to initialize the
ICM by using SST observations (Barnett et al. 1993).
The wind stress anomaly is reconstructed from the
SST field during the period from 1854 to the start time
of the forecast via the SVD-based historical SST-
wind relation. Then, the reconstructed wind field
is used to force the ocean model to initialize the
ocean dynamic states. In addition, the observed SST
anomalies are nudged into the SST anomaly model
to generate the initial SST field. Here, the observed
monthly SST field is from the National Oceanic and
Atmospheric Administration (NOAA) Extended
Reconstructed SST, version 3b dataset [ERSSTv3b;
(Smith et al. 2008)], and the monthly wind stress
field is from the National Centers for Environmental
Prediction—National Center for Atmospheric Research
(NCEP-NCAR) reanalysis (Kalnay et al. 1996). The
former observed SST data span from 1854 to present,
and the latter wind stress field spans from 1949 to the
present.

As for other configurations of the ICM, the readers
can refer to Zhang et al. (2005).
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4. ENSO forecast system of the NFSV-related
assimilation

Based on the ICM and its initial assimilation de-
scribed in section 3, we develop the ENSO forecast
system using the NFSV-related assimilation associated
with the model error correction. The main idea is as
follows. An NFSV-tendency error forecast model is
built up and then coupled with the ICM, with the initial
assimilation in section 3, to correct the ICM and
achieve a useful skill that is substantially higher than
that of the ICM that only has the initial assimilation. The
ENSO forecast system with the NFSV-tendency error
model can be achieved through the following three
steps: (i) reveal the NFSV-type tendency error that
makes the model simulation for SST anomalies closest
to those that are observed by using the NFSV-related
assimilation approach, (ii) derive a tendency error
forecast model by considering a function of the pre-
determined NFSV-tendency errors as the observed ini-
tial SST, and (iii) couple the NFSV-type tendency error
forecast model with the ICM and finally establish
the ENSO forecast system, which not only predicts
the SSTA but also estimates the future tendency
error.

a. The NFSV-type tendency error

Focusing on the SST predictions, we attribute the
combined effect of the model errors to the SST tendency
errors. The NFSV-related assimilation problem is con-
structed as follows:

ty+nlt

JE) =min ¥ [ X(E,u) = X)), ™)

1=ty

where X°* and X denote the observed and simulated
monthly SST anomalies within a 1-yr assimilation win-
dow [ty, tp + nAt] (At =1month, n = 12) and u, repre-
sents the initial analysis obtained by the initial value
assimilation. Here f represents the NFSV-type ten-
dency error that can lead the model to output accurate
SST anomalies. Here, the tendency errors are monthly
dependent in the 1-yr assimilation window. That is,
the tendency error is constant within one month to
guarantee the mutually adjustment of ocean and
atmospheric variables (Duan et al. 2014). Thus, ac-
cording to Eq. (7), we can obtain a set of NFSV-type
tendency errors with twelve components [i.e.,
£ o= (6 ap - £7 . 5a)] in the 1-yr assimilation
window, namely, each month has one tendency error.
Obviously, the NFSV-type tendency errors are some-
what different due to the different assimilation windows
and initial times. For the period from 1854 to 2017,
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we take each month as the initial month of the 1-yr as-
similation window and calculate the NFSV-type ten-
dency error based on the NFSV-related assimilation.
Figure 1 shows a sketch diagram of the NFSV-related
assimilation for different initial months. Then, we
obtain a set of monthly dependent NFSV-type tendency
errors with respect to the 12 components. For the NFSV-
type tendency errors of different assimilation windows,
we perform a composite analysis on the components
whose months overlap in different assimilation win-
dows. Then, we can obtain 164 monthly tendency errors
during the period from 1854 to 2017.

A snapshot of the winter components of the NFSV-
type tendency errors during El Nifio episodes is dis-
played in Fig. 2. It is shown that large NFSV-type
tendency errors are found near the north and south
boundaries of the model. This is probably because the
ICM is a regional model that has low skill in simulating
the climate state near the model boundaries. It is also
found that large tendency errors arise in the eastern
Pacific cold tongue, which indicates that the intensity of
the El Nifio event simulated by the ICM has large errors.
When further examining the relationship between the
evolution of the observed SST anomalies and the
corresponding NFSV-type tendency errors along
the equator (see Fig. 3), it is illustrated that the NFSV-
tendency errors exhibit an ENSO-like oscillation, of
which the tendency errors are mainly located east of
160°W; furthermore, these errors are positive (negative)
when the observed SSTs are warming (cooling). From
the definition of the NFSV-type tendency errors in
Eq. (7), it is inferred that the ICM tends to underesti-
mate both El Nifio and La Nifia events in terms of their
amplitudes due to the effects of model errors, while the
NFSV-tendency errors can offset such effects (see Duan
et al. 2014).

b. The NFSV-type tendency error forecast model

In step i, we obtain the NFSV-type tendency errors
during different assimilation windows, which can correct
the ICM to simulate the observed ENSO cycle. Note that
the time-dependent observations adopted to determine
the NFSV-tendency errors are available during the as-
similation windows. However, for predictions, we do not
have access to observations during the prediction time
period and, thus, cannot obtain the corresponding NFSV-
tendency errors by the approach in step i. By realizing the
usefulness of the NFSV-related assimilation in correcting
the model errors, we hope this assimilation can be used
for the predictions. Therefore, how do we make the
predictions via this type of assimilation?

According to Eq. (7), it is known that NFSV-tendency
errors are dependent on the known observed SST
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FI1G. 1. Schematic diagram illustrating the NFSV-related assimilation windows and the strategy of
the composite NFSV-tendency errors. The twelve blue shaded boxes in each row cover one assimi-
lation window, with the initial month marked on the vertical axis, which denote the 12 members of the
NFSV-tendency errors during the 1-yr assimilation window. The red shaded boxes on the last row
represent the 164 monthly tendency errors during the period from 1854 to 2017, which are obtained by
taking the ensemble mean of the members whose months overlap in different assimilation windows.

anomalies. Furthermore, we find that the related ob- shows that a certain flow-dependent relation exists be-
servation series during different assimilation windows tween the NFSV-type tendency error and the observed
correspond to different NFSV-tendency errors. Thatis, SST anomaly (see section 4a). That is, the NFSV-type
the NFSV-tendency errors are flow dependent. Figure 3 tendency errors are positive (negative) in the eastern
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FIG. 2. Horizontal distributions of the NFSV-type tendency errors (107°°Cs™") during December of (a) the 1987
El Nifio year, (b) the 1997 El Nifo year, (c) the 2009 El Nifio year, and (d) the 2015 El Nifio year.
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(b) NFSV
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FIG. 3. Time-dependent section along the equator of the (a) observed SST anomalies (°C) and (b) NFSV-
tendency errors (10°°°Cs™!). The NFSV-tendency errors show an ENSO-like oscillation for the SST

component.

tropical Pacific when the observed SSTs are warming
(cooling). This relation encourages us to construct an
equation that addresses the dependence of the NFSV-
tendency errors on the observed SST anomalies. Then,
we can use this equation to forecast future NFSV-tendency
errors according to known observations.

The SVD approach is used to clarify the flow-
dependent relation between the NSFV-type tendency
errors and the observed SSTs. We can build up a lead—
lag relationship between the observed SST anomalies
and the NFSV-tendency errors by the SVD. That is, we
develop an equation to describe the sensitivity of the
lagged NFSV-tendency errors to the lead observations,

which allows for the estimation of the NFSV-tendency
errors during the forecast period using the current ob-
servations. To achieve this, the covariance C in the SVD
analysis is calculated from the matrix including the
observed SST anomalies and the lag NFSV-tendency
errors [see Eq. (8)]:

t’l
C.(i) = 71 3 SST(LLHNFSV( + i), (8)

=t

where (i, j) represents the model grid, / represents the
lagged months of the NFSV-type tendency errors rela-
tive to the SST anomalies, and N represents the time
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length for computing the covariance C. Then, the
lead-lag relation is obtained by performing the SVD
technique on the covariance matrix C (Bretherton et al.
1992), which can be written as

TE, = oF (SST), (9)

where F; describes the relationship between the lag-
ged NFSV and the / month lead SST anomaly and TE
represents the NFSV-tendency error estimated by
Eq. (9) with the / month lead observed by the SST
anomaly field. Such a lead-lag relationship provides
the possibility of estimating NFSV-tendency ten-
dency errors in advance. That is, when the prediction
isinitialized at one month, the future NFSV-tendency
errors can be forecasted through this lead-lag re-
lation by inputting the known initial observations.
Thus, an NFSV-tendency error forecast model can be
constructed.

The NFSV-tendency error forecast model, as shown
in the last paragraph, can be constructed using the
known SST observations and predetermined NFSVs. To
examine its validity, we take the period from 1960 to
1996 as the training period to determine the NFSV-
tendency error forecast model and the period 1997-2017
as the cross-validation period. In the training period, 10
leading SVD modes are used to construct F; in Eq. (9),
while the remaining SVD modes are discarded due to
their nearly stochastic and unrelated properties. Since
the truncation of the SVD modes may reduce the
variance in the NFSV-tendency errors, a scalar co-
efficient « is introduced to scale the strength of the
tendency errors. In the present study, the coefficient «
is taken as 0.6 and verified to be more applicable than
other values in predicting ENSO. The experiments
for determining @ and SVD modes are referred to in
the appendix.

Now, we use the NFSV-tendency error forecast model
to predict the NFSV-type tendency errors during the
cross-validation period. As mentioned above, tendency
errors are significant along the equator and northern
boundary of the model. Thus, to demonstrate the ef-
fectiveness of the NFSV-tendency error forecast model,
we present the predicted NFSV-tendency errors along
the equator (Fig. 4a) and northern boundary of the
model (Fig. 4b). In particular, Fig. 4 displays the pre-
dicted NFSV-tendency errors at the 6-month lead time
during the period 1990-2001, which includes 1990-96 as
part of the training period and 1997-2001 as part of the
cross-validation period. It is shown that the predicted
NFSV-type tendency errors during the training period
1990-96 are almost identical to the NFSV-type tendency
errors predetermined by the NFSV assimilation along
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both the equator and northern boundary of the model,
suggesting that the lead-lag relationship between the
observed SST and NFSV-type tendency errors is well
captured by the function F; in Eq. (9). For the cross-
validation period 1996-2001, it is also found that
the predicted NFSV-tendency errors are well ap-
proximated compared to the predetermined NFSV-
tendency errors, including the amplitudes and locations.
In particular, the phase change in the NFSV-tendency
errors fits the predetermined errors very well. All of
these results suggest that the constructed NFSV-
SST relation [i.e., Eq. (9)] has the ability to predict
future NFSV-tendency errors from the current SST
field. Therefore, it can be confidently said that the
NFSV-tendency error can reduce the model un-
certainties and make a better prediction when its
related tendency error forecast model is coupled
with the ICM.

¢. The ENSO forecast system of the NFSV
assimilation

We combine the original ICM with its initial assimi-
lation and the NFSV-tendency error forecast model
determined by the NFSV-assimilation approach and fi-
nally formulate a new ENSO forecast system by super-
imposing the predicted NFSV-tendency error on the
SST tendency of the ICM. Figure 5 shows a schematic
diagram of the new ENSO forecast system (hereafter
NFSV-ICM). The initialization scheme in the NFSV-
ICM is the same as that in ICM (section 3). Specifically,
we run the oceanic component of the ICM forced by
the reconstructed wind before the prediction begins,
nudge the observed SST to the model, and then finally
obtain the initial states of the predictions. Using these
initial states, we integrate the NFSV-ICM and make
the ENSO predictions. The predicted NFSV-tendency
errors are superimposed on the total tendency of the
SST equation in the ICM with the initial value as-
similation, which then perturbs the predicted SST
anomalies at each time step of the model integral. As
such, the predicted NFSV-tendency errors also sup-
press the effects of the initial errors on the prediction
uncertainties. Theoretically, the NFSV-tendency er-
rors consider the interaction between the model errors
and initial errors.

5. The performance of the NFSV-ICM

The predictions of SST anomalies (SSTAs) associated
with ENSO are made with 1-, 2-, 3-, ..., 12-month lead
times for the period 1960-2016. For comparison, the
prediction results from both the original ICM and
NFSV-ICM are output, and their skill scores are
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FIG. 4. Time-dependent NFSV-tendency errors determined by the NFSV-related assimilation (shaded)

and those estimated from the NFSV-tendency error forecast model with a 6-month lead time (contours)
along (a) the equator and (b) the northern boundary of the model. The purple dashed lines distinguish the
training period (1991-96) from the cross-validation period (1997-2001). The shaded regions either during
the training period or cross-validation period coincide well with those marked by contours, which indicates
that the NFSV-tendency error forecast model is valid in estimating future NFSV-tendency errors. The

contour interval is 2 X 107%°Cs™ .

evaluated against the observed monthly mean SST
anomalies. In addition, we note that the NFSV-tendency
error forecast model embedded in the NFSV-ICM is
obtained by the NFSV-related assimilation for the
observed SST during the training period of 1960-96.
Hence, the NFSV-ICM should be first validated by

predicting ENSO during the training period of 1960—
96 and then try to show whether the feedback among
state variables is reasonable. Then, the model should
be tested by forecasting ENSO during the cross-
validation period of 1997-2016 and examining its
accountability in more realistic predictions.
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FIG. 5. A schematic diagram showing the new ENSO forecast model NFSV-ICM. The
NFSV-ICM is obtained by the ICM coupled with an NFSV-tendency error forecast model. The
ICM is a tropical Pacific coupled model and consists of a dynamical ocean model, a statistical
atmospheric model, and an SST anomaly model embedded with a 7, model describing the
temperature of the subsurface water entrained into the mixed layer.

a. Predictions of ENSO during the training period
of 1960-96

To examine the prediction skill of SSTAs, two fre-
quently used measurements are selected. One is the
root-mean-square error (RMSE), which represents the
deviation in the predictions from the observations, and
the other is the anomaly correlation coefficient (ACC)
that measures how parallel predictions and observations
reach. Figures 6 and 7 illustrate the spatial distributions
of the ACC and RMSE for predicted SST anomalies
against those for the observed SSTAs in the tropical
Pacific, respectively. It is shown that, for all lead times,
the NFSV-ICM shows a much higher prediction skill
(either in the ACC or RMSE) in the central tropical
Pacific than the ICM. The NFSV-ICM also demon-
strates skillful predictions of SSTAs in the far western
tropical Pacific, while the ICM fails to do so. In the
meridional direction, the skillful predictions generated
by the NFSV-ICM cover almost the whole tropical
Pacific, especially for short lead times. However, the
ICM only shows skill in the region between 10°N and
10°S; furthermore, with increasing lead times, the skills
drop quickly in the eastern tropical Pacific and near the
equator. When the lead time is up to 9 months, the ICM
predictions lose useful skill in almost the whole tropical
Pacific and even show a negative ACC off the equator
(Fig. 6¢1). Comparatively, the ACC of the NFSV-ICM
predictions is still greater than 0.6 in the central tropical
Pacific at this lead time (Fig. 6¢2).

From the perspective of the RMSE, it can be seen that
the prediction errors are much larger along the equator
when the predictions are made using the ICM (left panels
of Fig. 7). At short lead times, the prediction errors are
mainly concentrated near the coast of Peru and, with

increasing lead times, such prediction errors in the eastern
Pacific become large and extend toward the west. In ad-
dition, large prediction errors are also found near the
model boundaries; these errors propagate to the central
equatorial Pacific with time and increase to 1.2°C at the
12-month lead time. However, when using the NFSV-
ICM, all of these prediction errors are significantly de-
creased, especially over regions near the equator. It is
obvious that the NFSV-ICM possesses smaller prediction
errors than the ICM in predicting SSTAs in the tropical
Pacific.

The anomaly correlations between the observed and
predicted SSTAs in the Nifio-3.4 area are plotted in
Fig. 8al as a function of the lead time. The prediction
skill of the ICM declines faster than that of the NFSV-
ICM, and the differences between the ICM and NFSV-
ICM in the ACCs gradually increase from 0.1 at the
3-month lead time to 0.3 at the 12-month lead time, with
the NFSV-ICM showing a much larger ACC. Further-
more, it is at all lead times that the skill of NFSV-ICM
defeats that of ICM and persistence prediction. If the
skillful predictions are regarded as the ACC being larger
than 0.6, the predicable time length for the Nifio-3.4
index can be increased from 6 months using the ICM to
12 months using the NFSV-ICM. A similar improve-
ment is also shown in the RMSE (see Fig. 8bl), espe-
cially for predictions with a 12-month lead time. These
results indicate that the NFSV-ICM is more skillful than
the ICM in predicting Nifio-3.4 index.

To reveal the season-dependent prediction skill, the
anomaly correlations for the Nifio-3.4 index are also
calculated as a function of both start months and lead
times. The results for the ICM and NFSV-ICM are
shown in Figs. 9al and bl, respectively. It is clearly
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FIG. 6. Horizontal distributions of the ACC between the observed and predicted SST anomalies at (a) 3-, (b) 6-,
(c) 9-, and (d) 12-month lead times. (left) The ICM and (right) the NFSV-ICM during the training period of

1960-97. The contour interval is 0.1.

shown that the prediction skill is significantly dependent
on the season. Specifically, both the ICM and NFSV-
ICM predictions show high skill in boreal winter and low
skill in spring. However, in either winter or spring, the
former predictions always present lower skills than the
latter predictions in predicting the Nifio-3.4 index.
The low prediction skill in spring is generally referred to
as the well-known SPB phenomenon. The SPB is defined
as a rapid decline in the anomaly correlation coefficient
when the prediction is made across boreal spring. From

the above results, it can be deduced that although both
the ICM and NFSV-ICM suffer from the SPB phenom-
enon, the NFSV-ICM notably reduces the effect of the
SPB in predicting tropical Pacific SST anomalies and
gives a more accurate prediction than the ICM.

In summary, we demonstrate here that the NFSV-
ICM has greater abilities than the ICM in predicting SST
anomalies associated with ENSO during the training
period. In particular, the SPB phenomenon is weakened
in the NFSV-ICM, and the related prediction skills are
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100W

highly improved in the central and western tropical
Pacific. These results indicate that the NFSV-ICM
describes the dynamical and physical feedback asso-
ciated with ENSO.

b. Predictions of ENSO during the cross-validation
period of 1997-2016

In the last section, we have validated the NFSV-ICM
in improving ENSO prediction during the training pe-
riod from 1960 to 1996. The NFSV-tendency error fore-
cast model is obtained by assimilating the observation

140F 180 140W 100W

information during this period. It is therefore under-
standable that the NFSV-ICM provides a significant
improvement in ENSO predictions during 1960-96. In
fact, a cross-validation experiment is much more real-
istic for examining the validity of the NFSV-ICM in
predicting ENSO. The cross-validation experiment here
refers to the fact that the NFSV-tendency error fore-
cast model obtained during 1960-96 is inserted into
the ICM to predict the SSTAs during the period of
1997-2016. That means we use the same NFSV-ICM in
the last section to examine the improvement of the
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prediction skill of the NFSV-ICM against the ICM in
predicting ENSO.

The ACC and RMSE for the prediction experiments
are presented in Figs. 10 and 11, respectively. It is shown
that the anomaly correlation obtained from the NFSV-
ICM is obviously larger than that from the ICM at lead
times of 1, 2, 3, ..., 12 months, and the RMSE is much
smaller than that of the ICM. This indicates that the
NFSV-ICM outperforms the ICM in predicting SST
anomalies. In particular, the NFSV-ICM still provides
useful skill at a 12-month lead time, with an ACC
larger than 0.6 (Fig. 8a2). Although the SPB phe-
nomenon also occurred in the cross-validation period
of 1997-2016, it was weaker in the NFSV-ICM than
the ICM (Figs. 9a2 and 9b2). Similar to the training
period, the prediction skills for SSTAs in the central
and western tropical Pacific are also significantly im-
proved in the NFSV-ICM compared with the original
ICM (Fig. 10). These results show that the NFSV-ICM
is valid for reaching high prediction skills of SSTAs
during the cross-validation period. Therefore, the
NFSV-ICM can be a useful forecast system for realistic
ENSO events.

c. Prediction skills for two types of ENSO

The fact that the NFSV-ICM shows high performance
in central Pacific implies that the new model can well
predict the central Pacific warming events known as CP
El Nifio. Such warming events that occur frequently in
recent decades are found to show different climate ef-
fect compared with the traditional El Nifio (denoted as
EP ElNifo) (Ashok et al. 2007). So, predicting the space
structures, especially distinguishing two kinds of El Nifio
events are also important.

Predictions for two kinds of El Nifio events are shown
in Figs. 12 and 13, respectively. Although the ICM has
the ability to predict the amplitude of EP El Nifio, the
ICM tends to predict a cooler-than-normal SST anomaly
in subtropical Pacific. By contrast, the NFSV-ICM can-
not only predict the amplitude but also capture the space
structures of the EP El Nifio events. Furthermore, an
evident improvement is found in CP El Nifio prediction
using the NFSV-ICM. The ICM tends to lose skill in
predicting CP El Nifio at 6-month lead time and usually
predicts a cooling event. While the NFSV-ICM still has
skills in predicting the spatial distributions of CP
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El Nifo events. From the above, it is indicated that the
ICM equipped with the NFSV-assimilation is likely to
have advantage in discerning and predicting different
types of El Nifio events.

6. Conclusions and discussion

The predictions of ENSO events are generally influ-
enced by both initial errors and model uncertainties. In
particular, an ICM usually neglects or simplifies some
physical processes, which induces large model errors and
influences the accuracy of the predictions of ENSO (Qi
et al. 2017). In the present study, we focus on the model
errors and develop a new ENSO forecast system (NFSV-
ICM) consisting of an ICM and an NFSV-tendency error

forecast model that is used to estimate the combined
effect of the model errors. The prediction experiments
are performed for tropical SSTAs during both the
training period (1960-1996) and the cross-validation
period (1997-2016). The results commonly show that
the NFSV-ICM tends to possess a much higher forecast
skill compared with the original ICM. In particular, a
considerable improvement in the forecast skill is re-
flected in the central and western tropical Pacific. Fur-
thermore, the well-known SPB phenomenon is also
obviously weakened in the NFSV-ICM. The NFSV-
ICM shows useful skill in ENSO forecasting and can
be a promising ENSO forecast system.

The high skill of the NFSV-ICM in predicting ENSO
is mainly due to the embedded NFSV-tendency error
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FIG. 10. As in Fig. 6, but for the cross-validation period (1997-2016).

forecast model. Since the model errors are from dif-
ferent model error sources and their effects are mixed
in the prediction uncertainties (Jin et al. 2008; Zheng
and Zhu 2016), it is difficult to distinguish them and
study them separately. The NFSV-tendency error
forecast model considers the effect of model errors
from a macro perspective and proposes the approach
of describing the combined effect of different model
errors by the NFSV-tendency perturbation. The
NFSV-tendency perturbation is superimposed on
each time step of the model integrals and therefore

also suppresses the effect of the initial errors. The
NFSV-tendency perturbation tries to reach the opti-
mal tendency error by using an NFSV-related assim-
ilation and is sufficient for estimating the interaction
between model errors and initial errors, which
therefore corrects the ICM forecasts to the greatest
extent and makes the NFSV-ICM obtain high skill in
predicting ENSO. The NFSV-ICM can consider not
only the effect of model errors but also the effect of
the initial errors. This is the competing aspect of the
NFSV-ICM compared with the traditional initial value
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FIG. 11. As in Fig. 7, but for the cross-validation period (1997-2016).

assimilation. Because the NFSV-tendency error forecast
model is constructed based on the SVD relationship
between SST and NFSV. An undeniable fact is that
the trained SST-NFSV relation is dependent on the
historical data and the uncertainties of the SVD ana-
lyses. Therefore, sensitivity experiments regarding
to the NFSV-tendency error model are implemented
to explore the prediction skills influenced by the un-
certainties of the SST-NFSV relation (see the appen-
dix). The fact that the SST-NFSV relation is essentially
nonlinear implies the uncertainties of the relation

constructed by the linear SVD approach. More in-
telligent and advanced methods (e.g., machine learning)
are expected to be adopted to make the SST-NFSV
relation more robust (Reichstein et al. 2019).

It is pointed out that the ICM-based ensemble pre-
diction system (EPS-ICM; see Zheng et al. 2009b) shows
skill almost equivalent to that in the NFSV-ICM for SST
predictions. Note that the EPS-ICM is constructed not
only using ensemble Kalman filter (EnKF) data assim-
ilation with SST fields to generate the initial ensemble
conditions but also a model-error model to characterize
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FIG. 12. The horizontal distributions of SST anomalies in (a) observations, (b) ICM prediction, and (c) NFSV-ICM prediction at 6-month
lead time predictions for the mature phase of EP-type El Nifno events.

the model uncertainties. The model-error model is a
zero-mean first-order Markov stochastic model that is
developed by analyzing historical model errors. That is,
the EPS-ICM is an ensemble forecast system involving
initial and model errors and using a relatively advance
data assimilation. However, the NFSV-ICM is only in-
volved with a deterministic prediction system, where the
SST observations are only used to initialize the model
with simple data assimilation (i.e., the nudging method).
Obviously, the NFSV-tendency error forecast model is
the one that plays an important role in improving the
level of predictions generated by the NFSV-ICM. The
NFSV-tendency error forecast model, due to its optimal
NFSV-tendency perturbation, possesses more possibil-
ities in correcting the model and greatly improving the
prediction skill. On the other hand, it is worth men-
tioning that Zheng and Zhu (2016) considered the cou-
pling of atmosphere and ocean in initialization of the
EPS-ICM and used an advanced EnKF assimilation

approach to initialize the model, finally achieving
much higher forecast skill of ENSO. This encourages
us to equip the NFSV-ICM with EnKF and consider
the air—-sea coupling in initialization, and then en-
hance greatly the forecast skill of the NFSV-ICM
with respect to the types of ENSO. Exactly, such an
idea is under investigation.

In addition, after the 1990s, a new flavor of El Nifo,
with its warm center in the central tropical Pacific
(known as CP El Nifio) in comparison with the tradi-
tional El Nifio (EP El Nifio), which has a warm center in
the eastern tropical Pacific, occurred frequently, giving
rise to additional model errors and proposing new
challenges to the simulations and predictions of ENSO
(Kim et al. 2012; Tian and Duan 2016; Duan et al. 2018).
Although some models, including the ICM used in the
present study, are equipped with advanced assimilation
techniques to optimize the initial fields, they still showed
low forecast skill for CP ENSO due to model error
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effects (Hendon et al. 2009; Duan et al. 2014). In the APPENDIX

present study, we have shown that the NFSV-ICM
shows great improvement in the prediction skills for
SSTs in the central and western tropical Pacific. And we
find that the ICM equipped with the NFSV assimilation
greatly improve the capacity of discernments and pre-
dictions for two kinds of El Nino events. Thus, the
NFSV-ICM may provide a promising way to study
predictability in terms of the EP and CP El Nifio events.
In addition, we have not addressed why and how the
NFSV-tendency errors work in the SST predictions,
especially for the high prediction skill in the central
Pacific. These issues will be focused on and addressed in
the next paper.
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Sensitivity of NFSV-ICM to the Error Forecast
Model

The success of the NFSV-ICM is sensitive to the
constructed NFSV-tendency error model. In addition to
the training periods, the error model is also dependent
on the intensity of the error forcing and the statistical
method [Eq. (9)]. As mentioned above, since only some
leading SVD modes are retained, part of the informa-
tion and variance is lost. Thus, it is very important to
obtain a reasonable « that represents the strength of the
tendency error and limited SVD modes to facilitate the
error model. On the one hand, a high « may exorbitantly
estimate the model errors against the ENSO prediction,
while a too low a is not enough to produce tendency
errors that offset the model uncertainties in predictions.
On the other hand, if too many SVD modes are retained
in statistical relation, the noise that has nothing to do with
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FIG. Al. The mean spatial similarity between NFSVs and statistical
determined NFSVs as a function of retained SVD modes.
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the SST-NFSV relation will be included. As a result, the
constructed error model has low skill in estimating the
tendency errors during the period that is not overlapping
the training period. Thus, this section will further examine
the sensitivity of the NFSV-ICM to the strength of the
error forcing and the retained SVD modes.

The structure of the tendency errors that are estimated
using the SST anomaly is highly dependent on how many
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SVD modes are retained. To estimate the error model in
terms of the spatial structure during the training period
(i.e., 1960-97), a mean spatial similarity (MSS) be-
tween predicted tendency errors (NFSV?) and NFSVs is
used defined as MSS = (1/N)Y,", [NFSV()NFSV? )]/
[INFSV(2)|[NFSV?(2)|], in which N is 37 X 12 (months).
The result is presented in Fig. Al. It is clear that more
SVD modes retained in constructing the NFSV-error
model has a better ability to capture the patterns of the
tendency errors. Particularly, the skill is improved
gently when more than 6 leading modes are reserved.
That is, the high-order modes have small role in the
SST-NFSV relation. Besides, retaining high-order
modes will contain the noise that harms the estima-
tion of the tendency error using the SST information. In
this sense, retaining reasonable SVD modes can filter out
noise and extract the robust relation for SST-NFSV.
The truncation of the SVD modes necessarily changes
the strength of the tendency errors estimated. The sen-
sitivity to the SVD modes and the corresponding
strength of the error forcing to the ICM is analyzed from
the perspective of the predictions for the SST anomaly.
The anomaly correlations between predicted and ob-
served SST anomaly as a function of lead time during the
period 1960-1996 are shown in Fig. A2. In short time

— 1
lead 3 12m | lead 4
10m 40.95
8m 1 0.9
6m 40.85
4a 6a 8a 10a 4a 6a 8a 10a P

0.75

4a 6a 8a 10a 4a 6a 8a 10a

12m
10m
8m 0.45

6m

0.4

4a 6a 8a 10a 4a 6a 8a 10a

FIG. A2. Correlations of the Nifio-3.4 SST anomaly during the period 1960-97, as a function of retained SVD modes and intensity of the
error forcing (i.e., a). Each panel denotes the result at a certain lead time. The x coordinate is the value of the « (e.g., 6a denotes a = 0.6).
The y coordinate is the number of the leading SVD modes retained in the NFSV-tendency error model (e.g., 10m denotes 10 modes).
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(e.g., 1-month lead time) predictions, the predicted re-
sults are insensitive to the SVD modes and the error
strength since the model errors play small role in
short time predictions. As the prediction length is
increased, the performance of the NFSV-ICM is
dependent on the SVD modes and «. As shown in
Fig. A2, the NFSV-ICM possesses largest skill when
a=0.6 or @« =0.8, where the correlation is larger than
0.65 even predicting 12 months. In addition, the
dependence of the model skill on SVD modes is
prominent with lead time increased. Consistent with
Fig. A1, the NFSV-ICM with higher modes retained
tends to show higher skill in SST predictions. But the
skill using 10 SVD modes are identical to that using 12
SVD modes.

As discussed above, a success of the NFSV-ICM
cannot only improve the prediction during the training
period but also can make sense in other periods without
overlapping the training period. Therefore, the sensi-
tivity of the model skill to the SVD modes and a during
the period 1997-2016 is shown in Fig. A3. Similar to
Fig. A2, limited SVD modes and a certain « allow the
improvement of the ICM equipped with the NFSV-
tendency error model. The skill of the NFSV-ICM reach
the peak when the 10 SVD modes are retained and
a=0.6 or a=0.4. Also, significant decrease of the
prediction error is achieved (not shown).

0.4

4a 6a 8a 10a
FIG. A3. As in Fig. A2, but for the period 1997-2016.

4a 6a 8a 10a

From the above, the new ENSO forecast system
has the largest skill in ENSO prediction when the
NFSV-tendency error model is determined by 10 lead-
ing SVD modes and a = 0.6.
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