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Abstract Nonlinear local Lyapunov vectors (NLLVs)
are the nonlinear extension of the Lyapunov vectors (LVs)
based on linear error growth theory. As a development of
bred vectors (BVs), NLLVs retain the time-saving, simply-
applied and flow-dependent advantages of BVs. However,
unlike BVs, NLLVs correspond not only to the leading LV
but also to other orthogonal LVs. In this paper, NLLVs are
applied to the Zebiak—Cane (ZC) coupled model. First,
using the analysis data from the ensemble Kalman filter, we
explore the effect of the parameters of the breeding process
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on calculating the NLLVs. It is found that the statistical
properties of NLLVs are not very sensitive to the breed-
ing parameters. However, the higher NLLVs (i.e., exclud-
ing NLLV1) show temporal randomness. Then, we study
the characteristics of the spatial structures and growth rates
of different NLLVs. The different NLLVs each have a cer-
tain probability of being the fastest error growth direction
and together construct the error growth subspace of the ZC
model. Compared with BVs, the NLLVs have some advan-
tages in terms of the relationship between the generated
error growth subspace and the analysis errors. The NLLVs
also have higher local dimensionality than the BVs. NLLVs,
as initial ensemble perturbations, are applied to the ensem-
ble prediction of ENSO in a perfect environment. Compared
with the results obtained using ensembles employing the
random perturbation technique and the BV method, the pre-
sent results demonstrate the advantages of using the NLLV
method in ensemble forecasts.

1 Introduction

Climate prediction on the seasonal scale by dynamical
models has been an important topic in geosciences over the
last decade (e.g., Hastenrath 1995; Chen et al. 2004; Ran-
dall et al. 2007; Smith et al. 2007; Meehl et al. 2014; Saha
et al. 2014). The sea surface temperature (SST) provides
the lower boundary conditions for the atmosphere and the
prediction signal for climate prediction with a lead time
longer than 2 weeks (Shukla et al. 2000). Therefore, it is
necessary to estimate the future state of the SST field, par-
ticularly that in the tropical Pacific Ocean. Most interannual
SST variability over the tropical Pacific can be explained
by the EI Nifio—Southern oscillation (ENSO). ENSO
also exerts a strong influence beyond the tropical Pacific
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through atmospheric teleconnection that affect patterns
of weather and climate variability worldwide (McPhaden
et al. 2006). For example, the Asian summer monsoon
is weaker and its outbreak delayed in EI Nifio (the warm
phase of ENSO) years (Ju and Slingo 1995). Therefore, it is
important to predict the onset and development of ENSO.
As one of the most predictable climate fluctuations on the
planet, ENSO is currently predicted dynamically by many
climate models (Wittenberg et al. 2006; Kirtman and Min
2009; Zheng et al. 2009; Saha 2014; Barnston et al. 2015).
Currently, there are 17 dynamical models employed in the
International Research Institute ENSO forecast (http://
iri.columbia.edu/our-expertise/climate/forecasts/enso/
current/?enso_tab=enso-cpc_update).

The dynamical models of ENSO are multidimensional
complex systems and their outputs are sensitive to the ini-
tial inputs. Therefore, the output results of ENSO models,
including many oceanic and atmospheric variables, are
influenced by the uncertainty in oceanic and atmospheric
initial conditions (Moore and Kleeman 1998). To describe
and reduce the degree of uncertainty associated with the
initial situations, one can obtain many parallel but differ-
ent prediction results using an ensemble. Ensemble predic-
tion can provide probabilistic forecasts of the future state
of the system through certain sampling approaches (Leith
1974; Kalnay 2003). If a group of initial states samples
the uncertainty of the initial analysis states (input data)
reasonably well, we can integrate these different initial
states into the various predictand states. Then, the average
of the group of predictand states performs better than the
single predictand and the spread of the group can provide
the second moment of the ensemble, which are generally
used as the quantification of the uncertainty of the result
(Houtekamer and Derome 1995; Buizza and Palmer 1998;
Moore and Kleeman 1998; Palmer et al. 1998; Houtekamer
and Zhang 2016). To perform ensemble prediction, we
need to generate different initial ensemble members. The
basic principle of the generation of initial ensemble mem-
bers is to sample the initial error probability spaces of the
initial analyses (Epstein 1969; Leith 1974; Toth and Kal-
nay 1997). Based on dynamical error growth theory, vari-
ous ensemble generation schemes have been introduced
and applied to ENSO prediction and predictability. These
include the bred vector (BV) method (Toth and Kalnay
1993, 1997; Cai et al. 2003; Yang et al. 2006, 2009), the
singular vector (SV) method (Lorenz 1965; Molteni et al.
1996; Cheng et al. 2010a, b), the conditional nonlinear
optimal perturbation (CNOP) method (Mu et al. 2007;
Duan et al. 2009; Duan and Mu 2009), and stochastic
optimal theory (Tang et al. 2005). Recently, some prom-
ising methods based on the Kalman filter concept have
been proposed and applied to ensemble forecasting, such
as the ensemble transform rescaling developed from the
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BV scheme (Wang and Bishop 2003) and the ensemble
Kalman filter (EnKF) (Bishop and Toth 1999; Wei et al.
2006; Zheng et al. 2006; Wu 2016). But their application
to ENSO predictions is still in the course of development.

Compared with other ensemble generation schemes, the
BV method is a time-efficient approach (Wang and Bishop
2003). The BV is an extension of the leading Lyapunov vec-
tor (LV) to a nonlinear model, with finite-time evolution and
finite-size perturbation (Toth and Kalnay 1993, 1997). The
leading LV defines the fastest sustainable growing direction
in phase space that any infinitesimal perturbation will gradu-
ally evolve toward after sufficient integration time (Ginelli
et al. 2007), while the BV represents the fastest growing
direction of the dynamical system in the nonlinear context.
The BVs can be acquired by the breeding process. The
breeding process contains periodic rescaling to keep the per-
turbation within a given amplitude range, which is similar to
the data assimilation cycle; the BVs are rescaled to a given
amplitude by the analysis or reference trajectory instead of
by observations. This similarity ensures that the BV can cap-
ture the main spatial structure of the forecast errors and the
growing part of the analysis errors. The breeding process
can be applied at every initial state and acquires the flow-
dependent unstable directions as BVs. The flow-dependent
BVs have been applied to different ENSO dynamical sys-
tems (Cai et al. 2003; Yang et al. 2006, 2008, 2009, 2010;
Tang and Deng 2011; Baehr and Piontek 2014). The struc-
tures of the BVs are closely associated with the real-time
forecast error and evolve with the background ENSO phase,
and the growth rates of BVs are a function of the season and
ENSO phases (Yang et al. 2006, 2008). Meanwhile, BVs
used as ensemble perturbations can improve the prediction
skill of the ENSO prediction and be used to construct the
background error covariance matrix in tropical ocean data
assimilation (Yang et al. 2009).

However, BVs have certain limitations because in theory
they are only a nonlinear extension of the leading LV. Previ-
ous studies found that although various BVs are generated
from different initial random perturbations or through differ-
ent normalizations in the operational environment, they tend
to have increasing projections onto the most unstable grow-
ing direction (i.e. the leading LV) through successive evolu-
tion driven by the same underlying background dynamical
flow (Wang and Bishop 2003; Bowler 2006). The similarity
between the structures of BVs may result in an underesti-
mate of ensemble spread. This could be more severe over
those local regions with strong instabilities because BVs
may be more similar there (Patil et al. 2001). Meanwhile,
the complex dynamical models are usually high-dimensional
and have multiple independent growth directions, which
together collude in error growth. The small subspace of the
fastest growing perturbations sampled by the BVs may not
always capture the error growth space effectively.
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In order to overcome the deficiencies of the BVs, the
nonlinear local Lyapunov vectors (NLLVs) have been pro-
posed and developed (Li and Wang 2008; Feng et al. 2014,
2016). NLLVs are the theoretical nonlinear extension of
LVs. NLLVs can represent the different directions of the
error growth space of the dynamical system from the fastest
to slowest. The corresponding growth rates are known as
the nonlinear local Lyapunov exponent spectrum (NLLEs)
(Chen et al. 2006; Ding and Li 2007). Different NLLVs
correspond to different growth rates and different physi-
cal processes. There are some differences between NLLVs
and BVs. Theoretically, BVs are an extension of the leading
LV, while NLLVs are inherited from the leading LV and
other orthogonal LVs in a nonlinear framework. Similar to
the BVs, in practice NLLVs are also calculated through the
breeding process using nonlinear models which maintains
the advantages of BVs, i.e. the trivial computational cost and
the ease of implementation. However, to avoid different per-
turbations converging to the fastest error growth direction,
the breeding process of NLLVs is coupled with orthogo-
nalization. Therefore, NLLVs that have mutually orthogo-
nal directions can fundamentally describe more broadly the
extent of the error growth space than BVs. The NLLVs have
been applied to some simple dynamical systems, including
the lorenz63 and lorenz96 systems and the barotropic model
(Feng et al. 2014, 2016). Feng et al. (2016) found that the
NLLVs can indeed capture more directions of analysis errors
than the same number of BVs thus having better perfor-
mance in ensemble prediction.

There are differences between NLLVs and SVs. Fol-
lowing the definition from Legras and Vautard (1996),
SVs are the extension of the forward Lyapunov vectors
from 7] = feqen 10 I =11 + T (f] = feqen) at initial time,
whereas NLLVs as the bred-growing modes (BGMs) have
similarities to the backward Lyapunov vectors (Legras and
Vautard 1996; Szunyogh et al. 1997) at final time. However,
the NLLVs and BVs are calculated using a nonlinear model
from #; = #, = T t0 1) = f,;10ien- NLLVs and SVs both are
sets of mutually orthogonal vectors, but BVs not. Obtaining
additional SVs requires running the tangent linear model and
its adjoint about three times the number of singular vectors
required (Molteni et al. 1996). However, NLLVs are directly
acquired from the nonlinear model by the breeding process.
Without the tangent and adjoint model, the calculation of
NLLVs are more time-saving and convenient than SVs. Due
to the different origin, we do not lay stress on the linkages
between NLLVs and SVs in this paper.

Considering the differences between NLLVs and BV, we
want to explore whether the spatial structures and growth
rates of different NLLVs are still related to background flow
and ENSO development, and if NLLVs are more effective
at describing the error growth subspace than BVs. As the
first successful model to simulate and predict ENSO, the

Zebiak—Cane (ZC) model is under continual development
(Zebiak and Cane 1987; Chen et al. 1999, 2004). This inter-
mediate coupled model does not contain the weather vari-
ations, which contribute to the linkages between the error
growth and the ENSO process. Therefore, the ZC model is
chosen in this paper. The present paper will attempt to apply
the NLLVs in the ENSO coupled model and inspect the sen-
sitivity of NLLVSs to the parameters of the breeding process.
We will focus on the growth rate and spatial structure of
different NLLVs and how the performance of the NLLVs as
ensemble perturbations compares with the other traditional
schemes in the ZC model.

The paper is organized as follows. Section 2 explains the
computation process of the NLLVs and introduces the ZC
model. Section 3 is devoted to the calculation of NLLVs in
the ZC model and the sensitivity of NLLVs to the choice of
breeding parameters. The improved performance of NLLVs
over BVs will also be shown in this section. Section 4 will
demonstrate the relationship between different NLLVs and
ENSO in terms of the growth rate and spatial structure. Sec-
tion 5 describes the benefits of NLLVs as ensemble pertur-
bations. The main conclusions are presented in Sect. 6.

2 Method and model
2.1 Nonlinear local Lyapunov vector

The Lyapunov exponent (LE) and LV are used to study the
stability of a dynamical system. However, the LV and LE
are based on linear error growth theory. To avoid this limi-
tation, the NLLVs and the corresponding NLLEs based on
nonlinear error growth dynamics theory are introduced and
developed to describe the nonlinear error growth characteris-
tics (Chen et al. 2006; Ding and Li 2007; Li and Wang 2008;
Feng et al. 2014). The NLLVs and NLLEs are the extension
of LVs and LEs to the nonlinear context. Their derivation is
described in Appendix A.

In line with LVs in the tangent linear system, the NLLV's
represent vectors along the directions from the fastest-grow-
ing direction to the fastest-shrinking direction of the non-
linear system (Feng et al. 2014). The NLLVs focus on the
‘nonlinear and local’ characteristics of the system and are
functions of the phase space states x,, the initial perturbation
vector & (both the amplitude and the direction) and a given
evolution time At.

The NLLVs are calculated through the breeding process
(as shown in Fig. 1). Consider a series of successive refer-
ence states X_g. o, X_x_1. ars --- »Xo (black line), where Az
is the length of a breeding cycle and K is the cycle number.
Add a small random perturbation &; _g.,, of size M (in a
certain norm) to X_g. », and then integrate the perturbed state

X| _x., With the full nonlinear model over an interval At to
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Breeding Process

Y1-(k-1)-at 1 ¥
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L SR | X'1,-(k=1)87 i r » ll
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Perturbation Orthogonalmng Rescaling Reference trajectory
. -Y ~(K=1)- At !
X2,
. = 2,~(K=1)»4t"
NLLV2 \\/\ ./——\
X-k-at
X_(k-1)-at
—

Breeding cycle

Fig. 1 Breeding process of NLLVs. A breeding process is com-
posed of multiple breeding cycles. A random perturbation is initially
added to the reference trajectory at the beginning of the breeding pro-
cess, and integrated. At the end of each breeding cycle, the NLLVs
are orthogonalized by the GSR method and the perturbations are

(K- 1)At denote the difference

give yi _x_1ar- Let &
between the y; __j).a, and the corresponding reference

X_(k_1)Ar 6 —(k—1)-a, 18 then rescaled to the size of the initial
perturbatlon M, to give the updated perturbation &, __y).4,-
Then superpose the rescaled perturbation 8, __y).5, onto
the subsequent reference state x__).,,, integrate and scale
for K cycles to x,, to derive NLLV1 or BV.

To calculate the NLLV2, superpose another different
perturbation 8, .4, of size M on the same reference states
and integrate for a breeding cycle to acquire the forecast
states y, _x_1).a,- The differences between the perturbed
forecast and the reference states are denoted by 6'2 —(K—1)Ar
At the end of every breeding cycle, orthogonalize 62 ~K-1yAr
with respect to the first perturbation &, __).», using the
Gram-Schmidt orthonormalization (GSR) algorithm (Li and
Wang 2008; Wolf et al. 1985) and scale to size M, to give
6, _(k-1).ar- As shown in Fig. 1, integrate, orthogonalize with
the corresponding &, _;. 5, and scale the perturbation 6, _; 5,
through K breeding cycles to x,, to obtain the NLLV2. The
process of calculating the subsequent NLLVn is similar to
that of the NLLV?2, but in every breeding cycle the pertur-
bation is orthogonalized with all the 8, _; 5, from NLLV1
to NLLVn-1 using the GSR algorithm. Then, NLLVs cor-
responding to the x, are acquired.

Multiple BVs can be obtained by simply selecting differ-
ent initial random seeds. Through the dynamical evolution,
the random components in the initial perturbations will be
gradually eliminated. Therefore, the BVs have dominant
projections on the leading LV and span the small space of
the fastest growing directions. However, unlike the BVs, the
NLLVs undergo orthogonalization in every breeding cycle.

@ Springer

rescaled. The evolved perturbations (blue dashed line) are orthogo-
nalized with the NLLV1 (red dashed line) to give the NLLV2 (green
dashed line). Other fastest growing NLLVn are orthogonalized with
respect to NLLV1, NLLV2,..., NLLVn-1 (adapted from Feng et al.
2014, 2016)

This operation ensures that the differently directed perturba-
tions develop fully. The NLLVs have a more stable perfor-
mance in sampling the error growth subspace.

The breeding parameters of the breeding process, such
as the initial perturbation size M and scale temporal interval
At, determine the scale of the spatial and temporal instabil-
ity represented by the NLLVs. Thus, these parameters are
chosen to be appropriate for the problem to be studied. In
Sect. 3, we will calculate the NLLVs in the ZC model and
check the sensitivity of the NLLVs and the growth rates
(NLLES) to the breeding parameters.

2.2 Zebiak—Cane model

In this study, we use the standard version of the ZC model, a
nonlinear model of intermediate complexity. The ZC model
is an anomaly coupled model that describes anomalies about
a specified seasonally varying climatological state. It has
been widely used in prediction and predictability studies
over several decades (Zebiak and Cane 1987; Blumenthal
1991; Chen et al. 2004; Mu et al. 2007; Cheng et al. 2010a,
b; Duan et al. 2014).

The model is composed of a Gill-type steady-state linear
atmospheric model and a reduced-gravity oceanic model
(Zebiak and Cane 1987). The oceanic dynamics is described
by a linear reduced-gravity model with a rectangular ocean
basin that extends from 124°E to 80°W and from 29°N to
29°S on a 2° longitude X 0.5° latitude grid. The atmospheric
dynamics follows the steady-state linear shallow water equa-
tions on an equatorial beta-plane. The circulation is forced
by a heating anomaly that depends partly on local heat-
ing that is associated with SST anomalies (SSTAs) and on



The application of nonlinear local Lyapunov vectors to the Zebiak—Cane model and their performance...

low-level moisture convergence (parameterized in terms of
the surface wind convergence). Considering that the mois-
ture-related heating is operative only when the total wind
field is convergent, the convergence feedback is nonlinear.
The thermodynamics describe the evolution of temperature
anomalies in the model surface layer. The evolution equation
of the SSTA in the tropical Pacific includes three-dimen-
sional temperature advection by the specified mean currents
and the calculated anomalous currents. The model time step
is 10 days.

3 Calculation of NLLVs in the ZC model

The NLLVs and BVs are dependent on the background
flow. Different reference trajectories correspond to different
NLLVs and BVs. Different breeding parameters determine
the physical meaning of the NLLVs produced by the breed-
ing process. Therefore, this section explores how to obtain
the reference trajectories and how to choose the breeding
parameters sensibly. The important point is to clarify the
sensitivity of the NLLVs to these parameters. Vialard et al.
(2005) found that the uncertainties in the SST determine
the spread of ensemble forecasts, while perturbation of
the wind stress or atmospheric internal variability is less
efficient. Therefore, we will focus on the SST field of the
NLLVs and explore the instabilities in the spatial structure
of the SST field.

3.1 Configuration of the reference trajectory

For greater consistency with the operational application,
the reference states (analysis data) are constructed using
the EnKF assimilation method (Evensen 2003). A detailed
description of the EnKF method is given in Appendix B. Cai
et al. (2003) directly calculated BV using the true trajectory
and simply used random perturbations as analysis errors to
compare BV and random perturbation methods in the ensem-
ble experiment. This approach is unreasonable because the
random errors contain less fast growing pattern than that of

Fig. 2 Distribution of model

The Location olf MODEL and CI)BSERVATIONI

analysis errors from the assimilation process (Toth and Kal-
nay 1997). Here, analysis errors from the EnKF assimilation
method—as the difference between the analysis data and the
true data—are constrained by dynamical equations, which
tallies with the operational environment.

All experiments in the present paper assume a perfect
model under which the output of a long-period integration
from the model is regarded as the true trajectory. The obser-
vations to be assimilated are obtained by adding a random
noise to the true trajectory. Here we just assimilate the vari-
able—SSTA (TO in the ZC model)—which is the key vari-
able in the air—sea interaction. We assume that the locations
of observations are as in Fig. 2, which shows the observation
stations from the tropical atmosphere—ocean (TAO) buoy
array. We choose to use only a subset of the TAO observa-
tion locations because of the high spatial correlation of the
SSTA field in the ZC model. The total number of observa-
tion locations is 24. If a vector 70,,,, denotes the true state

tru

and 70, is the observation field of SSTA, then:

TOobs =H-TO (1)
where H is the observation operator that defines the func-
tional relation from the model space to the observational
space. The added noise error € has a Gaussian distribution
of N(0, 0.6%) for the ZC model, where N denotes the sam-
ple space of the Gaussian distribution, O is the expecta-
tion and 0.6 is the standard deviation. The value 0.6 °C is
approximately the root mean square error (RMSE) of SST
observations (Reynolds 1988; May et al. 1998). In the EnKF
data assimilation method, we use 200 members and adopt
the inflation ratio 5% to the ensemble members to prevent
filter divergence. The assimilation interval is 1 month.
The assimilation time is from the 132.5th to the 5132.5th
month of the model time. The RMSE of the Nifio 3 index
(150-90°W, 5°S-5°N) is 0.198 °C, which is roughly 15% of
the Nifio 3 index standard deviation. The RMSE of SSTA in
space is 0.178 °C and the spread error of the spatial SSTA
is 0.238 °C, which indicates that filter divergence is not pre-
sent. The RMSE and spread evolve smoothly with time from
the 400.5th month, which demonstrates the suitability of the

+ €,

tru

(blue) and observation (orange)
locations. Locations of the
observations are a subset of the
TAO/TRITON array standard
moorings
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assimilation parameters and process. The Nifio 3 indexes of
both the analysis and true trajectory are illustrated in Fig. 3,
spanning 250 years. The Nifio 3 index shows obvious dec-
adal/interdecadal variations in this period. During this time
window, the RMSE of the SSTA (TO), surface zonal wind
anomaly (UO), surface meridional wind anomaly (VO) and
oceanic upper layer depth averaged onto the coarser grid
(H1) are 0.199, 0.253, 0.167, and 5.90, respectively.

3.2 Sensitivity of NLLVs to the breeding parameters

Once the analysis states are generated, the NLLVs can be
calculated through the breeding process. As shown in Fig. 1,
a breeding process consists of multiple breeding cycles. In
every cycle, the perturbations are added to the reference state
and grow freely. At the end of each cycle, the developed
perturbations are re-orthogonalized using the GSR method
and rescaled. Through the breeding process, the different
initial random perturbations evolve into the different NLLVs.
To make sure that the NLLVs represent the unstable struc-
tures of the temporal and spatial scales of interest, we need
to choose appropriate parameters for the breeding process:
breeding variables, rescaling interval, rescaling factor, and
rescaling size.

3.2.1 Reference breeding parameters and snapshots
of NLLVs

The breeding variables are the variables to be rescaled and
orthogonalized. We should choose these variables such
that they contain information on the instabilities of interest
at some particular scale. In the ENSO cycle, the SST is a
key variable; it reflects the ocean state and directly forces
the tropical atmosphere. Changes of SST characterize the
different phases of ENSO. Therefore, the SSTA (TO in the
model) is chosen as the breeding variable. The thermo-
cline depth (H1 in the model) represents the energy of the
upper ocean and directly influences the SST. Meanwhile,

NINOS3 INDEX
v e b e e e
40 +4-————A-—m J‘r 777777777777 I#*** -
. |
3.0 | 1 i
I |
20 :
2 so Al fornd MRl
< 1.0
B |17 P P AT A
e 111 i | QIrUUUHI Y VGV vE Ry UL
-1'0t : TRU | |
2.0 = f PA— T { T T r f
500 1000 1500 2000 2500 3000
(Month)

Fig. 3 Nifio 3 index for the analysis and true trajectory from the
408.5th to 3407.5th months of model time. The analysis Nifio 3 index
is consistent with the true index. The Nifio 3 index shows obvious
decadal/interdecadal variations in this time window
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the wind stress from the atmosphere component: the zonal
wind anomaly (UO) and surface meridional wind anomaly
(VO), drives the ocean circulation and plays an important
role in ENSO evolution. Cai et al. (2003) chose these four
variables to calculate BV. We also choose these two oce-
anic variables and two atmospheric variables, SST (TO),
H1, UO, and VO, as the breeding variables for the NLLV.
The rescaling interval, the time scale of a breeding
cycle, is a little arbitrary. Pefia and Kalnay (2004) argued
that the interval should be longer than 2 weeks for the
slowly varying coupled instability of ENSO. Cai et al.
(2003) used 3 months to obtain BV for the ZC model,
Yang et al. (2006) used 1 month for a coupled global
general circulation model, and Tang and Deng (2011)
adopted 1 month in a hybrid coupled model. In this study,
we choose a rescaling period of 1 month in the ZC model.
The rescaling factor is based on the Euclidean distance
[Eq. (2) of SSTA over the model domain]. SSTA (TO) is
chosen here because of its critical importance in ENSO sim-
ulation and prediction (Tang and Deng 2011). The SSTA
marks the ENSO evolution and may contain some informa-
tion with which to predict the future ENSO phase. Cai et al.
(2003) found that the BV is, in fact, relatively insensitive to
the definition of the rescaling norm. We will test this point
for NLLVs using different norm definitions from a statisti-
cal view below. Here, the rescaling factor y,, is defined as

re na\ 2
o= \/ny:l (Tof - TO?W) )
sst N _ 1 >

where TO?" is the ith spatial grid point of the evolved SSTA
field from the perturbed initial state and TO!" is the cor-
responding ith grid of the reference state (i.e., the analysis
data) and N represents the total number of spatial grid points
in the area 20°S—20°N, 129.375°E-84.375°W. The rescal-
ing factor is 0.19 °C, which is equal to the RMSE of the
analysis SST.

Instead of adding random perturbations as in Cai et al.
(2003), we superpose different random perturbations onto
the analysis state to give different initial states in every
breeding process and evaluate the corresponding NLLVs,
which may contribute to the diversity of BVs and NLLVs.
From the physical meaning of NLLVs, we determine that
the corresponding time of each group of NLLVs is the
moment at which the breeding process terminates. This
is different from the definition of Tang and Deng (2011),
who chose the initial time at which the random initial
perturbation was added to the reference state, as the cor-
responding time for BV, which is unreasonable because
BGMs (i.e. BVs and NLLVs) correspond to the backward
Lyapunov vectors and are designed to simulate the initial
analysis errors (Legras and Vautard 1996).
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The parameters chosen above have some arbitrariness.
Therefore, we test how much the NLLVs are affected by the
parameters of the breeding process in the ZC model. Firstly,
we want to identify how many breeding cycles are required
for the breeding process. A sufficient number of breeding
cycles ensures that the initial random perturbation can be
fully developed to the fast growth directions. In order to
explain this problem, we calculate the changes in the growth
rate of different NLLVs with increasing number of breed-
ing cycles (only displaying NLLV1 in Fig. 4a) and find that
the growth rate of different NLLVs can reach the statisti-
cally stable stage in 12 cycles. The same result is obtained
for other NLLVs. Therefore, we specify that every breeding
process is made up of 12 breeding cycles. The growth rates
of the first 10 NLLVs at the 12th cycle are shown in Fig. 4b.
These growth rates are all greater than 1, which indicates
that at least the first ten NLLVs are the error growth direc-
tions. The growth rate and hence importance of the NLLVs
gradually decreases from NLLV1 to NLLV10.

We now explore the robustness of the NLLVs using
different initial random perturbation seeds for the above
breeding parameters. Figure 5 shows scatter diagrams of
the spatial correlation of the SSTA field of the first three
NLLVs evolved from two groups of different initial pertur-
bation seeds but under the same breeding parameters. There
are 3000 cases in each diagram, which correspond to 3000
different states. For the NLLV1, 60% of the absolute val-
ues of the spatial correlation coefficients are greater than
0.6 (Fig. 5a), which suggests that the sensitivity of NLLV1
to the initial perturbation seeds is small but not negligible.
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Fig. 4 The growth rate of the SSTA field of the NLLV1 as a function
of the number of breeding cycles (a) and the growth rate of the first
ten NLLVs through 12 breeding cycles (b). Here, the error growth
rate is the average from the 408.5th to 3408.5th months. a Shows

However, for the subsequent NLLVs, such as NLLV2
(Fig. 5b) and NLLV3 (Fig. 5¢), the spatial structures of the
NLLV become more sensitive: the corresponding percent-
age decreases from 14% of NLLV2 to 2.7% of NLLV3 and
is smaller still for even higher numbered NLLVs. Compared
with NLLV1, the subsequent NLLVs are more sensitive,
which is one of the instantaneous features of the NLLVs.
The nonlinearity of the dynamical system contributes to the
sensitivity of the NLLVs to the initial random perturbation
seeds. This sensitivity shows the infeasibility of checking
the pattern correlation of NLLVs for each case to discuss the
influence of breeding parameters. Therefore, we will focus
on the statistical features of the NLLVs to explore the sen-
sitivity of NLLVs to different breeding parameter sets. The
statistical features of the NLLVs can be captured by their
empirical orthogonal functions (EOFs).

3.2.2 Sensitivity of the statistical features of NLLVs
to the breeding parameters

As mentioned above, it is important when calculating the
NLLVs to choose appropriate breeding variables. There-
fore, we use different combinations of variables as the
breeding variable set to test the sensitivity of NLLVs to
this choice. Here, we run four experiments: (1) the refer-
ence configuration experiment using TO, UO, VO, H1; (2)
using just TO; (3) using TO, H1, oceanic depth averaged
zonal current (Ul) and oceanic depth averaged meridi-
onal current (V1); (4) TO, UO, VO, H1, Ul, V1. The
other parameters of the breeding process are the same as
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that the growth rate of the leading NLLV levels off first 24 breeding
cycles. b Shows that the first 10 NLLVs are all directions of error
growth
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Fig. 5 Scatter diagrams showing the pattern correlations between the
SSTA fields of NLLVs using two different initial random perturba-
tions for every breeding process. a NLLV1, b NLLV2, ¢ NLLV3. The
corresponding pattern correlations are also shown for d BV1, e BV2

for the reference configuration experiment. We compare
the structure and corresponding explained variances of
EOFs of the SSTA field of NLLVs from the 408.5th to the
3407.5th month.

Table 1 shows the average and standard deviation (SD) of
explained variances for the EOF patterns of different NLLV's
from the different variable sets. Compared with the aver-
age, the deviations are very small, which illustrates that the
proportions of variances explained are nearly equal using
different breeding variable sets. The variance explained by
the first few EOF patterns of the NLLV1 is larger than that
of the subsequent NLLVs. For example, the percentage of
total variance explained by the first three EOFs of NLLV1
is 60.6%, that for NLLV?2 is 47.5%, and that for NLLV3 is
35.4%. With the increase in the number of orthogonal direc-
tions, the variance explained by an equal number of EOFs of
the higher NLLVs decreases, which shows that the NLLV1
is the dominant mode that is relatively less affected over
time, but that the subsequent NLLVs cannot be completely
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and f BV3. The abscissa is the Nifio 3 index of the background ENSO
events. The ordinate is the pattern correlation coefficient. The first
three NLLVs corresponding to 3000 initial conditions are shown

Table 1 Average explained variance and corresponding standard
deviation for different EOFs of different NLLVs from different breed-
ing variable groups

EOF1 EOF2 EOF3

Explained variance

NLLV1 41.227 10.590 8.829

NLLV2 21.568 14.716 11.179

NLLV3 14.580 10.939 9.882
Standard deviation

NLLV1 0.394 0.132 0.061

NLLV2 0.327 0.351 0.160

NLLV3 0.542 0.258 0.233

described by one or a few dominant modes. The higher
NLLVs have a certain randomness over time.

The average and SD of the correlation coefficients
between the corresponding spatial structures of the first
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Table 2 Mean and standard deviation of correlation coefficients for
the leading EOFs of the first three NLLVs between the reference
parameter set and other breeding variable groups

EOF1 EOF2 EOF3

Correlation

NLLV1 0.999 0.999 0.999

NLLV2 0.996 0.993 0.996

NLLV3 0.982 0.868 0.825
Standard deviation

NLLV1 1.56E-05 0.000551 0.000317

NLLV2 0.0018 0.0043 0.0016

NLLV3 0.0026 0.0774 0.0851

few EOFs of other parameter sets and that of the reference
parameter set are shown in Table 2. The average correla-
tion coefficients can reach 0.8 or more for the first few EOF
patterns of the first few NLLV. The large mean and small
SD of the correlation coefficients demonstrate that the pat-
terns of EOFs of NLLVs from different breeding variable
groups are very similar. Therefore, from the perspective of
the explained variance and the spatial correlation coefficient
of the corresponding EOF, the NLLVs are not sensitive in
a statistical sense to the choice of breeding variable group.
Meanwhile, the NLLV's other than NLLV1 are less and less
explained by the first few EOF modes and include a larger
random component.

Similarly, we choose different scaling factors S (1: the
entire field; 2: only the Nifio 3 (150°W-90°W, 5°S-5°N)
area; 3: only the Nifio 4 (160°E-150°W, 5°S—5°N) area;
4: the Nifio 3 and Nifio 4 areas), different scaling ampli-
tudes [(50, 75, 100, 125, 150%) x 0.199 °C] and rescaling
intervals (1-4 months) and calculate the correlation of the
structure and explained variance of the EOFs of the SSTA
field of the NLLVs (not shown). Comparing the explained
variances, averages and SDs of correlation coefficients for
different breeding parameter sets, we find that there is very
high consistency between these different parameter sets and
the reference parameter set. Therefore, the structures of
NLLVs are statistically very similar for different breeding
parameter sets.

However, the variances explained by the first few EOFs
of the later NLLVs (such as NLLV4, 5, etc.) become smaller
with similar magnitude, so cannot be distinguished, which
make it difficult to judge the similarity of the NLLVSs struc-
tures statistically. Considering that the NLLVs can be used
as ensemble perturbations for ENSO ensemble prediction
and that the subspace made up of ensemble perturbations
should involve the direction of analysis errors to ensure the
effectiveness of ensemble forecasts (Toth and Kalnay 1993,
1997), we check the relationship between the subspaces
composed of the first few NLLVs and the analysis errors. In

this paper, we constructed the analysis data with the EnKF
assimilation method under the perfect assumption and can
acquire the analysis error by calculating differences between
analysis data and true data. Referring to the Perturbation ver-
sus Error Correlation Analysis (PECA) proposed by Wei and
Toth (2003), we obtain the correlation coefficient between
the subspaces consisting of NLLVs and the analysis errors
of SSTA at the same time through multiple linear regression
methods. The square of this coefficient can be considered as
the proportion of variance explained by the subspace con-
structed from the first few NLLVs to the analysis error. The
correlation coefficient at each time is calculated by solv-
ing the maximum correlation between Y = Z;‘:l a,NLLV;
and Y,, where Y, represents the analysis error of the SSTA
field, the a; are undetermined parameters and k is the number
of selected first few NLLVs. To obtain Y at each time, we
determine a; by the least squares method. Using different
breeding variable sets, the averages of the coefficients of
different states (3000 cases) for different numbers of NLLVs
are shown in Table 3. The relationship between the subspace
and the corresponding analysis error is similar for different
breeding variable groups. For other different parameter sets,
the values are also consistent (not shown). Therefore, the
NLLVs from different parameter sets or random perturba-
tions are closely connected with the analysis error and this
relationship is stable.

The instantaneous relationship of the NLLVs from differ-
ent initial random perturbation seeds and different parameter
sets, implies some sensitivity of the NLLVs, especially the
subsequent NLLVs (NLLV2, NLLV3...), to the nonlinear
evolution of the dynamical system over time. The subse-
quent NLLVs are more sensitive than NLLV 1, which can
be understood as the diversity of instantaneous NLLVs over
time, which may contribute to the improvement of ensemble
prediction. However, statistically, the NLLVs from different
breeding parameter sets have great similarity in terms of the
structure and explained variance of the EOFs. The relation-
ship of the subspace of the first few NLLVs to analysis error
is also similar. Thus, the features of NLLVs from different
breeding parameter are similar and stable.

Table 3 Average correlation coefficient of the subspace composed of
the leading few NLLVs and the corresponding analysis error for the
3000 samples for different sets of breeding variables

Coefficient TOUOVOH1 TO UlVITOH1 UIVITO
UOVOH1
NLLV1 0.259 0.264  0.255 0.261
NLLV12 0.399 0.387  0.406 0.402
NLLV123 0.479 0483  0.468 0.474
NLLV1234 0.534 0.542  0.532 0.536
NLLV12345 0.574 0.581  0.569 0.570
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Therefore, in the remainder of the paper, results are pre-
sented with the breeding parameters set as: the L2 norm (the
entire field), with rescaling size equal to the RMSE of the
analysis SSTA field (0.199 °C), with one month for a breed-
ing cycle and SSTA UO VO H1 as the breeding variables to
set the orthogonality of the perturbations at the end of every
breeding cycle.

4 Growth rates and modes of NLLVs

Previous research (Cai et al. 2003; Yang et al. 2006, 2008;
Tang and Deng 2011) has produced the important results
that the growth rate and mode of BVs are functions of back-
ground ENSO phase and season. The maximum BV growth
rate occurs between the two extreme phases of ENSO epi-
sodes and the extreme centers of the BV mode vary with
ENSO phase (Cai et al. 2003; Yang et al. 2006). Consider-
ing NLLVs as the nonlinear extensions of LVs in a multidi-
mensional context, we conjecture that there is a relationship
between the ENSO phase and the growth rate or modes of
the different NLLVs. Therefore, having determined the con-
figuration of the breeding process, in this section we will
explore the features of NLLV modes and their variations
with initial state, season, and ENSO signal over a 250-year
period, starting at year 34 of model time.

4.1 Variations of NLLV growth rate

NLLV growth rate is measured as the ratio of the SSTA field
of the NLLV at the end of the breeding interval (one month)
compared with its initial amplitude (i.e., the rescaling fac-
tor) and it has units of per month. The growth rate is just the
relative increment in a breeding cycle of 1 month, which
is different from the time span used by Cai et al. (2003).
Figure 6a displays the percentage of cases for which the
growth rates of the first three NLLVs rank at position i in the
3000 sample pool. In this figure, we find that although the
NLLV1, defined as the statistic fastest growth direction, is
fastest (i=1) the greatest percentage of the time, the percent-
ages of the next two NLLVs together reach 60%. Figure 6b
shows the growth rates of the first three NLLVs in the steady
growth period of the breeding process for different seasons.
The growth rates of the first three NLLVs, in rough agree-
ment with the variation of the optimal error growth rate for
the BV from Cai et al. (2003), are larger in summer and fall
than in other seasons. This may be because of the stronger
convectional heating in summer and the fact that ENSO
events tend to strengthen during the fall season. The growth
rates in late spring rapidly increase, which may correspond
to the rapid decrease of the prediction skill in spring (i.e.
the spring prediction barrier). The change of amplitude of
the growth rate of late spring indicates the unstable part of
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ENSO that is difficult to predict. The different NLLV's have
similar seasonal variations in growth rate although there
are some differences in the values of the growth rates. The
growth rates of subsequent NLLVs in some seasons are even
larger than that of the NLLV1, which indicates the impor-
tance of subsequent NLLVs at some times. In Fig. 6c, the
NLLV?2 has the highest probability to be the fastest growth
direction in the summer, especially in June and July, which
further confirms that the first NLLV is not always the fastest
growth direction over a short time interval, although statisti-
cally NLLV1 has the fastest growth rate. In the spring, the
percentage of the NLLV2 as the fastest direction rapidly
increases, which corresponds to the spring barrier. There-
fore, from this growth rate perspective, we cannot discard
the subsequent NLLVs and just choose the NLLV1 or BV
and it is necessary to consider the subsequent NLLVs to
describe the multidimensional error growth space of the ZC
model.

We want to identify the relationship between the growth
rates of these subsequent NLLVs and the background ENSO
phase. Thus, we will check the growth rate of the NLLVs
at different ENSO phases. The dependence of the growth
rates of BVs on ENSO phase has been addressed in Cai et al.
(2003) and Yang et al. (2006). They found that a neutral or
onset/breakdown stage of an ENSO event tends to have a
large error growth about 3—4 months prior to the peak phase,
whereas error growth is often small in an ENSO peak phase.
Tang and Deng (2011) also pointed out similar character-
istics of BV growth rate in a hybrid coupled ENSO model
of the 120 year between 1881 and 2000. In addition, Tang
and Deng (2011) showed that the BV growth rate is smaller
during El Nifio than La Nifia events. Here, we follow Cai
et al. (2003) and divide the background ENSO events into
24 categories. The boundaries of the 24 bins are based on
the Nifio 3 index of the control run and its temporal trend.
Table 4 summarizes the lower and upper boundaries of the
bins in terms of the Nifio 3 index and its temporal tendency.
The choice of limits means that bins 12 and 13 represent the
warmest SST anomaly phase of the composite ENSO event.
Bins 5-20 have a positive Nifio 3 index and the remaining
bins correspond to a negative index. Figure 6d displays the
composite mean of the growth rate of the first three NLLVs
as a function of the background ENSO phase. It is clear that
the NLLVs tend to have a larger growth rate in the develop-
ing stage of the ENSO positive phase. In the mature stage
of the ENSO positive phase, the growth rate is the smallest.
Besides, there are some differences in the amplification of
the growth rates of the ENSO positive and negative stages.
In the negative phase, the growth rate of the NLLV1 is lower
compared with the NLLV2 and NLLV3, which shows the
importance of the subsequent NLLVSs’ directions for describ-
ing the error growth subspace, particularly in the ENSO
negative phase. Therefore, the instabilities related to ENSO
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Fig. 6 Percentage of the first three NLLVs in the position of the
corresponding rank (a), the growth rates of the first three NLLVs
for different seasons (b), the percentage of the first three NLLVs as
the fastest growth direction for different seasons (¢) and the aver-
age growth rate of the first three NLLVs as a function of the ENSO

phase (d). The black curve of d is the Nifio 3 index of the composite
background ENSO cycle corresponding to the right vertical axis. The
growth rate 7y is calculated as the scaling factor in the final breeding
cycle of the breeding process

Table 4 Lower and upper

limits of the 24 Nifio3 bins for Bin no.

the composite ENSO event 1 2 3 4 12 13 21 22 23 24
Lower limit <-1.5 —-1.5 -1 -0.5 35 35 -0.5 -1 -15 <-15
Upper limit —1.5 -1 -05 0 >35 >35 0 -0.5 -1 -1.5
d(Nino3)/dt >0 >0 >0 >0 >0 >0 <0 <0 <0 <0 <0 <0

are not only determined by one direction such as the NLLV1
but are also influenced by the subsequent NLLVs.

Decadal and interdecadal variations in ENSO variability
exist as shown in Fig. 3. ENSO variability is weak during
the period from the 700.5th to 1700.5th months and is strong
from the 2000.5th to 3000.5th months as determined by the
Nifio 3 index. It is interesting to examine the temporal vari-
ations of the NLLVs growth rate on the decadal/interdecadal
scale. Figure 7 shows variations in the NLLVs growth rate

from the 408.5th to 3408.5th month; a 48-month (4-year)
running average has been applied to highlight interannual or
longer signals. Forty-eight months is the significant period
of the ENSO cycle in the ZC model. Scrutiny of Fig. 7
reveals that the differences between the growth rates of the
NLLVs also have decadal/interdecadal variation. NLLV2 or
NLLV3 as well as NLLV1 all have the potential to become
the fastest growing direction of the leading NLLVs in some
periods. The Nifio 3 index indicates that the ENSO has
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Fig. 7 Variation in the growth rate of the first three NLLVs. A
48-month running mean has been applied to the rate and index to
highlight interannual and longer signals

different characteristics in the periods 1000.5-1500.5th and
2000.5-2500.5th months: the former represents an irregular
stage and the latter is the regular stage of the ENSO cycle.
The two stages have different NLLV growth rates: the growth
rates in the irregular period are higher than in the regular
stage. The regular ENSO cycles contribute to increasing pre-
dictability and the irregular cycles give decreased predict-
ability. The variability of the NLLVs growth rate at various
time scales is more obvious in the wavelet analysis shown
in Fig. 8. The local wavelet power spectrum of the NLLV 1
growth rate clearly indicates that significant periods were
localized in time and varied from 180 to 240 months from
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Fig. 8 Morlet wavelet power spectra of the NLLV growth rates and
the Nifio 3 index. The thick contour encloses regions of greater than
95% confidence using a red-noise background spectrum. The solid
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the 1000.5th to 2200.5th months, which agrees with the
Nifio 3 index wavelet power characteristics.

The wavelet power spectrum analysis for the NLLV's
growth rate and Nifio 3 index also reveals similar spectral
characteristics between the NLLVs growth rate and ENSO
variability, suggesting a connection of the growth rates of
different NLLVs with the ENSO background. There are
some differences in the time and duration of the most sig-
nificant frequencies of variation of different NLLVs, which
further confirms the diversity of the increasing error direc-
tions represented by the NLLVs. Therefore, different first
NLLVs, including at least NLLV1, NLLV2, and NLLV3,
actually have a close relationship with the ENSO process
and have sufficient diversity to describe the different aspects
of ENSO.

4.2 ENSO NLLV modes

Cai et al. (2003) pointed that the BV mode exhibits a large-
scale spatial pattern somewhat similar to ENSO over much
of the equatorial Pacific basin. Yang et al. (2006) found the
BV has similar behavior to the forecast error field. Therefore,
in this section we want to show whether the NLLV struc-
tures have a temporal dependence on the background ENSO
flow. Thus, we randomly chose a period that ranges from one
ENSO negative mature phase to the next negative mature
phase and examine the zonal and temporal snapshots of the
SSTA field of NLLVs along with the background SSTA
(as shown in Fig. 9). Figure 9 reveals that the structure of
the first three NLLVs (color shading) is dependent on the

sign:0.05
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smooth curves in the bottom left and right corners indicate where
edge effects become important
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background SSTA fields (contours). The NLLVs often have
centers of extreme values in the area where the background
SSTA field varies rapidly with time, such as the eastern
Pacific. When it is the developing stage of an El Nifio or
La Niiia, the SSTA field of the NLLVs has more extreme
centers and extends from the eastern Pacific to the west-
ern Pacific. During the El Nifio mature phase, the NLLV
structures are weaker and lie mainly in the east Pacific.
From the La Nifia to El Nifio phase (from the 2466.5th to
2490.5th month), the extreme centers of NLLVSs in the west-
ern Pacific gradually decay but that in the eastern Pacific is
maintained and enhanced, which agrees with the develop-
ment of the background fields. Compared with the NLLV1,
the subsequent NLLVs such as NLLV2, NLLV3 have finer
structure, for example during the beginning of the El Nifio
phase (at the 2494.5th month), NLLV2 and NLLV3 have a
stronger signal in the central and eastern Pacific, which con-
tributes to the development of the El Nifio phase. Therefore,
NLLVs are dependent on the background flow and have dif-
ferent patterns at different ENSO phases, which is consistent
with the behavior of BVs. The subsequent NLLVs besides
NLLV1 can also represent the instability structure associated
with ENSO and contain finer scale information. They also
contribute toward the error growth subspace of the multidi-
mensional system.

As mentioned in the Sect. 3.2, the statistical properties
of the NLLVs are stable and to some extent insensitive to
the choice of the breeding parameter. To explore the physi-
cal significance of the statistical structure, the EOFs of the
SSTA field of each of the NLLVs are displayed in Fig. 10.
The different EOF patterns of the NLLVs have different
numbers of extreme centers. The EOF1 of NLLV1 has a
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BN | | [
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uniform structure; the EOF2 has a dipole structure and
the EOF3 is tripolar. The first three EOF patterns of the
NLLV1 have physical significance related to ENSO. The
EOF]1 pattern represents the uniform ENSO-like structure
with a large-amplitude signal in the equatorial central and
eastern Pacific, which is similar to the final evolved sin-
gular vector and is closely related to the delayed-oscillator
mechanism (Tang and Deng 2011). The EOF2 pattern is
similar to the nonlinear forcing singular vector (NFSV) of
the growth-phase predictions (Duan and Zhao 2014), which
also has a zonal dipole structure and positions of the extreme
centers that are consistent with those of the NLLV1 EOF2.
Duan and Zhao (2014) pointed out that this NFSV pattern
is responsible for the prediction error of the correspond-
ing El Nifio event in the ZC model. The tripole structure of
the EOF3 pattern is more or less consistent with the EOF
structure of the subsurface ocean temperature (Zhang et al.
2017). The EOF structures of different NLLV's have certain
similarities. For example, the EOF1 of the NLLV1 and the
EOFI1 of the NLLV2 both have the single structure in all
fields. These similarities are because all the NLLVs are asso-
ciated with the background ENSO evolution and represent
the flow-dependent error growth directions. However, there
are also differences between EOF1s for different NLLVs.
The single structures have different intensity and extent. The
results are similar for other EOF modes. The differences are
due to the nonlinearity of the dynamical system and show
the diversity of the NLLVs.

Considering that the background ENSO states have a sig-
nificant difference in the two spans: the 700.5th—1700.5th
and 2000.5th—-3000.5th months (shown in the Fig. 3), the
first three EOF of first three NLLVs have some differences
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Fig. 10 The first three EOF structures of the SSTA fields of the first three NLLVs (contour interval 0.02 units; solid for positive and dashed for

negative): NLLV1 (a), NLLV2 (b), NLLV3 (c)

in structures and explained variances. The difference exists
in the growth rate of the NLLVs (as shown in Fig. 7).

These figures demonstrate that the different directions of
the first few NLLVs represent the growth directions and are
related to the ENSO evolution. The directions of the differ-
ent NLLVs all have the potential to be the fastest direction at
a particular instantaneous state. The subsequent NLLVs are
random to a certain extent; this contributes to the diversity
of the first few NLLVs. Therefore, using different NLLVs
is helpful to describe the subspace of the error growth. We
are confident that NLLV's will perform better as ensemble
perturbations than BVs.

5 Advantages of NLLVs over BVs

As mentioned above, in theory the NLLVs have some
advantages over BVs. The orthogonalization of the breed-
ing process means that the NLLVs can represent differ-
ent error growth directions and include greater diver-
sity than the BVs. As shown in Fig. 5, the subsequent
NLLVs (Fig. 5Sa—c) are somewhat more random than the
BVs (Fig. 5d-f). Therefore, the subspace constituted by
the first few NLLVs should have a higher correlation with
the analysis error than that of the BVs. Figure 11 dis-
plays the correlation coefficients between the subspace of
NLLVs and BVs against the analysis error by the PECA
method. The coefficient is the average of 3000 cases, cor-
responding to different initial states from the 408.5th to
3407.5th months. The different numbers of vectors repre-
sent the different dimensions of the subspace. Figure 11
shows that the coefficient of the NLLVs is always larger
than that of the BVs for different dimensional subspaces.
The difference reaches almost 0.1 with five vectors. The
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posed of the first few NLLVs (blue line) and BVs (red line) and the
corresponding analysis error for the 3000 cases. The number of vec-
tors on the horizontal axis represents the different numbers of NLLVs
or BVs used to construct the subspace

difference is not due to the similarity of BVs, because the
orthogonalization of BVs cannot change the subspace
consisting of BVs. The difference is because the different
NLLVs represent different error growth directions which
have physical meaning. The orthogonalization of the
breeding process ensures the different NLLVs adequately
resolve the physics. Therefore, the subspace consisting of
NLLVs can better and more effectively capture the analysis
error than that of an equal number of BVs.
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In fact, the orthogonality contributes to the effectiveness
of NLLVs in describing the error growth subspace. How-
ever, the orthogonality of NLLVs holds in a whole-regional
sense and does not guarantee the mutual independence of
local NLLVs. The diversity of local perturbations impacts
the ensemble skill (Wang and Bishop 2003). Here, we want
to identify whether the local dimensionality of the NLLVs
is higher than that of the BVs.

We calculate the local dimensionality of the NLLVs or
BVs following Patil et al. (2001). We chose 5 x5 grid cells,
roughly 1000 km X 2500 km, as the local region and regard
it as the local 25-dimensional vector. The total number of
vectors (NLLVs or BVs) is k. The k local column vectors
form a 25 X k matrix, B. The kX k covariance matrix of B is
C = BTB, where B is the transpose of B. C is non-negative
definite and symmetric, so its k eigenvalues A, are non-neg-
ative. Therefore, the singular values of B are ¢; = \//1_,», and
the local dimensionality of vectors is defined as:

(ze)

, 3)
25:1 Uiz

W(O-l, Oy, ... ’Uk) =

where y returns a real value between 1 and k. Here, k is
chosen to be 5.

In Fig. 12, we show the spatial distribution of the local
dimensions of NLLVs and BVs. The local dimensionality
is calculated at each spatial point on the grid and colored
blue for lower values and red for larger values. As shown
in Fig. 12, the local dimensions of NLLVs are higher than
those of BVs, and this is not sensitive to the grid size or the
number of vectors k. The difference is up to 0.8 over almost

Fig. 12 Local dimensionality

Local dimension of the NLLVs
1

the whole region and becomes larger when the grid number
increase. The local dimensions of NLLVs are higher in the
western and eastern Pacific than in the central tropical ocean,
which may be because the western and eastern areas are the
regions of varying SSTA. Therefore, the NLLV's have more
diversity than the BVs whether in a whole-region sense and
locally, which is beneficial for the prediction skill of NLLVs
as the ensemble perturbations.

6 Application of NLLVs in ensemble prediction

In this section, we apply the first few NLLVs as ensemble
perturbations to predict ENSO and demonstrate the poten-
tial benefits in the context of the perfect model scenario.
Four groups of forecast experiments are designed. In addi-
tion to the control experiment from the single analysis state
of the EnKF assimilation method, we perform three other
ensemble prediction experiments whose ensemble perturba-
tions are produced separately by the NLLV, BV, and random
schemes. These perturbations are added and subtracted from
the analysis states. As mentioned above, the NLLVs are gen-
erated through breeding processes. The breeding processes
contain twelve breeding cycles and the length of a breeding
cycle is 1 month. The parameters of the breeding process for
BVs are the same for NLLVs. The orthogonalization process
is included in each breeding cycle for the NLLV's but not for
the BVs. The ensemble perturbations of the three methods
have the same size as those of the analysis errors of the
SSTA field in L2 norm. The number of ensemble members
is ten using the five directions from the BV, NLLV and ran-
dom vectors (positive—negative pairs). Five modes are cho-
sen because the first five NLLVs can explain the majority

of the fore five NLLVs (upper)
and five different BVs (lower).
The local regions are made up
of 55 grid cells. The local
dimensionality is the average of
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the 3407.5th month
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of the analysis errors at reasonable computational cost. The
ensemble members are integrated for 48 months, almost
equal to the period of the ENSO cycle in the ZC model. The
initial forecast time is every month over a 250-year period
and there are 3000 forecast cases in total. We check the pre-
diction skill of the Nifio 3 index of the different schemes
with regard to the ensemble mean and probability prediction.

6.1 SKkill of the ensemble mean

The overall prediction performances of the ensemble mean
can be measured through mean square root error (RMSE)
and pattern anomaly correlation (PAC) (Buizza et al. 2005).
These are expressed as:

RMSE(r) = \/Zi\il (P’”e;\(]t) - trui)z’

“

We focus on the prediction skill of the Nifio 3 index. Fig-
ure 13a, b show the RMSE and PAC of the Nifio 3 index,
respectively, as a function of lead time. The corresponding
measurements from the control forecasts are also shown for
comparison. The ensemble averaging significantly outper-
forms the single control forecast as a whole, although dif-
ferent ensemble methods, because of their distinct initializa-
tion schemes, have different forecast skills. For the first few
months (about 5 months), ensemble averages are indistin-
guishable from the control forecasts. The initial time span
can be considered as a linear stage, during which the pairs
of positive and negative perturbations cancel each other out
almost completely and the average results of the pairs are
almost equal to the control forecast results. However, when
the errors gradually increase and enter the nonlinear stage,
ensemble averaging plays a much more important role in fil-
tering nonlinearly to reduce error. In the nonlinear stage, the
BV method evidently outperforms the random vector method

Zfil (prei(t) —pre(t)) X (tru; — tru)

PAC(t) =

bl

\/Zi\il (pre,(t) — pre) x (pre; — pre) X \/Zi\il(tmi — tru) X (tru; — tru)

Zi‘\;l (pre,() — _ Zi\il (tru;)

pre(t) = N , tru = N

&)

where t is lead time, i represents the number of samples
used to calculate the forecast skill. N is the total number of
objects considered; pre; is the predictand and tru; represents
the corresponding analysis quantity. pre is the average of all
pre; and tru is that of all tru;.
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in ensemble prediction skill, because of the representation of
the analysis error directions by the BVs. Due to the assimi-
lation cycles that generate the analysis states, non-growing
error directions are reduced down to a low proportion and a
significant fraction of the analysis errors are represented by
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Fig. 13 RMSE (a) and mean correlation (b) of 3000 samples as a function of lead time for the control run (black line), random perturbation
method (green line), BV method (red line), and NLLV method (blue line)
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the growing error directions. Random perturbations that only
include a small proportion of the growing errors describe
the probabilistic distribution of analysis errors in the less
efficient directions and have the worst ensemble prediction
skill. The ensemble skill of the NLLVs is higher than that
of BVs, which is due to the diversity of the NLLVs. NLLVs
sample the analysis errors in more mutually orthogonal
directions and can describe the probability distribution of
the analysis errors more fully than the other two schemes.
The subspace of the first NLLVs has better correlation with
the fast-growing component of the analysis errors, and thus
the NLLVs behave better than the traditional BV and random
method, especially for long-range predictions. This point is
proved by the PECA method.

6.2 Probabilistic forecast verification

The probability forecast can provide information about the
predictability. Murphy (1988) pointed out that the spread
of an ensemble distribution can in principle give an a pri-
ori indication of forecast skill. The smaller the spread, the
higher is the prediction reliability and vice versa. Therefore,
there is an inverse relationship between ensemble spread
and the mean prediction accuracy for a statistically reliable
ensemble system. The ensemble spread should be close to
the error of the ensemble mean (Buizza et al. 2005). The
ensemble spread is given as (Buizza and Palmer 1998; Zhu
and Toth 2008):

L (pre, )’ (©)

Spread(t) = N1

where ¢ represents the lead time, pre is the average value
of the ensemble prediction and the Spread(t) represent the
standard deviations of the ensemble members.

Figure 14 shows the ratio between the ensemble spread
and the RMSE of the Nifio 3 index as a function of lead
time for different perturbation schemes. At the lead time of
3 months, the Spread is larger than the RMSE for NLLV and
BV ensemble schemes. The spread of the Nifio 3 index of the
random scheme is too low, because the random values in the
Nifio 3 region cancel each other out when added together.
With increasing lead time, the ratio of the NLLV and BV
schemes gradually reduces to less than 1. In this process,
the ratio of the NLLV scheme is always larger than that of
other schemes, which demonstrates that the NLLV scheme
can more accurately describe the relationship between the
Spread and RMSE. This is attributed to the NLLVs sampling
the analysis errors in directions that are much less correlated
than those used in the BV scheme.
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Fig. 14 Ratio of the ensemble member spread (represented by the
averaged standard deviations of the model ensembles) and the RMSE
of the ensemble mean shown as functions of lead time for different
ensemble schemes: random perturbation method (green line), BV
method (red line), and NLLV method (blue line). Values close to 1
represent good results

In ENSO prediction, we are interested in the prediction
of the La Nifa (cold events) and El Nifio (warm events).
There are a number of scalar accuracy measures for veri-
fication of probabilistic forecasts of dichotomous events,
but by far the most commonly used is the Brier score (BS).
Thus, we use the BS to verify the prediction skill of the
two kinds of event. We define warm events as when the
Nifio 3 index is larger than 2.15 °C (the upper 10% range
of the Nifio 3 index series) and cold events as when it
is less than —0.86 °C (the lower 10%). The BS can be
defined as the mean square probability error (Wilks 2011):

N
1 2
BSzﬁg(fi—O,-), @)

where the index i denotes a numbering of the N fore-
cast—event pairs; f; is the prediction probability of the events
occurring; if the event happens, the observation O; = 1, and
O, = 0 if the event does not occur. In this form, the BS is
anti-correlated with the skill of the forecast: a higher BS rep-
resent a less accurate prediction (Murphy 1973). The BS can
take on values only in the range 0 < BS < 1. Figure 15 shows
the BS of warm and cold events evaluated for three methods
as a function of forecast time. At the beginning of the first
5 months, the prediction ability of warm and cold events by
the three methods is close. With increasing lead time, the
ability of the NLLV and BV methods becomes increasingly
clear. The BS of the NLLV method is always lower than for
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Fig. 15 Evolution of the Brier a Brier Score for Warm Events b Brier Score for Cold Events
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other methods. The NLLV method performs better in pre-  NLLV characteristics, and evaluate the performances of the
dicting warm and cold events than other schemes. NLLV scheme for ENSO ensemble prediction in the per-

The diversity and the close relationship with the analysis ~ fect model environment. The NLLVs are a development of
error of NLLV contribute to its performance in ensemble ~ BVs. Through the breeding process, both the NLLV and BV
prediction. Using the PECA methods, we check the rela-  can capture the growing directions of analysis errors from
tionship between the analysis error field and the different  assimilation cycles. However, unlike the BV, the NLLV is
perturbation schemes for SSTA. We calculate the explained  periodically orthogonalized by the GSR process to separate
variance of the analysis error for the ensemble perturbations  various growing directions of the dynamical system. The
each month and obtain the square root of the explained vari-  continual orthogonalization in the breeding process ensures
ance as the correlation coefficient from the 408.5th to the  that the different unstable directions represented by NLLV's
3407.5th month. The correlation coefficient of the NLLV  can develop sufficiently and be maintained. The mutually

scheme is 0.574 and that for an equal number of random per-  orthogonal NLLVs have greater diversity and higher inde-
turbations is only 0.083, which indicates that the subspace =~ pendence than the BVs.
made up of the first few NLLVs is more closely related to the Before calculating the NLLVs in the ZC model, for closer

analysis error than that of random vectors. The analysis error  consistency with the operational environment, we con-
from the assimilation process consists of the background  structed the assimilation process using the EnKF method
error from the background field and the random error from  to generate the analysis data without considering the model
observations. The growing directions of the background  error. Using this analysis data as the reference trajectory, we
error account for the important structure of the analysis error ~ demonstrated the feasibility of NLLVs to facilitate ENSO
in the ZC mode. Because the breeding process is similar to  studies in this near-operational prediction environment. The
the assimilation process, NLLVs represent the increasing ~ ZC model has no weather or other fast timescale instabilities.
directions of the dynamical system and have a close relation-  Therefore, we have little doubt in relating the growing struc-
ship with the background error through the breeding process.  ture identified with NLLVs to the background flow. We ran
Compared with the BV method, the mutual orthogonality of ~ some experiments to illustrate the potential benefit of using
NLLVs contributes to the diversity of the ensemble pertur- ~ NLLVs in this coupled model. We explored the characteris-
bation. Therefore, using the NLLVs as the ensemble pertur-  tics of the spatial patterns and the growth rates of NLLVs.
bation can improve the prediction skill of ENSO in the ZC We found that the instantaneous structures of NLLVs dif-
model, as proved by the experimental results. fer with the choice of breeding parameters and initial random
perturbation seeds, especially the higher NLLVs (NLLV2,
NLLV3,...). Due to nonlinear effects and the orthogonali-
7 Conclusions zation process, the subsequent NLLVs have a certain ran-
domness. The randomness of the NLLVs contributes to the
In this study, we interpret NLLVs as extensions of the  diversity of the NLLVs and guarantees the effectiveness of
theoretical Lyapunov vectors and apply NLLVs to the ZC  the subspace consisting of the first few NLLVs in describ-
model to explore how to calculate the NLLVs, explore the  ing the unstable directions of the ENSO dynamical process.
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However, the statistical features of NLLV are insensitive
to these breeding parameters, because all NLLVs repre-
sent the unstable directions of ENSO and are relative to the
dynamical process of the background flow. The stability of
the statistical properties is one of the NLLV advantages,
which supports the application of NLLVSs to the operational
environment.

We have explored the characteristics of the spatial
structures and growth rates of different NLLVs in the ZC
model. Both the spatial structures and the growth rates of
NLLVs (NLLV1 and the subsequent NLLVs) are related
to the background ENSO events and seasonal cycle. The
largest growth rates of NLLV1 and the subsequent first few
NLLVs occur in boreal summer and fall. The growth rates
of NLLVs are also strongly dependent on the background
ENSO phase. The growth rates of the first few NLLVs are
smallest at the mature stage of an El Nifio event, while the
largest error growth rates emerge during the ENSO neutral
stages. In some phases of ENSO, the growth rates of other
NLLVs (NLLV2, NLLV3...) may be larger than that of the
NLLVI1. In fact, the NLLV1 represents the statistically fast-
est growing direction. However, the other NLLVs have some
probability of growing fastest. The first few NLLVs are also
related to the background flow on the decadal/interdecadal
time scale. The growth rates of the different NLLV's manifest
different structural characteristics of the wavelet. The tem-
poral variation of the NLLVs depends on the background
flow. The extreme values of the NLLVs tend to be located at
the temporal and spatial location where the background flow
changes rapidly. Analyzing the first three EOF structures of
the first three NLLV (the NLLV1, NLLV2, NLLV3) respec-
tively, we find that the EOF structures from different NLLVs
have some similarity because the NLLVs are all related to
the background ENSO flow. The NLLVs have some advan-
tage over BVs in terms of the relationship between the error
growth subspace and the analysis errors. The NLLVs also
have higher local dimensionality than the BVs.

We have conducted ensemble forecasting of ENSO using
NLLVs as the ensemble perturbations in the ZC model. The
NLLV scheme for ENSO ensemble prediction performs bet-
ter than the BV and random approaches in terms of RMSE
and PAC of the ensemble mean, the relationship of spread
and RMSE, and the BS of warm and cold events. This may
because the development of analysis errors can be effec-
tively sampled by the NLLVs and the diversity of the NLLVs
as ensemble perturbations are high. Therefore, the NLLV
scheme is an effective method for generating ensemble per-
turbations to predict ENSO.

This study simply uses the ZC model without model
error. This deficiency leads to a higher predictability limit
in this paper than that of the real ENSO prediction. There-
fore, we will apply the NLLVs to predict real ENSO events
in future work. The ZC model is an intermediate coupled

model which does not include realistic atmospheric transi-
tions and weather scale variability. Therefore, we need to
verify the sensitivity of NLLVs to the atmospheric noise in
complex coupled general circulation models (CGCMs). In
this paper, we find that the subspace consisting of the NLLV
perturbations is closely related to the analysis errors. The
largely explained ratio of the perturbations to the analysis
errors contributes to the high prediction skill traditionally.
However, low prediction skill occurs with large correlation
coefficient in some cases in this experiment. The relation-
ship of the coefficient between the subspace of the perturba-
tions and the analysis errors and prediction skill is complex
and uncertain. The relationship should be explored further.
However, in this paper, the NLLVs are directly used as the
ensemble perturbations. When increasing the member of
perturbations, the invalid direction from the subsequent
NLLVs reduce forecast skill. Therefore, we need to choose
the appropriate number of NLLVs as the perturbations.
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Appendix A

The nonlinear local Lyapunov vector and exponent
spectrum

The evolution equation for the dynamical system is:

dx
x = — = F , 1),
= (x, 1) ¥
where x(t) = (x,(1), (1), ..., xn(t))T represents the state vec-

tor of the dynamical system F at time t. Considering a small
perturbation 8(r) € R%:

d(x(1) +y())

— =F(x+6,1). ©)

The governing equation for 8(¢) is:

8(t) = F(x(1) + (1)) — F(x(1)). (10)
Without the tangent linear approximation, the solution of

the perturbation 6(¢) is given by:

8(iy) = DF (x(1)))8(1)) + G(x(t)), 8(1,)), (11)

where DF(x(t))6(t) are the tangent linear terms, and

G(x(1),y(t)) are the nonlinear terms of the perturbation

8(t). This is a high order nonlinear differential equations so
cannot be solved analytically. However, we can obtain the
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solution by numerically integrating the equation along the
reference solution from t = t; to t:

6(ty) = n(x(z,), 8(t)), 1, — 1)6(t,), (12)
where n(x(1,),8(,),1, — 1,) is defined as the nonlinear
propagator (Ding and Li 2007), which propagates the initial
perturbation forward to ¢ = t,. This nonlinear propagator
depends on the initial perturbation &(¢,). In order to obtain
the growth rates of the perturbations corresponding to a cer-
tain size and a certain initial position, we need to find the
growth directions in phase space and numerically compute
the dynamical system with the perturbations. As mentioned
above, the error vectors at a certain size tend to fall along the
fastest growing directions as perturbations evolve over time
in the dynamical system. In order to obtain the growth direc-
tions, we first breed the initial random perturbation &' (%),
and after sufficient time t, &'(#, + ) will capture the fastest
growing direction. We take the direction of §' (¢, + 7) as the
initial error &, (¢,). The first (largest) nonlinear local Lyapu-
nov exponent (NLLE) along the growing direction 9, (#,) can
be approximately defined as:

Po) +
Ay (x(t0), 8,(t), 7) = %ln %’

where 4, (x(1y), 8,(#,), T) depends on the initial state in phase
space x(%,), the initial perturbation 8, (¢,) and evolution time
7. Time-dependent Lyapunov exponents are obtained under
the tangent linear equations so they do not depend on the
perturbation size in the numerical calculation. A relation-
ship exists between the first NLLE and the time-dependent
Lyapunov exponent g, (¢). In the limit as 8,(¢;) — 0 the first
NLLE corresponds to the time-dependent Lyapunov expo-
nent u,(¢). When 6,(¢;) —» 0, 7 — oo, the first NLLE con-
verges to the largest Lyapunov exponent p,. The first NLLE
has been used extensively to research the predictability of
weather and climate (Ding et al. 2010, 2011, 2016; Li and
Ding 2011, 2013).

As stated above, the n largest Lyapunov exponents char-
acterize the growth rate of an n-dimensional volume of
small perturbations. Continuing this inherent characteristic
of the Lyapunov exponents, the first n largest NLLEs should
describe the growth rate of a set of orthogonal perturba-
tions. We define 6,(t), 6,(%), ..., 6,(¢)) as the nonlinear
local Lyapunov vectors (NLLVs), which are orthogonal and
correspond to the directions of the NLLEs. Through the
evolution of the nonlinear system, &,(¢,), 8,(ty), ..., 6,(fy)
evolve into the vectors & (1) + 1), 8,(1y + 1), ..., 8/ (1g + T)
through the breeding process. The ith NLLE 4,(x(¢,), 6(¢,), )
can be determined directly from the growth rate of vector
6;(t,) (Feng et al. 2016, 2014; Li and Wang 2008):

13)

et + ol i=1,2,....m).
[|6:t)|
(14)

Ai [x(to), 6,(p), T] = % log
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The NLLVs 6,(%,), 6,(ty), ..., 6,,(t;) can be derived
through a periodic reorthogonalization by the GSR process
and rescaled (Feng et al. 2014; Li and Wang 2008). This pro-
cess (as shown in Fig. 1) is similar to the breeding method
(Toth and Kalnay 1997) but with the addition of periodical
orthogonalization. Therefore, we also call the process of
solving for NLLVs a breeding process. The breeding pro-
cess is composed of multiple breeding cycles. In the GSR
procedure, the direction of the first NLLV is never affected,
which corresponds to the first NLLE, and the next fastest
growing NLLYV is orthogonalized with the first few NLLVs.

Appendix B
The ensemble Kalman filter

We first integrate the ZC model to acquire the long-term
model state as the true state that is denoted by x,,,.. The
simulated observations y are generated from the true state
using

y =Hx, + ¢, (15)
where H is a function mapping from the model space to the
observation space, and € represents independent realizations
of the noise with a Gaussian distribution. The ensemble of
forecast states is adopted as a set of background states. The
ensemble is then defined as

Xe= (X5 Xpo5 e XpN)- (16)
X, represents the mean of the ensemble. Then, an ensemble
perturbation matrix can be written as:

X;- = (xf’] —X‘f, xfgz —X‘f, ceey xf’N —Xfr) (17)
The covariance matrix of the ensemble X is:
P, — 1 x'x'T 18
FoN=-1 (18)
The background forecast ensemble will be updated by the
observations. The observations are assimilated to generate a
new analysis of the state:

X, =X, +K(y—-Hx;;), i=12,....N, (19)
where K is the Kalman gain. It is calculated by:

K = PH'(HPH" +R)™, (20)
where R is the observational error covariance matrix. K is
actually a weight measuring the ratio of the forecast and
observational error covariance.

The ensemble has 200 members, which is much smaller
than the model dimension. Filtering divergence occurs in
the EnKF assimilation process because of undersampling.



The application of nonlinear local Lyapunov vectors to the Zebiak—Cane model and their performance...

To overcome this problem, a 5% variance inflation factor is
applied to X; in this ZC model. Moreover, the localization
technique is applied to the matrix P; to prevent spurious
correlations at large distances. This is realized by the fifth-
order function of Gaspari and Cohn (1999) with the dis-
tance of zero correlation equal to four grid lengths (almost
1000 km). The assimilation cycles are repeated for 1 month
in each case to generate the analysis states. The mean ¥, of
the analysis ensemble x,; (i=1, 2..., N) is regarded as the
initial state when performing the prediction.
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