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Abstract The nonlinear forcing singular vector (NFSV)
approach is used to identify the most disturbing tendency
error of the Zebiak—Cane model associated with EI Nifio
predictions, which is most potential for yielding aggres-
sively large prediction errors of El Nifio events. The
results show that only one NFSV exists for each of the
predictions for the predetermined model El Nifio events.
These NFSVs cause the largest prediction error for the
corresponding El Nifio event in perfect initial condition
scenario. It is found that the NFSVs often present large-
scale zonal dipolar structures and are insensitive to the
intensities of El Nifio events, but are dependent on the
prediction periods. In particular, the NFSVs associated
with the predictions crossing through the growth phase
of El Nifio tend to exhibit a zonal dipolar pattern with
positive anomalies in the equatorial central-western
Pacific and negative anomalies in the equatorial eastern
Pacific (denoted as “NFSV1”). Meanwhile, those associ-
ated with the predictions through the decaying phase of
El Nifo are inclined to present another zonal dipolar pat-
tern (denoted as “NFSV2”), which is almost opposite to
the NFSV1. Similarly, the linear forcing singular vectors
(FSVs), which are computed based on the tangent linear
model, can also be classified into two types “FSV1” and
“FSV2”. We find that both FSV1 and NFSV1 often cause
negative prediction errors for Nifio-3 SSTA of the EI Nifio
events, while the FSV2 and NFSV2 usually yield positive
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prediction errors. However, due to the effect of nonlin-
earities, the NFSVs usually have the western pole of the
zonal dipolar pattern much farther west, and covering
much broader region. The nonlinearities have a suppres-
sion effect on the growth of the prediction errors caused
by the FSVs and the particular structure of the NFSVs
tends to reduce such suppression effect of nonlinearities,
finally making the NFSV-type tendency error yield much
large prediction error for Nifio-3 SSTA of El Nifio events.
The NFSVs, compared to the FSVs, are more applica-
ble in describing the most disturbing tendency error of
the Zebiak—Cane model since they consider the effect of
nonlinearities. The NFSV-type tendency errors may pro-
vide information concerning the sensitive areas where
the model errors are much more likely to yield large pre-
diction errors for El Nifio events. If the simulation skills
of the states in the sensitive areas can be improved, the
ENSO forecast skill may in turn be greatly increased.

Keywords Predictability - Model error - Optimal
perturbation - El Nifio event

1 Introduction

The El Nifio-Southern Oscillation (ENSO) cycle has
attracted the attention of scientists in recent decades
because its environmental and socioeconomic impacts are
felt worldwide (e.g., McPhaden et al. 2006). Knowledge of
the ENSO cycle and forecasts of its variations are therefore
valuable for agriculture, public health and safety, and many
other climate-sensitive human endeavors.

Since the development of the Zebiak—Cane model
(Zebiak and Cane 1987), which for the first time demon-
strated the possibility of ENSO prediction by forecasting
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the 1986/1987 El Nifio event in real time, a suite of mod-
els with varying degrees of complexity have been devel-
oped for ENSO modeling and prediction (Neelin 1990;
Kleeman 1991; Latif et al. 1993; Penland and Magorian
1993; Luo et al. 2008). The climate forecast system at the
National Centers for Environmental Prediction (NCEP)
(Saha et al. 2006), the seasonal forecast systems at the
European Center for Medium-Range Weather Forecasts
(ECMWF), and the multi-model ensemble (MME) sys-
tems of the EU (Palmer et al. 2004) and the Asia—Pacific
Economic Cooperation (APEC) Climate Center (APCC)
have also been developed for seasonal to interannual cli-
mate prediction.

While significant progress has been made with respect
to ENSO theories and predictions over the years, there
still exist considerable errors when predicting ENSO
events (Jin et al. 2008; Tang et al. 2008), possibly due to
the uncertainty in initial conditions and model parameters,
the inherent nonlinearity of ENSO, atmospheric noise,
and other high-frequency variations. Many studies have
explored ENSO predictability associated with prediction
errors from the viewpoint of initial error growth (Moore
and Kleeman 1996; Samelson and Tziperman 2001) and
showed that initial errors may have a significant effect
on ENSO predictions. Moore and Kleeman (1996) dem-
onstrated the season-dependent evolutions of initial errors
of ENSO events and illustrated the “spring predictability
barrier” (SPB) phenomenon from the viewpoint of error
growth. Chen et al. (1995) reduced the SPB phenome-
non of the model developed by Zebiak and Cane (1987)
through improving the initialization, and the result showed
an enhancement of the ENSO forecasting skill. Recently,
Mu et al. (2007a, b) further emphasized the importance
of a particular initial error pattern in yielding the SPB for
ENSO events.

In realistic ENSO predictions, the prediction errors are
generally caused by initial errors and model errors. Further-
more, an increasing number of studies have indicated that
model errors also influence the ability to forecast ENSO
(Wu et al. 1993; Hao and Ghil 1994; Blanke et al. 1997,
Fliigel and Chang 1998; Latif et al. 1998; Liu 2002; Zhang
et al. 2003; Zavala-Garay et al. 2004; Williams 2005). The
model errors may arise from various schemes of physi-
cal parameterization (Syu and Neelin 2000), atmospheric
noise, or other high-frequency variations, such as west-
erly wind bursts and the Madden—Julian oscillation (Geb-
bie et al. 2007; Tang and Yu 2008; Marshall et al. 2009).
However, some of these physical processes are omitted
in intermediate-complexity models (Zebiak and Cane
1987; McCreary and Anderson 1991), therefore, model
errors may exist in these models. Considering the effect
of uncertainties in empirical model parameters on ENSO
predictability (Mu et al. 2002), Duan and Zhang (2010)
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and Yu et al. (2012) used an approach of conditional non-
linear optimal perturbation (CNOP) to explore the influ-
ence of model parametric errors on ENSO predictability
and argued that the parameter errors may have less influ-
ence on prediction uncertainties of ENSO. Generally, the
model errors consist of the combined effect of uncertain-
ties of model parameters, unrecognized physical processes,
sub-grid parameterization, and atmospheric noise etc., and
cannot be solely represented by model parametric errors.
Furthermore, the effect of model errors on ENSO pre-
dictability cannot be only described by parametric errors’
effects. It is therefore necessary to explore the effect of all
kinds of model errors on ENSO predictability. Actually, we
cannot be exact in separation of these kinds of model errors
from prediction results; we have to explore the combined
effect of these kinds of model errors on ENSO prediction
uncertainties.

Roads (1987) superimposed tendency equation with an
external forcing term and used it to describe the combined
effect of unrecognized physical processes, sub-grid param-
eterization, atmospheric noise, and so on. Following this
idea, Barkmeijer et al. (2003) proposed the forcing singu-
lar vector (FSV) concept, which is supposed to be invari-
ant during forecast periods and represents the constant ten-
dency error that has the fastest growth. That is to say, they
attempted to reveal the most disturbing tendency errors of
the model that tend to yield aggressively large prediction
errors. However, the FSV is based on linear theory and can-
not depict the effect of nonlinearity, thus not representing
the most disturbing tendency error in a nonlinear model. In
order to overcome this limitation, Duan and Zhou (2013)
extended the FSV to a nonlinear field, i.e., the nonlinear
forcing singular vector (NFSV) approach, in which they
considered the effect of nonlinearity on tendency errors.
The competing aspect of NFSV takes into account the
effect of nonlinearity existing in numerical models, and
thus is more applicable in describing the most disturbing
tendency error in predictability studies associated with
model errors.

In this paper, we use the NFSV approach to study the
most disturbing tendency error and explore the effect of
model errors on prediction uncertainties for ENSO events.
We begin by reviewing the NFSV approach in the follow-
ing section. Then, in Sect. 3, we introduce the intermediate
Zebiak—Cane model used in the study. Section 4 explores
the NFSVs and FSVs of reference-state El Nifio events,
reveals the differences between them, and then discusses
the mechanism of the evolution of prediction errors caused
by the NFSVs. Section 5 investigates the role of nonlineari-
ties in modulating the NFSV-resultant prediction errors. In
Sect. 6, we present an interpretation concerning the differ-
ence between NFSVs and FSVs. Finally, a summary and a
discussion are presented in Sect. 7.
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2 The nonlinear forcing singular vector

If we denote the state vector as W, the evolution equations
for W can be written as

{§f=nwuwx

in 2 x[0,1
Wli—o = Wo, (0.1

2.1
where W(x,1) = (w1 (x,1),wa(x,1),...,w,(x,1)), Wo(x,1)
is the initial state, (x,7) € Q x [0, ], Q is a domain in R",
x = (X}, Xy, ..., x,), t = 0 is the initial time, and ¢t = © with
T < +00 is the future time of the evolution of state vari-
ables. F is a nonlinear differential operator. We assume that
the dynamic system equation and the initial state are known
exactly, and the future state can be determined by integrat-
ing Eq. (2.1). The solution to Eq. (2.1) for the state vector
W at time 7 is given by

Wx,7) =M (Wyp). (2.2)

where M (W) is the propagator of the Eq. (2.1). That is to
say, the Eqs. (2.1) and (2.2) are in perfect model scenario.

As mentioned above, predictions are generally influ-
enced not only by initial uncertainties, but also model
uncertainties. If model uncertainties are assumed to be
time-invariant during the forecast period, then the cor-
responding forecast model, based on the Eq. (2.1), can be
described by the following equation:

(2.3)

SR = F(W +w) +f(x),
W +wli=o = Wo + wo,

where f(x) represents tendency errors, and w,, represents
initial errors. If we use M, (f) to denote the propagator of
Eq. (2.3), then when f =0, M, (f) is the same as M in
Eq. (2.1). Or say, when f = 0, Eq. (2.3) represents a per-
fect model of Eq. (2.1). When f # 0, ones hope to find the
tendency error that causes the largest prediction error at
prediction time in predictability studies (Barkmeijer et al.
2003; Duan and Zhou 2013).

Based on Eq. (2.3), Duan and Zhou (2013) defined the
NFSV, which represents the constant tendency error that
has the largest effect on prediction uncertainties at predic-
tion time. A forcing vector f5is the NFSV if and only if

Js(fs) = l;}ﬁ?gé J(), 2.4)

where

J() = IM<(f)(Wo) — M (0)(Wo)lly,

and ||-]|, and ||-||, are measurements of tendency errors f in
terms of the norm. The objective function J measures the mag-
nitudes of prediction errors caused by the tendency error f.
The NFSV is a natural generalization of the (linear) FSV
in a nonlinear field. The so-called FSV was proposed by
Barkmeijer et al. (2003) and defined as follows:

2.5)

M- (F) (O) I
max —————

A= T

(2.6)

where M. (f) is the tangent linear operator of M. (f) with
respect to the reference state W(x,t) = M,(Wy), and the
norm ||-|| here is described by the inner product. The vec-
tor f * represents the FSV and can be obtained by solving
the optimization problem (2.6). The FSV describes the ten-
dency error that has the largest growth rate in the linearized
model during the forecast period.

To compute the NFSV, we must numerically solve
Eq. (2.4). However, Eq. (2.4) is a maximization problem,
and cannot be computed directly. Fortunately, several opti-
mization algorithms are available for calculating minimi-
zation problems. Actually, Eq. (2.4) can be transformed
into a minimization problem by considering the negative
of the objective function. Accordingly, the algorithms for
solving minimization problems, such as Spectral Pro-
jected Gradient 2 (SPG2; Birgin et al. 2000), Sequential
Quadratic Programming (SQP; Powell 1983) and Limited-
Memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS;
Liu and Nocedal 1989), can be used to compute the NFSV.
In these algorithms, the gradient of the modified objec-
tive function [i.e., the negative of the objective function
in the Eq. (2.5)] with respect to the external forcing f is
required; furthermore, the adjoint of the corresponding
models is usually used to obtain the gradient. Duan and
Zhou (2013) addressed how to compute the gradient of the
objective function with respect to external forcing by using
the adjoint and gave the formula of the gradient. With this
gradient information, employing the above algorithms can
determine the minimum of the modified objective function,
i.e., the maxima of the objective function in the Eq. (2.4)
along the descending direction of the gradient. In phase
space, the point corresponding to the minimum of the mod-
ified objective function is the NFSV defined by Eq. (2.4).
In the current study, we will use the SPG2 algorithm to
obtain the NFSVs of the Zebiak—Cane model with respect
to the predetermined model El Nifio events.

3 The Zebiak—Cane model

The Zebiak—Cane model is a nonlinear anomaly model of
intermediate complexity that describes anomalies about a
specified seasonally varying background, avoiding the “cli-
mate drift” problem. The model is composed of a Gill-type
steady-state linear atmospheric model and a reduced-grav-
ity oceanic model, which depict the thermodynamics and
atmospheric dynamics of the tropical Pacific with oceanic
and atmospheric anomalies (Zebiak and Cane 1987). The
atmospheric dynamics are described by the steady-state
linear shallow water equations on an equatorial beta plane.
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The circulation is forced by a heating anomaly that depends
partially on local heating that is associated with SST
anomalies and partially on low-level moisture convergence
(parameterized in terms of the surface wind convergence)
(Zebiak 1986). In this anomaly, convergence feedback is
a nonlinear process because the moisture-related heating
occurs only when the total wind field is convergent, which
depends not only on the calculated convergence anomaly,
but also the specified mean convergence. The important
effect of the feedback is to focus the atmospheric response
on the SST anomalies in or near the regions of mean con-
vergence, particularly the Intertropical Convergence Zone
and the Southern Pacific Convergence Zone. The thermo-
dynamics of this phenomenon are governed by an evolution
equation of the SSTA in the tropical Pacific that includes
three-dimensional temperature advection by the speci-
fied mean currents and the calculated anomalous currents.
The assumed surface heat flux anomaly is proportional
to the local SST anomaly and constantly adjusts the tem-
perature field toward its climatological mean state, which
is specified through observation. In the coupled Zebiak—
Cane model, the atmosphere is first run with the specified
monthly mean SST anomalies to simulate monthly mean
wind anomalies. Next, the ocean component is enforced
by surface wind stress anomalies that are generated from
a combination of surface wind anomalies produced by the
atmosphere model and the background mean winds.

The Zebiak—Cane model was the first coupled ocean—
atmosphere model to simulate the observed ENSO interan-
nual variability, and has provided a benchmark in ENSO
research over several decades since. In particular, it is one
of the few real-time models that successfully predicted the
onset of the 91/92 warm ENSO phase. Its successful per-
formance has led to this model being widely used in predic-
tion and predictability studies (Zebiak and Cane 1987; Blu-
menthal 1991; Xue et al. 1994; Chen et al. 2004; Tang et al.
2008; Mu et al. 2007a; Duan et al. 2009; Yu et al. 2012).
There are two types of El Niflo events. One type consists
of canonical El Nifio events, which typically develops from
the South American coast and propagates westward across
the tropical Pacific (Rasmusson and Carpenter 1982) and is
referred to as “EP-El Nifio events” in some papers (Kao and
Yu 2009; Kug et al. 2009); the other type is a new type El
Nifio events (often called “CP-El Niifio events”), in which
warm SST is mainly concentrated in the central Pacific and
does not propagate (Ashok et al. 2007). Duan et al. (2013)
demonstrated that the Zebiak—Cane model tends to be well
in simulating the EP-El Nifio events but bad in depicting
the CP-El Nifio events. Therefore, the Zebiak—Cane model
may describe the essential physics of EP-El Nifio and can
be regarded as a tool for investigating the effect of super-
imposed tendency errors on the predictability of EP-EIl
Nifio events. That is to say, the results derived from the
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Zebiak—Cane model are generally for EP-EIl Nifio events in
a perfect model scenario.

4 The NFSVs of the Zebiak—Cane model with respect
to predetermined El Niiio events

Perfect model predictability experiments have been widely
used in predictability studies, in which numerical models
are assumed to be perfect and perturbations are superim-
posed on initial conditions or model parameters or tendency
equations to explore the effect of initial errors or model
errors on predictability (Lorenz 1996; Moore and Kleeman
1996; Barkmeijer et al. 2003; Mu and Zhang 2006; Duan
et al. 2009; Duan and Zhou 2013, etc.). In this paper, we
assume the Zebiak—Cane model to be perfect and conduct
the predictability experiments in a perfect model scenario
(see Sect. 3), in which a tendency error is superimposed to
the Zebiak—Cane model for describing an imperfect fore-
cast model [see Eq. (4.1)] and explore which feature dis-
plays the most disturbing tendency error associated with El
Nifio predictions, which, as mentioned in Sect. 3, is for EP-
El Nifio events. For simplicity, we still use the terminology
“El Nifio” to describe the results in the context.

AT/t =-U-V(T+T) —U- VT — [MF +wy) — MW,)] x T,

— M + W) T — o, T +f(x,).
“.1)

where T, U, ws, and _wy, denote anomalies of mixed layer
temperature (or SST), horizontal surface velocity (a vec-
tor), the upwelling at the mixed layer base, and the mean
upwelling. The coefficient « is a nondimensional param-
eter that represents the Newtonian cooling coefficient for
SSTA. The function M(x) is defined by

0, x<0;
x, x> 0.

M(x) = {

It accounts for the fact that surface temperature is affected
by vertical advection only in the presence of upwelling.
The anomalous vertical temperature gradient, 75, is defined
by

T—T,
H

where H, is the surface layer thickness, and Te measures
the temperature anomalies entrained into the surface layer.
Tropical Pacific SSTAs comprise one of the main com-
ponents of the interannual variations of the coupled system
in the core region of the ENSO. To utilize the Zebiak—Cane
model to study the effect of tendency errors on the predic-
tion uncertainties for ENSO, we consider superimposing
a tendency error to the SSTA equation that describes the
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interannual variations of ENSO and explore the NFSVs
of the Zebiak—Cane model with respect to some predeter-
mined reference-state El Nifio events [(see Eq. (4.1)]. We
define the objective function associated with the NFSV
[i.e., the vector fsin Eq. (4.2)] as follows:

J(fs) = H;IlllilééllT(f)lla, (4.2)

where the norm ||T/(r)||a = ,/Z,-I.(Ti:]-(r))2 is used to

measure the amplitude of the prediction error caused by
the tendency error f and the norm ||f]|, = ,/Zi‘/ (fi)? is
adopted to constrain the magnitude of tendency error f.
Here, T,(r) represents the evolution of the error of predic-
tions for the SSTA component caused by tendency error at
future time 7, and is obtained by subtracting the SSTA of
the reference-state El Nifio events from the predicted SSTA
generated by the Zebiak—Cane model (with the tendency
error f) at prediction time t. T ; Tepresent the prediction
error of the SSTA at different grld points and (i, j) is the
grid point in the domain of the tropical Pacific with latitude
and longitude, respectively, from 129.375°E to 84.375°W
by 5.625° and from 19°S and 19°N by 2°. The NFSV is
computed for the time period from the start time to the
future prediction time [i.e., the time interval (0, t)], which
is also called the optimization time period of determining
the NFSV.

We first determine the reference-state El Nifio events
to be predicted. Mu et al. (2003) and Duan et al. (2012)
demonstrated that the CNOP-type initial anomalies are
most likely to evolve into El Nifio events and act as the
optimal precursory disturbance for El Nifio events. Fur-
thermore, the CNOP-resultant El Nifio events sufficiently
consider the effect of nonlinearity. In this study, we choose
the CNOP-resultant El Nifio events as reference states
to be predicted, which may be convenient for revealing
the effect of nonlinearity on the prediction errors caused
by the tendency errors. The CNOP-type initial anoma-
lies of the Zebiak—Cane model are initialized in January
and determined by constraint conditions with magnitudes
of 0 =0.4,0.6,0.8 and 1.0 (see the “Appendix”). These
CNOP-initial anomalies tend to exhibit a zonal dipolar
SSTA pattern with positive anomalies in the equatorial
eastern Pacific and negative anomalies in the equatorial
central-western Pacific, and a thermocline depth anomaly
pattern with positive anomalies along the equator (Fig. 1).
Such patterns are favorable for a strong equatorial east—
west thermal contrast and a deepening thermocline depth
along the equator, which then easily induce a strong equa-
torial westerly anomaly and initial warm subsurface water,
thereby causing the temperature of the upwelled water to
become warmer and finally yielding El Nifio events [the
details can be referred to in Duan et al. (2012)]. Figure 2
plots the Nifio-3 index of the El Nifio events induced by

the CNOP-type initial anomalies in Fig. 1. It can be seen
that the CNOP-type initial anomalies evolve into El Nifio
events with different intensities; specifically, the larger the
magnitudes (i.e., values of o) of CNOP-type initial anom-
alies, the stronger the corresponding El Nifio events. The
four El Nifio events shown in Fig. 2 often present their peak
phases in boreal winter and persist for roughly more than
20 months. The properties of these model El Nifio events
are very similar to the observed El Nifio events. It is there-
fore reasonable for us to use these model El Nifio events as
reference states to obtain the NFSV-type tendency errors.

In this context, we use Year (0) to denote the year when
El Nifio attains a peak value, and Year (—1) and Year (1)
to signify the year before and after Year (0), respectively.
If the reference-state El Nifio events are assumed to be
predicted with 1 year lead time by using the Zebiak—
Cane model with tendency errors f, then the optimiza-
tion time period of determining the NFSVs is 12 months.
In the numerical experiments, the El Nifio predictions are
first made with a start month of January (0) [i.e., January
in Year (0)], April (0), and July (0). Then, the NFSVs are
determined with these start months and optimization time
period of 12 months. These NFSVs are mainly associated
with the predictions for the growth phase of El Nifio; and
for convenience, we hereafter refer to these predictions as
growth-phase predictions and the NFSVs as the ones of the
growth-phase predictions, which represent the constant ten-
dency errors that have the largest effect on the uncertainties
of the growth-phase predictions. Subsequently, we perform
further numerical experiments for El Nifio predictions with
a start month of January (1) [i.e., January in Year (1)], April
(1), and July (1) and a lead time 12 months. These three
predictions are the ones crossing through the decaying
phase of El Nifio and are therefore referred to hereafter as
decaying-phase predictions; and the corresponding NFSVs,
with the optimization time period being 12 months, are
described as the ones of the decaying-phase predictions for
El Nifio events.

For the NFSVs, we choose for the experiments the con-
straint bounds § [see Eq. (3.1)] as 0.8, 1.0, and 1.2, to con-
strain the magnitudes of tendency errors f of SSTA. As a
result, we will have 18 predictions for each El Nifio event,
as shown in Fig. 1, a total of 72 predictions (36 growth-
phase predictions and 36 decaying-phase predictions) for
the four El Nifio events, and are then required to compute
the NFSVs of 72 predictions. Computations show that, for
each value of &, regardless of start month, there exists one
NFSYV for each prediction. Then, we obtain the 72 NFSVs.
The magnitudes of all these NFSVs in terms of the cho-
sen norm are always equal to the values of the constraint
bounds §. That is, all of these NFSVs locate on the bound-
ary of the corresponding constraint condition ||f||, < é.
These NFSVs consist of the SSTA component and, for the
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Fig. 1 The SST and thermocline depth anomalies of the CNOP-type
initial anomalies. a The initial anomalies with magnitude of o = 0.4;
b, ¢, and d as in (a) but with magnitudes of o = 0.6, 0 = 0.8, and
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Fig. 2 Nifio-3 indices of the El Nifio events caused by the CNOP-
type initial anomalies shown in Fig. 1

reference-state El Nifio events with different intensities,
often exhibit similar large-scale zonal dipolar patterns for a
particular initial time. More specifically, the NFSVs of the
growth-phase predictions present a zonal dipolar pattern
with positive anomalies in the equatorial central-western
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o = 1.0, respectively. These initial anomalies are initialized in Janu-
ary, with optimization periods of 12 months

Pacific and negative anomalies in the equatorial eastern
Pacific (hereafter denoted by “NFSV1”). However, those of
the decaying-phase predictions have signs almost opposite
to the former (hereafter denoted by “NFSV2”).

Figure 3 plots the NFSV-type tendency errors of the
growth-phase predictions (for the El Nifio event with
o = 1.0) with the start month being January (0) and the con-
straint bounds of tendency errors being 6 = 0.8, 1.0, 1.2,
respectively. It can be seen that, although all these tendency
errors tend to present the NFSV1 pattern, there exist dif-
ferences among them for different constraint bounds. In
particular, the NFSV1 with large magnitudes tend to extend
their positive anomalies much farther westward. In any
case, from the pattern of the NFSV1, it is inferred that the
NFSV1 tendency errors tend to enhance the equatorial east-
ern cooling—western warming thermal contrast and induce
strong easterly anomalies, which are superimposed on the
SSTA equation of the Zebiak—Cane model and persist to
force the tropical Pacific SSTA. Subsequently, a persistent
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Fig.3 SSTA component of FSV1 and NFSV1 of the El Nifio event
(induced by the CNOP-type initial anomaly with magnitude of
o = 1.0). These NFSVs and FSVs are, respectively, of magnitudes of

anomalous upwelling may occur in the equatorial eastern
Pacific, and the upwelled sub-surface cold water can sup-
press the warming of El Nifio events, finally weakening the
reference-state El Nifio events and yielding a negative pre-
diction error of the Nifio-3 SSTA for the El Nifio events.

To confirm this inference, we investigate the prediction
errors of El Nifio events caused by the NFSV1 tendency
errors. With the initial anomalies of the reference-state El
Nifio events as the initial values, we integrate the Zebiak—
Cane model with the NFSVI1 tendency error for one
model year and obtain the predictions for El Nifio events.
Subtracting the reference-state El Nifio events from their
predictions provide the prediction errors caused by the
NFSV1 tendency errors with lead times of three, six, nine,
and 12 months and the corresponding thermocline depth
and wind stress anomalies. We determine that, no matter
which El Nifio event is predicted, and whatever the initial
times are, the NFSV1 tendency errors with 6 = 0.8,1.0,1.2
always cause significantly negative prediction errors of the
Nifio-3 SSTA. Furthermore, the prediction errors caused

ad=0.8bd=1.0,and ¢ 3 = 1.2, and are calculated with the start
month of January (0) and the optimization period being 12 months

by the NFSV1 tend to behave as a La Nifia-like evolving
mode. Figure 4 presents the SST, thermocline depth and
wind stress anomalies of the prediction errors (of the El
Niflo event with o = 1.0) caused by the NFSV1 of 6 = 1.0
with the start month January (0). The results demonstrate
that the NFSV1 tendency errors induce anomalous easterly
forcing and decrease the thermocline depth in the eastern
Pacific, which finally suppresses the evolution of El Nifio
events and causes a negative prediction error for Nifio-3
SSTA of El Nifio events (see Table 1).

For the NFSV2 tendency errors, we plot in Fig. 5 the
cases for the El Nifio event with o = 1.0, with January (1)
in the decaying phase of the El Nifio as the start month of
predictions, and § = 0.8, 1.0, 1.2 as the constraint bounds
of tendency errors’ magnitudes, respectively. Indeed, the
NFSV2 are almost opposite to the NFSV1 and have the pat-
tern with negative anomalies in the equatorial central-west-
ern Pacific and positive anomalies in the equatorial eastern
Pacific. Furthermore, they behave as an El Nifio-like evolv-
ing mode (Fig. 6), which is contrary to the La Nifia-like
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Fig. 4 The evolution patterns of the prediction errors caused by the NFSV1 shown in Fig. 3, but only for that with magnitude of § = 1.0. The
left, middle, and right columns describe the SSTA, thermocline depth anomaly, and the corresponding zonal wind anomaly, respectively

evolving mode of the NFSV1. That is to say, the NFSV2
cause a positive prediction error of the Nifio-3 SSTA for the
reference-state El Nifio events (see Table 1).

The NFSV is a nonlinear extension of the FSV. For com-
parison, we compute the FSVs of the growth-phase and
decaying-phase predictions for the reference-state El Nifio
events by using the linearized Zebiak—Cane model. Note
that if f7 is an FSV, the vectors cfr (c is a real number) are
also FSVs with the same growth rate as the FSV f;. The
NFSVs differ from the FSVs. If fs5 is an NFSV, ¢fs may
not be an NFSV because of the effect of the nonlineari-
ties. Therefore, a given NFSV should be compared with the
FSV with the same magnitude. For this reason, we define a
scaled FSV as follows:

fL = (—1)N@fb N=1,2

Izl “4.2)
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Thus, ||fz|| = IIfs]. If the sign of the FSV f7 is opposite to
(or the same as) that of the NFSV f;, the “N” in Eq. (4.2) is
equal to 1 (or 2). Then, the NFSV fs and the scaled FSV fL
have the same signs and magnitudes. The following com-
parison between the NFSV and the FSV is conducted under
this condition.

Results demonstrate that the FSVs also exhibit a large-
scale zonal dipolar pattern similar to the NFSVs. However,
for different values of §, the FSVs respectively present their
western and eastern poles in almost common locations;
while the NFSVs, particularly for large values of &, tend
to extend their western poles much farther westward and
cover a much broader spatial region. If we make the FSVs
of growth-phase predictions have signs as in the NFSV1
and those of the decaying-phase predictions have signs as
in the NFSV2, then the FSVs can also be classified into two
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Table 1 Prediction errors for Nifio-3 SSTA of an El Nifio event
caused by the NFSVs and FSVs (for 6 = 0.8, 1.0, and 1.2), where the
El Niflo is induced by the CNOP-type initial anomaly with o = 1.0

d 0.8 1.0 1.2
Start month Jan (0)

FSV —-3.64 —5.15 —6.34

NFSV —3.68 —5.81 —-7.07
Start month Apr (0)

FSV —3.01 —5.38 —5.69

NFSV —-3.21 —5.82 —6.98
Start month Jul (0)

FSV —-3.57 —5.86 —-5.02

NFSV —3.65 —5.96 —6.09
Start month Jan (1)

FSV 4.13 4.40 4.57

NEFSV 4.49 5.02 6.69
Start month Apr (1)

FSV 3.30 4.28 4.58

NFSV 3.95 5.52 5.48
Start month Jul (1)

FSV 3.55 4.03 4.63

NFSV 3.68 5.81 6.24

types: FSV1 and FSV2. As examples, we plot in Figs. 3
and 5 the corresponding FSV1 with the start month being
January (0) and the FSV2 with the start month being Janu-
ary (1). The results show that the FSV1, as the NFSV1 do,
often cause negative prediction errors of Nifio-3 SSTA of El
Nifio events; while the FSV2, like the NFSV2, yield posi-
tive prediction errors for the Nifio-3 SSTA. Despite this, the
FSVs often cause a much smaller prediction error than the
corresponding NFSVs (see Table 1). It is therefore inferred
that the tendency errors of the NFSV structures will clearly
be more likely to cause a much larger prediction error than
the tendency errors of the FSVs. Therefore, the tendency
errors of the NFSV structure may be more applicable than
the FSV in describing the most disturbing tendency errors
that have the largest effect on the prediction errors.

S The role of nonlinearity in modulating
the NFSV-resultant prediction errors

NFSVs are derived from a nonlinear model, whereas
FSVs originate from the linearized version of the nonlin-
ear model. It is clear that the differences between the pat-
terns of the NFSVs, particularly for those with large mag-
nitudes, and those of the corresponding FSVs, result from
the effects of the nonlinearities, which finally causes the
difference in their resultant prediction errors. This outcome
indicates that the prediction errors caused by the NFSVs

with larger magnitudes are more significantly influenced
by nonlinearities. But how do nonlinearities influence the
NFSV-resultant prediction errors?

To address the behavior of nonlinearities modulating
NFSV-resultant prediction errors, we choose magnitudes of
tendency errors that are favorable for revealing the effect
of nonlinearities. As shown above, choosing the large val-
ues of § contributes to testing the effect of nonlinearities
on prediction errors caused by the tendency errors. Specifi-
cally, we choose the NFSVs with the constraint § = 1.0.

We superimpose the SSTA equation of the Zebiak—
Cane model with FSV-type and NFSV-type tendency errors
and integrate the perturbed model for 12 months, obtain-
ing the predictions for the reference-state El Nifio events.
By subtracting the reference-state El Nifio events from
their predictions, the NFSV- and FSV-resultant predic-
tion errors can be obtained. Similarly, we superimpose the
FSV- and NFSV-tendency errors to the linearized Zebiak—
Cane model with respect to the reference-state El Nifio
events and integrate it for 12 months, obtaining the predic-
tion errors caused by the FSV and NFSV in the linearized
Zebiak—Cane model. By comparison, we identify the effect
of nonlinearity on prediction errors caused by the ten-
dency errors. For El Niflo events with different intensities,
we obtain similar results. Next, we take the El Nifio event
induced by the CNOP-type initial anomaly with ¢ = 1.0
(see the Appendix) as an example to describe the results.

The SSTA component of the prediction errors caused by
the NFSV1 and FSV1 tendency errors with the start month
being January (0) is plotted in Fig. 7. It can be seen that the
prediction errors induced by the FSV1 tendency errors in
the linearized Zebiak—Cane model are significantly larger
than those caused by those in the nonlinear model. This
indicates that the model’s nonlinearities suppress the evo-
lution of prediction errors caused by the FSV1 tendency
errors, and also that the nonlinearities have a damping
effect on the growth of the prediction errors associated with
the growth-phase predictions for El Nifio events. However,
when we focus on the prediction errors caused by the FSV1
and NFSV1 tendency errors in the nonlinear model, we
can see that the prediction errors caused by the NFSV1 are
certainly larger than those caused by the FSV1 in the non-
linear model. It is obvious that the structure of the NFSV1
tendency errors is particularly favorable for reducing the
suppression effect of the nonlinearities on the growth of
prediction errors of the growth-phase predictions for El
Niflo.

For the FSV2 and NFSV2 tendency errors, they, as
demonstrated above, often cause positive prediction errors
of the Nifio-3 SSTA for the decaying-phase predictions
of El Nifo events. Although both FSV2 and NFSV2 have
dynamic behaviors almost opposite to those of FSV1 and
NFSV1, they also usually yield much larger prediction
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Fig. 5 Asin Fig. 3, but for FSV2 and NFSV2

errors in the linearized Zebiak—Cane model than in the non-
linear model (see Fig. 8), and the nonlinearities have a sup-
pressing effect on the growth of prediction errors. Further-
more, considering the NFSV2 certainly yield much larger
prediction errors than the FSV2 in the nonlinear model,
we also conclude that the particular structure of NFSV2 is
favorable for reducing the suppressing effect of nonlineari-
ties on the growth of prediction errors associated with the
decaying-phase predictions for El Nifio.

We have showed that the FSVs, compared to the NFSVs,
tend to yield much larger prediction errors in the linearized
model, but much smaller prediction errors in the nonlinear
Zebiak—Cane model. This does not mean that we, since the
FSV causes much small prediction errors in the nonlinear
model, should adopt here the results of FSV. In fact, we
attempt to reveal the most disturbing tendency error of the
Zebiak—Cane model associated with El Nifio predictabil-
ity. Therefore, we should explore the tendency error that
causes the largest prediction error. The NFSVs yield much
larger prediction errors than the FSVs in the nonlinear
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Zebiak—Cane model and are then more applicable for rep-
resenting the most disturbing tendency error. Although the
FSVs cause larger prediction errors than the NFSVs in the
linearized model, the linearized model is an approximation
to the nonlinear Zebiak—Cane model and then the resultant
FSVs cannot represent the most disturbing tendency error
of the nonlinear Zebiak—Cane model.

6 Interpretation

The above reported results demonstrated that the nonlin-
earities have a damping effect on the growth of the pre-
diction errors caused by the FSV1 and FSV2. That is to
say, the FSVs result in much smaller prediction errors in
the nonlinear Zebiak—Cane model than in its linearized
version and nonlinearities suppress the growth of predic-
tion errors caused by the FSVs. The nonlinearities in the
Zebiak—Cane model are mainly from the nonlinearities in
perturbation temperature advection, wind stress anomalies
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formulation, and sub-surface temperature parameteriza-
tion. Duan et al. (2008) demonstrated that the perturbation
temperature advection always shows positive values in the
equatorial eastern Pacific during either an El Nifio or a La
Nifia event, enhancing the former and suppressing the lat-
ter. Meanwhile, the nonlinearity in wind stress anomalies
suppresses El Nifio and enhances La Nifia, and that asso-
ciated with the sub-surface temperature parameteriza-
tion suppresses both El Nifio and La Nifia. In this paper,
we have shown that the prediction errors caused by the
FSV1 exhibit a La Nifia evolving mode and those caused
by the FSV2 tend to present an El Nifio evolving mode.
It is therefore inferred that the nonlinearity in the pertur-
bation temperature advection may suppress the predic-
tion errors caused by the FSV1 but enhance those caused
by the FSV2. Meanwhile, the nonlinearity in wind stress
anomalies may increase the prediction errors caused by the
FSVI1 and reduce those caused by the FSV2, and that in

140E 160E 180 160W 140W 120W 100W

140E 160E 180 160W 140W 120W 100W

the sub-surface temperature parameterization suppresses
the prediction errors caused by both FSV1 and FSV2. We
have demonstrated that the combined effect of three kinds
of nonlinearities is to suppress the prediction errors caused
by the FSV1 and FSV2. It is inferred that, for the predic-
tion errors caused by the FSVI, the suppression effects
of both perturbation temperature advection and sub-sur-
face temperature parameterization may be larger than the
enhancement effect of the wind stress anomalies, finally
causing the combined effect of three kinds of nonlineari-
ties to suppress the prediction errors. Meanwhile, for those
caused by the FSV2, the nonlinear enhancement effect of
perturbation temperature advection may be smaller than
the suppression effect of nonlinearities in both sub-surface
temperature parameterization and wind stress anomalies,
which then also results in the combined effect of three
kinds of nonlinearities to suppress the growth of prediction
errors.
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Fig.7 The SSTA component of prediction errors caused by the
NFSV1 and FSV1 in the nonlinear Zebiak—Cane model (denoted by
“NFSVI-N” and “FSV1-N”, respectively) and those caused by the
NFSV1 and FSV1 in the linearized Zebiak—Cane model (denoted by

We have also shown that the NFSV1 and NFSV2 favor
reducing the damping effect of nonlinearities on predic-
tion errors caused by the FSVs. The NFSV1 and NFSV2,
particularly for those of large magnitudes, compared to the
FSV1 and FSV2, tend to present their two western poles
much farther western. In fact, the NFSV1 (and NFSV2)
patterns can be understood as the composite of the FSV1
(and FSV2) patterns and an additional SSTA tendency error
of a zonal dipolar structure with positive (negative) anoma-
lies in the equatorial western Pacific and negative (positive)
anomalies in the equatorial eastern Pacific (see Fig. 9). The
additional SSTA tendency errors, having patterns similar
to the NFSV1 (NFSV2), easily induce anomalous easter-
lies (westerlies) along the equatorial Pacific, which are
superimposed on the FSV1 (FSV2)-induced anomalous
easterlies (westerlies) in the equatorial eastern Pacific and
induce much stronger upwelling (downwelling) to occur
in a much broader region in the equatorial central-eastern
Pacific, ultimately yielding much larger but negative (posi-
tive) prediction errors of Nifio-3 SSTA for El Nifio events.
It is clear that the role of the structure of NFSVs in yield-
ing prediction errors is to increase the prediction errors,
while that of nonlinearities is to suppress the prediction
errors. Therefore, when the effect of the NFSVs’ structure
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“NFSVI-L” and “FSV1-L”, respectively). The prediction period is
12 months, with the start month being January (0), and the magnitude
of NFSV and FSVis § = 1.0

on prediction errors is superimposed on that of nonlineari-
ties in the Zebiak—Cane model, the particular structure of
NFSVs tends to reduce the damping effect of nonlinearities
on prediction errors caused by the FSVs.

From the above analysis, it is clear that the nonlin-
earities in the Zebiak—Cane model suppress the growth of
prediction errors caused by the FSVs, and the particular
structure of the NFSVs reduces the suppression effect of
nonlinearities, which finally results in the NFSVs to cause
much larger prediction errors than the FSVs and represent
the most disturbing tendency error.

7 Summary and discussion

In this study, we apply the NFSV approach to the Zebiak—
Cane model to identify the most disturbing tendency error
that has the largest effect on prediction uncertainties of
El Nifio events. For the predetermined reference-state El
Nifio events with different intensities, we calculate the cor-
responding NFSVs, which are superimposed to the SSTA
equation of the model and act as the most disturbing ten-
dency errors associated with for El Nifio predictions. The
results show that only one NFSV exists for each El Nifio
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Fig. 8 Asin Fig. 7, but for NFSV2 and FSV2

event prediction. These NFSVs always locate the boundary
of the constraint conditions and often exhibit large-scale
zonal dipolar patterns. For a particular start time of predic-
tions, the dipolar patterns of NFSVs are insensitive to the
intensities of El Nifio events, but dependent on the predic-
tion periods. Specifically, the NFSVs associated with the
predictions crossing though the growth phase of El Nifio
are of a zonal dipolar pattern, with the western poles of
positive anomalies in the equatorial central-western Pacific
and the eastern poles of negative anomalies in the equa-
torial eastern Pacific. We denoted these as “NFSV1” ten-
dency errors. Meanwhile, the NFSVs associated with the
predictions crossing through the decaying phase of El Nifio
tend to have another zonal dipolar pattern, which is almost
opposite to the NFSV1, which we refer to as “NFSV2” ten-
dency errors. As a comparison, we also explore the FSVs,
i.e., the linear counterpart of the NFSVs. The results show
that the FSVs, similar to the NFSVs, can also be classi-
fied into two types. Correspondingly, the FSVs with the
same signs as NFSV1 are denoted as “FSV1”, and the
other FSVs with the same signs as NFSV2 are referred to
as “FSV2”. The dipolar patterns of both FSV1 and NFSV1
tend to increase the equatorial eastern cooling—western
warming thermal contrast and favor strong easterly anom-
alies, which persist to force tropical Pacific SSTAs. Then,
a persistent anomalous upwelling occurs in the equatorial

eastern Pacific, ultimately suppressing the warming of El
Nifio events and yielding a negative prediction error of the
Nifio-3 SSTA for the growth-phase predictions of El Nifio
events. Conversely, the FSV2 and NFSV2, since they have
patterns opposite to the NFSV1 and FSVs, often cause pos-
itive prediction errors for the decaying-phase predictions
of El Nifio events. As demonstrated through the context,
the NFSVs are directly from the nonlinear model while
the FSVs come from the linearized model. Differences
between the NFSVs and FSVs certainly exist. Actually, due
to the effect of nonlinearities, the NFSVs usually have the
western pole of the zonal dipolar pattern much farther west
and cover a much broader region. Furthermore, we show
that the FSVs yield much larger prediction errors for the
Nifo-3 SSTA in the linearized model than in the nonlin-
ear model, and then the nonlinearities have a suppression
effect on the growth of the prediction errors caused by
the FSVs. However, the particular structure of the NFSVs
tends to reduce the suppression effect of nonlinearities on
the growth of prediction errors and results in the NFSVs to
cause much large prediction errors in the nonlinear model.
Obviously, the NFSV approach is superior to the FSV one
in demonstrating the effects of nonlinearity on El Nifio pre-
dictability, and is much more applicable in describing the
most disturbing tendency error that causes the largest pre-
diction errors.
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Fig. 9 The left column is for NFSV1 (al), FSVI (bl), and the dif-
ference between them (c1); the right column is for the NFSV2 (a2),
FSV1 (b2), the difference between them (¢2). The NFSV1 (NFSV2)

We notice that NFSVs and FSVs often concentrate the
tendency errors of large values in few areas, which may
indicate that the model errors in these areas have a much
larger contribution to the occurrence of prediction errors.
That is to say, the model errors in these few areas, compared
to those in other areas, are much more likely to cause large
prediction errors for El Nifio events. These areas may rep-
resent the sensitive areas of El Nifio predictions associated
with model errors. Therefore, if the ability of the model
simulating the states in the sensitive areas is improved,
the ENSO forecast skill may in turn be greatly improved.
The FSVs are derived from linearized models and act as
an approximation to NFSVs (Duan and Zhou 2013). Cor-
respondingly, due to the effect of nonlinearity, the sensitive
areas identified by the NFSVs are somewhat different from
those identified by the FSVs (see Sect. 4). Actually, the sen-
sitive areas identified by the FSVs locate in the equatorial
central-eastern Pacific and eastern Pacific, while those iden-
tified by the NFSVs are in the equatorial central-western
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can be understood as the composite of the FSV1 (FSV2) and the dif-
ference between NFSV1 (NFSV2) and FSV1 (FSV2) (i.e. the addi-
tional SSTA tendency error of a dipolar pattern in the text)

Pacific and eastern Pacific. Considering the NFSVs are
directly from the nonlinear model and do not have any
approximation, we would rather believe that the NFSVs
are much more applicable in identifying the sensitive areas
associated with the model errors. That is to say, the sensitive
areas identified by the NFSVs may be much more useful for
improving the ENSO forecast skill. Of course, the validity
of the sensitive areas identified by the NFSVs needs to be
further validated by sensitivity experiments and even hind-
cast experiments, which we have begun to embark upon.
Predictability studies for ENSO are challenging due
to the nonlinearity and complexity of the coupled ocean—
atmospheric system. In particular, the predictability prob-
lems associated with model errors pose great difficulties due
to the lack of effective approaches. In this study, we use the
NFSV approach to address the effect of constant tendency
errors on ENSO predictability and reveal the behavior of
nonlinearity modulating the prediction error caused by the
tendency errors, which confirms that the NFSVs, compared
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to the FSVs, comprise a much more applicable approach in
describing the tendency error that has the largest effect on
prediction error in the nonlinear model. To further validate
these results, a much more realistic ENSO model should be
adopted to investigate the NFSVs. In addition, we should
also study the optimal time-variant tendency errors and their
effect on prediction errors for El Nifio events. It is expected
that the results obtained from the present work can provide
ideas for further investigation on tendency errors.
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Appendix
Definition, physics, and computation of CNOP

The conditional nonlinear optimal perturbation (CNOP) is
an initial perturbation that satisfies a given constraint and
has the largest nonlinear evolution at the prediction time
(described below). The CNOP approach is a natural gener-
alization of the linear singular vector (LSV) approach to a
nonlinear system.

Let M;,; be the propagator (i.e., the numerical model) of
a nonlinear model from initial time £, to £. ug is an initial per-
turbation superimposed on the basic state U (), which is a
solution to the nonlinear model and satisfies U (t) = M,(Uy),
with U being the initial value of basic state U (¢).

For a selected norm || - ||, an initial perturbation ugs is
defined as a CNOP if and only if

J(uos) = [max | Mig.:(Uo 4 uo) — M1y, (Uo)|. (A.1)
where |[up|| <& is the initial constraint defined by the
selected norm || - ||. The norm || - || also measures the evolu-
tion of the perturbations. We can also investigate situations
in which the initial perturbations belong to other types of
functional sets. Furthermore, the constraint condition could
reflect physical laws that the initial perturbation should
satisfy.

The CNOP is characterized by maximum nonlinear
evolution of initial perturbations satisfying the given
constraint condition (Mu et al. 2003; Mu and Zhang
2006). The CNOP possesses clear physical meanings
(Duan and Mu 2009). Duan et al. (2004) demonstrated
that when the objective function measures the maximum

evolution of SSTAs for the ENSO, the resulting CNOP,
superimposed on the climatological basic state, acts as
the initial anomaly that is most likely to evolve into an
El Nifio event and represents the optimal precursor to El
Nifio. The CNOP can also be used to study the initial
error with the largest effect on the prediction result at
the prediction time (Duan and Mu 2009). In sensitivity
analysis studies, the CNOP may represent the least sta-
ble mode and can be used to study target observations
(Mu et al. 2009).

In the present study, we regard the CNOP as the optimal
precursory disturbance (i.e., optimal initial anomaly) that is
most likely to evolve into an El Nifio event, and take the cor-
responding El Nifio event as the reference state to explore the
NFSV tendency errors. The CNOP-type initial anomalies,
denoted by u,,, are obtained by solving the following non-
linear optimization problem, which is based on Eq. (A.1):

J(up,) = max T ()]l2,

uplla <o

(A.2)

where ug = (wl_lTO,wz_ lho) is non-dimensional, denot-
ing the initial SSTA and the thermocline depth anom-
alies superimposed on the climatological annual
cycle. w;, = 2 °C and wp =50 m are the characteris-
tic scales of SST and thermocline depth, respectively.
[luplle < o is the constraint condition and the norm is
lolla = /S0 4097 ' Ty )2 + 05 g )2), where T,
and h, ; represent the dimensional initial SSTA and ther-
mocline depth anomaly at different grid points, respec-
tively, and (i, j) is the grid point in the domain of the
tropical Pacific (latitude and longitude, respectively), from
129.375°E to 84.375°W (at an interval of 5.625°) and from
19°S to 19°N (at an interval of 2°). The SSTA evolution is
measured by ||T(7)||2 = le (TiJ(r))z. T (t) represents
the SSTA component of the evolution of initial anomalies
at time 7, and is obtained by integrating the Zebiak—Cane
model with initial anomalies.

We use the SPG2 solver to obtain the CNOP-type initial
anomalies of the Zebiak—Cane model. To obtain CNOP-
type initial anomalies, we modify the corresponding maxi-
mization problem into a minimization one and try at least
30 initial guesses (obtained randomly). If several initial
guesses converge to a point in the phase space, this point
can be considered a minimum in the neighborhood; thus,
several such points are obtained, of which the one that
yields the largest value of the cost function in Eq. (A.2) is
regarded as the CNOP-type initial anomalies.
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