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Summary and Keywords

This article retrospects the studies of the predictability of E1 Nifo-Southern Oscillation
(ENSO) events within the framework of error growth dynamics and reviews the results of
previous studies. It mainly covers (a) the advances in methods for studying ENSO
predictability, especially those of optimal methods associated with initial errors and
model errors; and (b) the applications of these optimal methods in the studies of “spring
predictability barrier” (SPB), optimal precursors for ENSO events (or the source of ENSO
predictability) and target observations for ENSO predictions. In this context, some of
major frontiers and challenges remaining in ENSO predictability are addressed.

Keywords: El Nino, predictability, initial errors, model errors, nonlinearity, optimal perturbations

Introduction

The El Nino-Southern Oscillation (ENSO) is characterized by the interannual variability in
sea surface temperatures (SSTs) in the tropical Pacific (Kao & Yu, 2009; Philander, 1983;
Ropelewski & Halpert, 1987; Wang & Picaut, 2004; Weng, Ashok, Behera, Rao, & Yamagata,
2007). Although the ENSO phenomenon originates and develops in the tropical Pacific, it
has global climatic, ecological, economic, and social impacts through oceanic and
atmospheric teleconnections (Alexander et al., 2002; Bjerknes, 1969; Cane, 1983; Ham, Sung,
An, Schubert, & Kug, 2014; Hoerling, Kumar, & Zhong, 1997; McPhaden, Zebiak, & Glantz,
2006; Rasmusson & Wallace, 1983; Trenberth et al., 1998). ENSO forecasts are therefore
important for reducing the resulting natural disasters and supplying valuable information
for agriculture, fisheries, forestry, and many other climate-sensitive human endeavors.

Significant progress has been made in ENSO theory and predictions over the years,
especially through the TOGA (Tropical Ocean Global Atmosphere) program (see the
review by Wang & Picaut, 2004). These endeavors have deepened the understanding of
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ENSO dynamics and improved the accuracy of ENSO predictions. The ENSO is skillfully
predictable with one- to two-year lead times in hindcast experiments (Chen, Cane,
Kaplan, Zebiak, & Huang, 2004; Fedorov & Philander, 2000; Kirtman & Schopf, 1998; Luo,
Masson, Behera, & Yamagata, 2008). However, there are still considerable uncertainties in
real-time ENSO predictions (Duan & Wei, 2012; Jin et al., 2008; Tang, Kleeman, & Moore,
2008), and the practical prediction skill is presently limited to six months (Kirtman et al.,
2002; Mu & Ren, 2017). Especially after the 1990s, a new type of El Nino event, often called
central Pacific-El Nifio (CP-El Nifio) events have occurred frequently and increased the
uncertainties of ENSO predictions. Hendon, Lim, Wang, Alves, and Hudson (2009) had
limited success in predicting the differences between the two El Nifio types using the
Australian Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia
(POAMA) coupled seasonal forecast model, and the effective prediction skill was achieved
only one month ahead. Even when an ensemble forecast technique was used to predict
the two types of El Nino events, useful prediction skill was only possible with a four-
month lead time (Jeong et al., 2012).

The so-called CP-El Nifio events have also been variously termed “dateline El

Nifio” (Larkin & Harrison, 2005), “El Nifio Modoki” (Ashok, Behera, Rao, Weng, &
Yamagata, 2007; Takahashi, Montecinos, Goubanova, & Dewitte, 2011), and “warm pool El
Nifio” (Kug, Jin, & An, 2009). The CP-El Nino events are different from traditional El Nifio
events—that is, eastern Pacific-El Nino (EP-El Nino) events (Rasmusson & Carpenter,
1982). The former type has warm SSTs concentrated in the central Pacific (Ashok et al.,
2007; Kao & Yu, 2009; Kug et al., 2009); whereas the latter has warm SSTs centered in the
eastern Pacific. Furthermore, the CP-El Nifo events significantly influence temperature
and precipitation over many parts of the globe but in a manner different from that of
traditional EP-El Nifio events (see, e.g., Weng et al., 2007). Although interest in the two
types of El Nifio events has recently increased, simulating and predicting the CP-El Nifio,
in contrast to the EP-El Nino, remains a challenge.

Predictability studies could provide useful information on reducing the prediction
uncertainties for the two types of ENSO events. The so-called predictability is a
fundamental issue in both atmospheric and oceanic research, as well as in numerical
weather and climate prediction. It indicates the extent to which even minor imperfections
in the knowledge of the current state or the representation of the system limit knowledge
of subsequent states (Kirtman et al., 2013). Studies of predictability have received
considerable attention in recent decades thanks to the pioneering work of the
atmospheric scientist Lorenz in the early 1960s (Lorenz, 19624, 1962B, 1963, 1965, 1969). One of
the great efforts is the exploration of the fundamental limits to predictability (Smith,
Ziehmann, & Fraedrich, 1999). The predictability of a system is strongly dependent on its
stability properties (Moore & Kleeman, 1996; Smith et al., 1999). If the system is particularly
unstable, any initial uncertainty that projects significantly onto one of these instabilities
will severely limit the skill of an initial-value forecast. Lorenz (1975) showed that the
extreme sensitivity of weather predictions to initial conditions means that detailed
forecasts are, in general, impossible beyond approximately two weeks. This kind of initial-
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value problem is referred to as the first kind of predictability problem (Lorenz, 1975). In
studies of the first kind of predictability problem, the models are usually assumed to be
perfect. The second kind of predictability problem aims to estimate how a given dynamic
system responds to a change in some prescribed parameter or external forcing (Lorenz,
1975). The response of the ENSO to stochastic forcing related to the Madden-Julian
Oscillation (M]JO), westerly burst events, and the like, or the response of an atmospheric
general circulation model (GCM) to a prescribed change in SSTs, are problems related to
the second kind of predictability (Moore & Kleeman, 1999; Torn, 2016; Zebiak, 1989).
Uncertainties in such predictions may arise from the accuracy in the prescribed change
itself, or from uncertainties in model formulation. In practice, many forecasts do not fall
exclusively into either of these two categories. Therefore, estimating prediction
uncertainties caused by initial errors or model errors, or both, are of central importance
in studies of predictability problems. Tennekes (1991) argued that no forecast was
complete without an estimate of the prediction error. This perspective can be traced back
to Thompson (1957). Since then, operational weather forecasting has progressed to the
point of explicitly attempting to quantify the evolution of the initial uncertainty during
each forecast (Palmer, Brankovi¢, Viterbo, & Miller, 1992; Toth & Kalnay, 1996), which,
furthermore, has been propagated through coupled model forecasts during recent
decades, even in climate decadal predictions (Ding, Keenlyside, Latif, Park, & Wahl, 2015;
Hawkins & Sutton, 2009; Wu & Zhou, 2012).

For the coupled ocean-atmosphere phenomenon represented by ENSO events, quite a few
studies have investigated their related predictability problems and have especially
explored them from the perspective of error growth dynamics with the purposes of
identifying the sources of prediction errors and exploring methods to reduce prediction
error. These two purposes are right the ones of “predictability studies” summarized by
Mu, Duan, and Chou (2004). Great achievements have been obtained and useful ideas have
been proposed for improving ENSO forecast skill.

Advances in Methods for Estimating ENSO
Predictability

Despite the consensus on the best approach for predicting large dynamical systems such
as the Earth’s atmosphere, optimal methods for quantifying the predictability remain the
subject of debate. One of the approaches based on optimal growth is the linear singular
vector (LSV) method, which was first introduced to meteorology by Lorenz (1965) and is
established on the basis that the evolution of initial perturbations can be described
approximately by the tangent linear model (TLM). However, due to its lack of nonlinearity,
the LSV method has difficulty describing the nonlinear optimal growth of the finite
amplitude of initial perturbations and then fails to reveal the initial errors that cause the
largest prediction errors in predictability studies of atmospheric and oceanic flows. For
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model errors, Kleeman and Moore (1997) developed an approach, called the (linear)
stochastic optimal approach, to study problems in ENSO predictability caused by model
errors. Barkmeijer, Iversen, and Palmer (2003), however, did not think that the stochastic
optimal approach was feasible in a realistic high-dimensional numerical model because of
the explicit matrix computation of the linear model propagator and its adjoint. To
compensate for this limitation, Barkmeijer et al. (2003) proposed an approach using
(linear) forcing singular vectors (FSVs), which are constant in time but represent the
tendency perturbations that lead to significant perturbation growth in a linearized model
during a given forecast period. The FSV method is derived using a linear approximation
to a nonlinear model (the linearized model), which raises concerns about the validity of
the linearized model and the effects of nonlinear physical processes and whether
limitations exist due to its linearization.

Optimal Initial Perturbation: From Linear Singular Vector to
Conditional Nonlinear Optimal Perturbation

An evolution equation for the state vector U can be written as follows, where U may
represent surface current, thermocline depth, and sea surface temperature, and so on.

L = FU, 1)

Ul,=Us (1)

inQ x[0, 7]
where U(x, t) = (U(x, ), Uyx, t), - - -, UJx, t)); Uy is the initial state; (x, ) € 2x[0, 7], in which Q is a
domain in R", x=(x;, x,, * * -, x,) and t is time; and 1< + is the final time of the evolution of

state variables. F is a nonlinear operator. Assuming that the Eq. (1) and the initial state
are known exactly, the future state can be determined by integrating Eq. (1).

Let M, be a propagator (i.e., numerical model) of the Eq. (1), which propagates the initial
value to the future time t. y, is an initial perturbation superposed on a basic state U(x, t),
which is a numerical solution to the nonlinear model and satisfies U(x, t)= M(U,) (U, is the
initial value of U(x, t)). Then

M[(U0+ uO) = U(X, t)+ U(X, t): (2)
so u(x, t) describes the evolution of the initial perturbation u,,.

Linear Singular Vector

The LSV is derived from a linearized model of the Eq. (1) and represents the fastest-
growing initial perturbation superimposed on the basic state U(x, t). Let L, be the linearized
counterpart of nonlinear propagator M,. The LSV is then obtained by solving

I Luy)]
ut) = max "S;(,’,) , (3)
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where u is the LSV and A is the linear singular value (i.e., the growth rate of the LSV). For
any constant ¢, the vector cuj is also an LSV. Furthermore, for different ¢, the LSVs cuj
correspond to the same linear singular value.

The LSV represents the fastest-growing initial perturbation in linearized models and
attempts to represent the initial error that has the largest effect on prediction
uncertainties. The LSV method has been widely used to address problems related to error
growth in the predictability of ENSO (Moore & Kleeman, 1996; Moore et al., 2006; Xue,
Cane, & Zebiak, 19974; also see the section “Conditional Nonlinear Optimal Perturbation”)
and other weather and climate events (Palmer, Buizza, Molteni, & Corti, 1994; Palmer &
Zanna, 2013; Tziperman & Ioannou, 2002; Yamaguchi, Iriguchi, & Nakazawa, & Wu, 2009;
Zanna, 2012). Especially, the LSVs have been adopted by the ECWMF (European Centre for
Medium-Range Weather Forecasts) to conduct the ensemble forecasts for weather and
have made great achievements (Palmer & Zanna, 2013).

Conditional Nonlinear Optimal Perturbation

To study the effect of nonlinearity on the fastest growing initial perturbation, Mu, Duan,
and Wang (2003) proposed a novel approach of the conditional nonlinear optimal
perturbation (CNOP). The CNOP describes the initial perturbation that has the largest
nonlinear evolution at prediction time. For a chosen norm | - I, an initial perturbation u
is termed the CNOP if and only if

Ji (u&s) = m’gj (“o), (4)

where

J(ug)= 1M(Uy+ug) - MU, (5)

luyl <6 1is the constraint condition of the initial perturbation amplitudes defined by the
chosen norm I - I, where the constraint condition is simply expressed as belonging to a
ball with the chosen norm. The norm | - I also measures the evolution of the
perturbations. Of course, one can also choose other metrics to evaluate the amplitudes of
initial perturbations and their growth, as appropriate for particular physical problems.
Mathematically, the CNOP is the global maximum of J(u,) over the ball lu,l <§. It is also
possible that there exist local maximum values of J(uy); in such cases, the corresponding
maximum is a local CNOP.

The CNOP is defined by directly using a nonlinear model and an extension of LSV in a
nonlinear field. When the bound of initial constraints is very small, the LSV can
approximate the CNOP; when the initial perturbations are large, the LSV’s approximation
to the CNOP does not hold (Duan, Mu, & Wang, 2004; Mu & Zhang, 2006). In this case, the
CNOP represents the perturbations that have the largest nonlinear evolution at
prediction time. The CNOP method is superior to the LSV method in identifying nonlinear
effects (Duan & Mu, 2009).
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Existing numerical models are unable to describe atmospheric and oceanic motions
exactly, and contain model errors. Uncertainties in model parameters represent an
important source of model errors (Lu & Hsieh 1998; Mu, Duan, & Wang, 2002). Mu, Duan,
Wang, and Zhang (2010) extended the CNOP approach just described to explore the
predictability limit related to the error modes of the model parameters and renewed the
CNOP, including not only the optimal initial perturbation but also the optimal model
parameter perturbation. If one writes the Eq. (1) as follows:

L +FU,P,1)=0
, (6)
UlFO =U,
where P= (p o Py pm) is the model parameter vector and other variables are as in Eq. (1).

Assuming perfect initial conditions and uncertainties in model parameter P, then the
corresponding Eq. (2) becomes

U(0) = M(PYU,), U+ uplt)= M(P+p)XUy), (7)
where uyt) describes the departure from the basic state U(t) caused by parametric error p.

Considering the existence of both an initial perturbation and parametric perturbation in
Eq. (2), it has

U(0)= M(P\Uy), U(0)+uy,{t)= M(P+ pYUs +uy), (8)
where u;(t) is the departure from the basic state U() caused by the combined mode of the
initial and model parameter perturbations.

The nonlinear optimization problem is defined as follows:

Ji(ups p))= LS COJ(uo, p) (9)

where

J(uy, p)= 1 M(P+pYUy+u) - M(PYU,)I,

where u, and p are perturbation vectors superimposed on the initial value U, of the basic
state U(t) and the parameter P, respectively, with u,€ C,, p € C, as the constraint conditions.
By solving Eq. (6), the optimal combined mode of the initial perturbation and parameter
perturbation (uys p,) for a given constraint that induces the largest departure from the
basic state U(t) at time t is obtained. Mu et al. (2010) still called this optimal combined mode
the CNOP, which has two special cases. The first is CNOP-I, denoted by u,s;, which is just
the previously mentioned CNOP that represents the initial perturbation with the largest
nonlinear evolution at the prediction time and is obtained by solving the following
optimization problem:

Tutos;) = max | M(PYU,+up) - M(PYU,)I. (10)

The second case is CNOP-P, denoted by P,y which describes the parameter perturbation

that results in the largest departure from a given reference state, and which can be
obtained by evaluating the following optimization problem:
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{p,,)= max| M+ pYU) - MPAU)I. (11)

Physically, the CNOP represents the optimal combined mode of the initial error and the
model parameter error. Moreover, the CNOP-I, in perfect model experiments, acts as the
optimal initial error, and the CNOP-P, in experiments with perfect initial conditions,
represents the optimal parameter error. In their respective scenarios, these cases cause
the largest prediction error.

Optimal Model Perturbation: From Linear Tendency Perturbation to
Nonlinear Tendency Perturbation

Studies of model errors are related to the second type of predictability problem (Lorenz,
1975). In the section “CONDITIONAL NONLINEAR OPTIMAL PERTURBATION,” we reviewed the CNOP-P
approach as it relates to model parametric error. However, there exist other sources of
model errors, such as uncertainties in external forcing, numerical schemes, model
formulation, and so on. Moreover, these kinds of model errors cannot be exactly
separated. Therefore, the CNOP-P approach cannot address all kinds of model errors, but
only model parametric errors.

Roads (1987) used tendency errors to approximate the combined effect of different kinds of
model uncertainties. Following this approach, a forecast model with initial errors and
tendency errors can be written as in Eq. (12).

oU+u)
5 =FU+u)+f(x, ),

12)
U+ "Lo = U,+up
Here, M{(f)is used to denote the propagator of Eq. (12), and Mf) with f =0is the same as M,

in Eq. (1). Then, we obtain

M{XUy+ug) = U(x, )+ qu(X: 0, (13)

where U(x, t)= M{0XU,) = M(Uy). Obviously, ug(x, t) = M{fXU,+up) - M(U,), which describes the
departure from the basic state U(x, t) (i.e., M(U,)) caused by the initial errors u, and
tendency errors f. In the scenario, which describes the first type of predictability problem
(Lorenz, 1975), the model is thought to be perfect. In this case, the tendency errors are
equal to zero (i.e., f=0), and the situation in which M(0)U,+u,) = U(x, t)+u(x, t) is considered.
Here, u(x, t) represents the evolution of initial errors u,. For the second type of
predictability problem, the initial fields are assumed to be perfect (i.e., the initial errors
u,=0), and MUy = Ulx, ) +uqx, t) is of interest. Then, u((x, t) describes the departure from the
basic state U(x, t) caused by the tendency errors f, which may describe a type of model
systematic error.

(Linear) Optimal Tendency Perturbation
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The perturbation evolution equation can be obtained by subtracting Eq. (1) from Eq. (12).
Omitting the nonlinear term, a linearized perturbation equation is obtained.

& =F(Uu+fx 0,
(14)
=t
=0
where u,, u, and U have the same meanings as in Eq. (12), and F(U) is the Jacobian of the
nonlinear operator Fin Eq. (12) with respect to the basic state U(x, t). With the tendency
perturbation f(x, t), a maximization problem is defined as follows.

Ifl
where L(f) is the propagator of Eq. (14) and is equivalent to the linear counterpart of the

m:m?XW, (15)

nonlinear propagator M(f) of Eq. (12). Then the FSV f'(x) proposed by Barkmeijer et al.
(2003) can be obtained by solving the Eq. (15) when f(x, ) is constant in time. Meanwhile, if
f(x, t) represents time-dependent stochastic processes of Gaussian noise with zero mean
for all times and the variances of the variables of interest are cared, then one can obtain
the stochastic optimals f'(t) proposed by Kleeman and Moore (1997) by maximizing the
variance of I L(f)0)!I in Eq. (15). Stochastic optimals and FSVs induce significant
perturbation growth in linearized models in their respective scenarios.

Obviously, both the stochastic optimal and FSV methods are based on linearized models.
Furthermore, Barkmeijer et al. (2003) argued that the stochastic optimal approach was not
feasible in a realistic high-dimensional numerical model, whereas the FSV method can
avoid this limitation. In particular, Barkmeijer et al. (2003) reported that the FSV
represents the fastest-growing constant tendency error in predictability studies.
D’Andrea and Vautard (2000) studied similar structures as a way to reduce the systematic
error in a quasi-geostrophic model. Farrell and Ioannou (2005) further determined the
optimal set of the distributed deterministic and stochastic forcing in forecasting and
observation systems over a chosen time interval, also based on a linear system. Despite
this progress, the FSV method assumes a linear system and cannot describe the optimal
tendency error in nonlinear systems (Duan & Zhao, 2015; Duan & Zhou, 2013).

Nonlinear Forcing Singular Vector

To overcome the limitations of the FSV method, Duan and Zhou (2013) define a nonlinear
FSV (NFSV) to describe the optimal tendency errors in nonlinear systems. For a chosen
measurement, a tendency perturbation f; is defined as a NFSV if and only if

Ja(f5)=%|1§§1(f), (16)

where

JiH= 1MEXUp) - MOXUI . (17)
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Ifl,<¢, which is defined by the norm | - I, is the constraint condition of the tendency
perturbation f. The objective function J with the norm | - I, measures the magnitude of the
departure from the basic state M(0XU,) caused by the tendency perturbations. The norms
I-l,and I - I, represent different norms. In some situations, the norm | - I, can be the
same as | - I, depending on the physical problem being investigated.

The NFSV induces the largest perturbation growth at a given future time T and considers
the effect of nonlinearity. The NFSV can describe the optimal tendency error because of
its nonlinearity, but the FSV fails to do it.

The NFSVs are obtained by regarding the constant tendency perturbations as constant
tendency errors and evaluating the ones that cause progressively larger prediction errors
at prediction time, which may describe model systematic errors that have large effects on
prediction results. In this case, the patterns described by the NFSVs may allow to find the
regions in which the predictions are most sensitive to model systematic errors; therefore,
the corresponding physical processes should be better described by the models. In
numerical predictions, one can also determine an optimal external forcing to offset the
model uncertainties by assimilating observations in these sensitive regions. In addition, if
one takes the constant tendency perturbation as an external forcing with a particular
physical meaning, the NFSVs may describe the external forcings to which the weather
and climate are significantly sensitive. Furthermore, if the NFSVs are superimposed on
an external forcing with a particular physical meaning, they can be used to investigate
the effects of the external forcing uncertainties on the prediction results.

Mu et al. (2010) extended the CNOP approach to identify model parameter errors (CNOP-
P) that cause the largest prediction error. Actually, if the constant tendency perturbation
is expressed as external parameters that display a certain spatial structure, one can use
the CNOP-P technique to derive the NFSV. However, this does not mean that the NFSV
and CNOP-P are the same. Undoubtedly, there are overlaps between NFSV and CNOP-P,
but they are incompatible. Specifically, the NFSV is constant and may include time-
independent components of model errors. Therefore, the NFSV may include the effects of
the parametric errors that induce time-independent tendency errors, but fails to include
the effects of those that induce time-dependent tendency errors, such as parametric
errors that are dependent on state variables. Therefore, it is desirable that a time-
dependent NFSV approach should be developed, and it is expected to address the effects
of all kinds of model errors. Connected with the stochastic optimal approach, one should
explore the application of nonlinear stochastic optimal methods in nonlinear stochastic
dynamical systems.
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Figure 1. The SPB Phenomenon. An Nino-3.4 SST
anomaly correlation between model ensemble mean
predictions and NCEP observations up to a 24-month
lead for the period 1982-2004. These are derived
from the Scale Interaction Experiment Frontier
(SINTEX-F) coupled general circulation model (GCM)
and shown as a function of start month and lead time
(see Luo et al., 2005). The anomaly correlations
decrease quickly during spring. Adapted from Luo et
al. (2008).

ENSO Predictability Associated With Initial
Errors

As described in the “Introduction,” significant progress has been achieved in ENSO
theory and predictions, and numerous models have been developed to understand,
simulate, and predict ENSO events (Jin, 19974, 19978; Kleeman, Moore, & Smith, 1995;
McCreary & Anderson, 1991; Wang & Fang, 1996; Zebiak & Cane, 1987), including complex
coupled general-circulation models (CGCMs; Palmer et al., 2004; Saha et al., 2006).
However, considerable uncertainties still exist in realistic ENSO predictions (Jin et al.,
2008; Luo et al., 2008). Furthermore, these models reveal a consistent characteristic of
ENSO predictions: if forecasts are made before and through the spring and the beginning
of summer, the ENSO predictions tend to be much less successful. This low predictability
is the so-called spring predictability barrier (SPB) phenomenon (Figure 1) in ENSO
forecasts (Kirtman et al., 2002; Lau & Yang, 1996; McPhaden, 2003; Webster & Yang, 1992).
From the perspective of error growth, the SPB referred to here is the phenomenon that
ENSO forecasting has a large prediction error; in particular, prominent error growth
occurs during the spring when the prediction is made before the spring (see Figure 2;
Duan, Xue, & Mu, 2009; Yu, Duan, Xu, & Mu, 2009; Zhang, Duan, & Zhi, 2015). While
significant progress has been made in ENSO theories and predictions over the years,
especially through the TOGA (Tropical Ocean Global Atmosphere) program (see the
review by Wang & Picaut, 2004), considerable SPB phenomena still occur in realistic ENSO
predictions and severely reduce the ENSO forecast skill (Duan & Wei, 2012; Jin et al., 2008;
Luo et al., 2008; Qi, Duan, Zheng, & Tang, 2016; Zhang et al., 2015).
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Figure 2. The ensemble mean of the monthly growth
rates of prediction errors of the Nino-3.4 SST for El
Niflo events in one 20-year SST time series derived
from (a) the FGOLAS-g2 (Flexible Global Ocean-
Atmosphere-Land System model, Grid-point Version
2); (b) the BCC-CSM1.1 (Beijing Climate Center
Climate System Model); and (c) the NorESM1-M
(Norwegian Climate Center’s Earth System Model).
Here, the vertical axes denote the samples of initial
errors; the contour lines represent the monthly
growth rates of the increase (or decrease) of
prediction errors, where the positive (negative)
values indicate the growth (decrease) of the
prediction errors. The growth rate of prediction
errors in a given month was evaluated by subtracting
the prediction error in this month from that in the
last month. Adapted from Zhang et al. (2015).

The Spring Predictability Barrier for ENSO

The spring predictability barrier (SPB) is a well-known characteristic of ENSO forecasts.
The SPB exists not only in coupled models but also in some statistical models (Kirtman et
al., 2002). On occasion, the SPB is even stronger in statistical models than in GCMs (van
Oldenborgh, Philip, & Collins, 2005). Although many studies have tried to determine the
causes of the SPB, agreement has yet to be reached. Some studies argue that the SPB is
an intrinsic characteristic of ENSO forecasting because the signal-to-noise ratio for SST
tends to be lowest in spring, and even additional observations cannot change the fact of
the low signal in spring (Samelson & Tziperman, 2001; Xue, Cane, Zebiak, & Blumenthal,
1994). Other studies describe ENSO as a self-sustaining oscillation, and the model-based
prediction of ENSO depends strongly on the initial conditions (Chen, Zebiak, Busalacchi,
& Cane, 1995, Chen, Cane, Kaplan, Zebiak, & Huang, 2004; Latif et al., 1998). According to
this viewpoint, the SPB arises from the growth of initial errors (Chen et al., 1995, 2004;
Duan et al., 2009; Duan & Wei, 2012; Duan & Hu, 2016; Fan, Allen, Anderson, & Balmaseda,
2000; Moore & Kleeman, 1996; Mu, Duan, & Wang, 2007a; Mu, Xu, & Duan, 20078; Tang,
Kleeman, Moore, Weaver, & Vialard, 2003; Xue et al., 19974, 19978; Yu et al., 2009; Yu, Mu, &
Duan, 2012).

Chen et al. (1995, 2004) proposed a new initialization procedure for El Nino forecasting by
considering the coupling between the ocean and the atmosphere during initialization, and
they greatly reduced the effect of the SPB on ENSO forecasting and improved the
forecast skill of ENSO in the Zebiak-Cane model (Zebiak & Cane, 1987). Webster and Yang
(1992) suggested that the annual cycle of the background state of the tropical Pacific,
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which determines the seasonally varying growth rate, plays an important role in creating
the SPB for ENSO (also see Moore & Kleeman, 1996; Thompson & Battisti, 2001). Van
Oldenborgh, Burgers, Venzke, Eckert, and Giering (1999) demonstrated that both the
phase of the climatological basic state and that of El Nifo play important roles in
generating the SPB. From these studies, it is known that the SPB is related to three
factors: the climatological annual cycle, El Nifo itself, and the initial uncertainties. These
studies considered either the initial conditions or the El Nifio events themselves or the
climatological basic state and assume the other two factors remain unchanged. It is
conceivable that when the three factors vary freely, the interaction among these factors
may significantly influence the SPB. In fact, Mu et al. (2007a) adopted the theoretical
WF96 model (Wang & Fang, 1996) and demonstrated that the SPB of El Nino events is a
result of the combined effect of the above three factors, which then unifies the viewpoints
of the above studies.

Obviously, of the three factors that give rise to the SPB, the former two factors are
robustly in existence for ENSO events (Dommenget & Yu, 2016; Stein, Schneider,
Timmermann, & Jin, 2010), whereas the third factor is artificial and induced by the
limitations of observational instruments, inaccurate initialization of forecast models, and
the like. Therefore, even if the seasonality of the annual cycle determined by observation,
which is the origin of the seasonal dependence of error growth, is robust in forecast
models, particular initial error modes are necessary to cause the SPB. That is, there
exists the possibility that some types of initial errors may cause extreme uncertainties in
ENSO forecasting through the spring and exhibit a prominent season-dependent
evolution related to the SPB because of the seasonality of ocean-atmosphere coupling.
Other types of initial errors, however, tend not to yield seasonally dependent evolution of
error growth, even though the annual cycle is embedded in the forecast models (Duan et
al., 2009; Mu et al., 20078; Yu et al., 2009). Galanti et al. (2002) and Burgers, Jin, and van
Oldenborgh (2005) explored the linear growth of initial errors of ENSO forecasts caused by
linear coupled instabilities. In particular, Moore and Kleeman (1996) and Xue et al. (19974,
1997B), and others, used the LSV approach to identify initial errors that develop quickly
and cause a significant SPB for ENSO forecasts. Mu et al. (2003) applied the CNOP
approach to the theoretical WF96 model (Wang & Fang, 1996) and showed that
nonlinearity can amplify the linear error growth for El Nifio events and increase the effect
of SPB on the ENSO forecast, finally making the CNOP-type errors be the errors that
yield the most significant SPB for El Nifio events and, consequently, the largest prediction
error. On the other hand, when estimating the optimal growth of prediction errors, the
LSV approach tends to underestimate the SPB-induced prediction errors for the nonlinear
ENSO. And the CNOP-type errors, since they consider the effect of nonlinearity, are more
reasonable for estimating the SPB and related prediction errors, which shows that the
CNOP method is superior to the LSV method in describing the initial error that induces
the prominent SPB for El Nifio (Mu et al., 2007a). Subsequently, Mu et al. (20078) and Yu et
al. (2009) used the Zebiak-Cane model and revealed two types of CNOP-type initial error
structures that induce maximal prediction uncertainty and cause the most significant
SPB. They noted that CNOP-type initial errors possess a large-scale zonal dipolar pattern
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of the sea surface temperature anomaly (SSTA) component that is similar to that of the
LSV-type initial errors in Xue et al. (19974, 19978), but the former covers a broader region
than the latter, which leads to a significant difference in their resultant prediction errors
and consequently indicates the extreme sensitivity of the prediction results to initial
uncertainties. Furthermore, Yu, Mu, and Duan (2012) and Duan and Wei (2012) argued that
there exist CNOP-like initial errors in realistic ENSO predictions; particularly, they
correspond to larger prediction errors than other initial errors. Therefore, it is reasonable
that if one filters the CNOP-like errors in realistic predictions, the SPB may be greatly
reduced and the ENSO forecast could be substantially improved.

The studies mentioned in the three preceding paragraphs paid attention to “traditional”
EP-El Nifio events. Recently, Tian and Duan (2016) adopted a corrected Zebiak-Cane model
and showed that the CNOP-type initial errors for CP-El Nifio events can also be classified
into two types. One type is similar to the EP-El Nifio events as shown in Yu et al. (2009),
while the second is very different from the EP-El Nifno events in Yu et al. (2009) and are
associated with a pattern of SSTAs in the central-eastern equatorial Pacific, with a dipole
structure of negative anomalies in the east and positive anomalies in the west, and a
pattern of thermocline depth anomalies with a slight deepening along the equator. The
first type of error leads to a significant SPB for the CP-El Nifio, and the second type of
error fails to cause an SPB. For EP-type events, both types of CNOP errors, as shown in
Yu et al. (2009), cause a significant SPB for tropical SSTA; for CP-type events, only one of
the CNOP-type errors induces a significant SPB (Tian & Duan, 2016). This comparison
between EP- and CP-El Nifo events may show that the EP-El Nino predictions may be
much more likely to encounter an SPB than are the CP-El Nifo predictions. Hendon et al.
(2009) also indicated that the predictive skill of the NINO4 index shows much less of an
SPB, indicating reduced occurrence of the SPB for CP-El Nino events. From the
correlations between the predicted SST and the observed ones obtained by Luo et al.
(2008), the NINO4 index can also be seen to have a higher prediction skill than the NINO3
index, indicating that the CP-El Nifio may be much predictable than the EP-El Nifio
events. Luo et al. (2008) used the SINTEX-F model (Luo et al., 2003; Luo, Masson, Roeckner,
Madec, & Yamagata, 2005), which is one of the best models that describe ENSO and have
greatly reduced model error. The experiments conducted by Tian and Duan (2016) are
based on perfect model predictability experiments. Therefore, we deduce that CP-El Nifio
is much more predictable than EP-El Nino, if the effect of model errors can be neglected.

Despite the prevalence of studies that have examined the SPB and the many useful
results that have been obtained, quite a few questions are still unresolved. In the studies
reviewed here thus far, more attention was paid to the tropical Pacific Ocean and initial
oceanic conditions received more attention. Given this feature of previous studies, how do
the uncertainties occurring in other ocean basins influence ENSO predictions? And what
is the role of atmospheric initial conditions and external forcings (such as MJO and WWB)
in ENSO predictions? Is oceanic initialization or atmospheric initialization more
important in ENSO predictions? What is the role of the coupled initialization in reducing
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the effects of the SPB? Finally, the most pressing question is: can the SPB be eliminated?
All these questions should be urgently addressed, particularly by studies combining
theoretical analysis and realistic predictions.

The studies mentioned here on ENSO predictability were based on the assumption that
ENSO is a chaotic oscillator. Another hypothesis is that ENSO is a damped, noise-driven
oscillator. Recent results on the stability of ENSO also showed evidence favoring the
damped, driven oscillator hypothesis (Kim & Jin, 2011; Libbecke & McPhaden, 2014).
Thompson and Battisti (2001) found that the SPB for ENSO also existed in a linear,
damped, noise-driven model of intermediate complexity. Furthermore, Levine and
Mcphaden (2015) demonstrated that this SPB, like that in the chaotic system, is excited by
the annual cycle of the background state of the tropical Pacific (Stein et al., 2010; Stein,
Timmermann, Schneider, Jin, & Stuecker, 2014). In the damped system, initial errors are
not relevant, and the SPB occurs because of the robust seasonality of the climatological
annual cycle. Furthermore, because of the effects of stochastic noise, ENSO must be
made up of unpredictable components. In that case, how far ahead can we predict ENSO?
The answer may be dependent on the dynamical regimes to which ENSO belongs.
Therefore, one should clarify ENSO’s regime when addressing the predictability limit for
ENSO.

Optimal Precursory Disturbance for ENSO Events

As reviewed in the section “The Spring Predictability Barrier for ENSO,” the SPB for
ENSO is largely related to initial errors. This indicates that if the forecast systems can
exactly capture the initial signal of ENSO, it may have much smaller initial errors and
then be favorable for the reduction of the effect of SPB and accurate predictions for
ENSO. As such, ones should make it clear which features the initial anomaly signals that
evolve into ENSO events most probably. Actually, this question is related to the
identification of the source of the predictability for ENSO events. Quite a few scientists
adopted optimally growing initial perturbations (or fastest growing initial perturbations)
of numerical models to search for the optimal precursor for ENSO events, in attempt to
finding the source of ENSO predictability. For example, Xue et al. (1994) realized that the
eigenmodes of the linearized version for a numerical model could not be the fastest-
growing initial perturbation in non-self-adjoint system and computed the LSVs, finally
finding that the fastest growing singular vector evolved into an ENSO event. Palmer et al.
(1994) also presented the fastest-growing singular vector that evolves into a structure
resembling ENSO with fast growth rate during April. Moore and Kleeman (1996) further
investigated nonlinear evolution of singular vectors by use of the intermediate coupled
model of Kleeman (1993) and demonstrated that their singular vectors have the potential
to develop into ENSO events; furthermore, their singular vectors have structures similar
to those described by Xue et al. (1994) and Palmer et al. (1994) and are of the SSTA
component with negative anomalies in tropical western Pacific and positive anomalies in
tropical eastern Pacific. Thompson (1998) also used LSV to study the characteristic
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precursor to an ENSO warm event and found similar SSTA patterns for the precursors
that lead to ENSO events. Obviously, these studies attempted to use the LSV to identify
the optimal precursors for ENSO—that is, the initial anomaly that evolves most probably
into an ENSO event. However, the LSVs, by definition, are derived from linearized version
of a numerical model. Thus it remains questionable as to whether the LSV can be
regarded as the optimal precursors when nonlinearity appears in the ENSO mode. Duan
et al. (2004) used a theoretical WF96 model (Wang & Fang, 1996) and demonstrated that the
CNOPs (local CNOPs) of annual cycle are quite different from the LSVs in phase space for
the long lead times and large amplitude of perturbations; furthermore, their nonlinear
and linear evolutions also remained significant differences. Physically, the CNOPs (local
CNOPs) of annual cycle were shown to have a robust pattern with negative (positive)
Nifio-3 SST and positive (negative) thermocline depth anomalies qualitatively; and these
patterns evolve into much stronger El Nifio (La Nifa) event than the LSV-patterns. Duan
et al. (2004) therefore regarded these patterns as the optimal precursors of El Nifo (La
Nifia), which are further confirmed by using the NCEP reanalysis data. These optimal
precursors of ENSO revealed the observational fact that the thermocline depth
displacement takes a phase 3-month lead to SST variation and provided a negative
feedback that turns the coupled system from one state to another state. It is obvious that
they depict a source of predictability for ENSO—that is, the leading positive (negative)
thermocline depth anomalies for El Nino (La Nifia). That is to say, if one observes these
anomalies in advance, it can be forecasted that an El Nino (La Nina) could occur. If one
mirrors the LSV-related precursory disturbance for ENSO shown in previous studies, such
as Xue et al. (1994), Palmer et al. (1994) and Moore and Kleeman (1996), to the WF96 model
variables and compares them with the CNOP-related precursors, it can be found that the
latter presents much earlier signal for ENSO events than the former and favors for the
predictions for ENSO events with much longer lead time. Despite the CNOP precursors
were resulted from the conceptual WF96 model, they were also confirmed by the results
derived by the complex Community Earth System Model (CESM) of the National Center
for Atmospheric Research (NCAR; see Duan & Hu, 2016). That is, Duan and Hu (2016)
further emphasized the precursory role of the subsurface layer temperature in ENSO
onset. Especially, they argued that before the onset of El Nifo, the initial positive ocean
temperature anomaly first arose in the subsurface layer of warm pool about one year in
advance (also see the data analysis results in Li & Mu, 2002).

These studies mainly focused on the tropical Pacific signal of ENSO onset and did not
care about those from other ocean basins. In fact, some studies used numerical
simulations approach and showed that the ENSO is often influenced by the SST
anomalies in the Indian Ocean (Behera & Yamagata, 2003; Luo et al., 2010; Saji & Yamagata,
2003). This indicates that the onset of the ENSO occurring in the tropical Pacific is
influenced by not only the initial signals in the tropical Pacific Ocean but also those in the
tropical Indian Ocean. Actually, it has been suggested that ENSO predictions generated
by either statistical or dynamical model can be improved if the Indian Ocean information
is included (Chen & Cane, 2008; Clarke & Van Gorder, 2003; Izumo et al., 2010; Luo et al.,
2010). For example, Izumo et al. (2010) improved the forecast skill of ENSO by adopting the
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corresponding boreal autumn Indian Dipole Mode Index (DMI) and tropical Pacific warm
water volume (WWV) as predictors when predicting the El Nifio peak during 1981-2009
with a lead time of 14 months. They also extended this conclusion to El Nifio forecasting
during 1872-2008 (Izumo et al., 2014), and revealed that the Indian DMI is much more
helpful in improving ENSO hindcast skills compared with the index of Indian Ocean
basin-wide mode, the Indian Monsoon, or the El Nino index itself. These results imply that
the predictability of ENSO events is partly from tropical Indian Ocean; furthermore, the
atmospheric bridge has been suggested to be a leading contributor to the influence of
Indian Ocean on ENSO predictability (Alexander et al., 2002; Annamalai, Liu, & Xie, 2005;
Kug & Kang, 2006). Of course, there also exist studies to indicate the role of North Pacific
Ocean variability in ENSO predictability sources. Especially, for the new type of CP-El
Nifio events, Kao and Yu (2009) and Yu and Kim (2011) showed that wind forcing from the
subtropical and extratropical atmosphere may play an important role in the occurrence of
CP-El Nino events and emphasized that the warming signal for some CP-El Nifio events is
first from North Pacific. Chen et al. (2015) demonstrated that the diversity of El Nino
events results from the random occurrence of westerly wind bursts (WWBs), which may
indicate that the source of EP- and CP-El Nifo predictability is from westerly wind burst
occurring in tropical western Pacific. In any case, the factors that these studies revealed
may be more or less related to ENSO predictability source and can act as predictors for
ENSO events. However, whether or not these predictors are optimal or most important
for ENSO onset forecasts? What is the role of the interactions among Pacific, Indian, even
Atlantic oceans’ variabilities in enhancing ENSO predictability? All these remain
unknown. To address these questions, optimal methods may be useful. However, it is
unclear how to use the optimal methods to identify the optimal predictors for ENSO
events and investigate the role of inter-basin coupling in ENSO predictability.

Estimating the Optimal Observing Location for Advancing the
Prediction Skill of ENSO Events

The studies discussed in the section associated with SPB for ENSO emphasize that initial
errors with particular spatial structures cause much larger prediction errors for ENSO
events. Thus, increasing the accuracy of the initial fields provides an effective way to
improve the skill of ENSO forecasts. Sufficient observations are required to properly
determine the initial fields for the prediction of the ENSO events. Since field observations
are costly and will never be dense enough to fully cover the vast space occupied by these
events, it is necessary to design an efficient and effective observation strategy, in which
one place a limited number of observation stations in specific locations and expects them
to have a considerable impact on forecast skills. The “target observation” or “adaptive
observation” strategy has been developed to serve this purpose since the 1990s. Its
general idea is as follows. To better predict an event at a future time t; (the verification
time) in a focused area (the verification area), particular areas (sensitive areas) are
identified at present time ty and additional observations are deployed in these areas at a
future time t( (the target time; tq < tp < t1), where the additional observations are
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expected to make large contributions to reducing prediction errors at the time t; in the
verification area (Snyder, 1996). These additional observations are then assimilated by a
data assimilation system to form a more reliable initial state, which is then supplied to the
model for a more accurate prediction. The target observation strategy has been widely
used to improve the forecast skill of weather events, and several field experiments have
been successfully implemented to collect target observation (Bergot, 1999; Bishop & Toth,
1999; Palmer, Gelaro, Barkmeijer, & Buizza, 1998; Wu, Chen, Lin, & Chou, 2007). The results
for ENSO reviewed in the last section show that ENSO forecasting is sensitive to initial
uncertainties, and initial errors with particular structures cause the largest prediction
errors for ENSO; furthermore; its main errors are concentrated in particular regions,
which indicates that the target observation strategy is also feasible for improving the
initial field accuracy for climate event predictions and may provide an effective way to
reduce the prediction uncertainties.

The key step in the target observation strategy is to determine the sensitive area for
targeting observation; that is, the optimal observing location. Recently, for ENSO events,
Yu et al. (2012) demonstrated that the location of CNOP-type initial errors made significant
contributions to the prediction uncertainty of EP-El Nifio events, and the initial SSTA
error arising from the eastern equatorial Pacific tends to grow more significantly than
those from other locations for EP-El Nifio events; when the initial errors in SSTA in the
eastern equatorial Pacific are eliminated, keeping those in other regions unchanged, the
prediction errors for EP-El Nino are substantially reduced. This indicates that, if
observations in the eastern equatorial Pacific and are increased and assimilated to
produce more reliable initial fields, ENSO forecast skill can be greatly improved.
Therefore, the eastern equatorial Pacific may represent one of the optimal observing
locations for ENSO predictions. In addition, Mu, Yu, Xu, and Gong (2014) emphasized the
similarities between the optimal precursors (OPR) and the optimally growing initial errors
(OGE) for EP-El Nino events, and noted that the eastern equatorial Pacific can be
determined as the optimal observing location for ENSO prediction. Target observations in
this area can not only contribute to reduce the effects of initial errors but can also be
helpful for identifying the precursor signals for ENSO events to improve ENSO forecast
skill.

Based on observation system simulation experiments (OSSEs), Morss and Battisti (20044,
2004B) suggested that, for ENSO forecasts longer than a few months, the most important
area for observations is the eastern equatorial Pacific, south of the equator; a region of
secondary importance is the western equatorial Pacific. These sensitive areas are
generally consistent with those determined by the CNOP method. Since the CNOP
method identifies the most sensitive perturbation, it may put more weight on the most
sensitive area for ENSO forecasting, that is, the eastern equatorial Pacific, rather than
other areas such as the western equatorial Pacific. More generally, one should further
investigate the local CNOPs (, the initial perturbations whose cost function reaches local
maximal values at prediction time; see Mu et al., 2003) to identify other sensitive areas for
ENSO forecasting. In any case, the sensitive areas identified by Morss and Battisti (20044,
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2004B) serve as verification for the CNOP-estimated sensitivity. By using the sequential
importance sampling assimilation method, Kramer and Dijkstra (2013) also showed that
the optimal observation locations for SSTs are located in the eastern tropical Pacific for
minimizing the uncertainty in the NINO3 index, again agreeing with the CNOP results.

All these above studies attempt to identify the optimal locations in which additional
observations should be a priority for advancing beyond the SPB and improving El Nifio
forecast skill. These results focused on the SST component of the initial errors to
determine the sensitive area for target observation, and did not consider sufficiently the
role of subsurface temperatures in producing the SPB. Recently, Duan and Hu (2016)
adopted the concept underlying the CNOP method and studied the target observation for
EP-El Nino events by emphasizing the role of oceanic subsurface observations in ENSO
predictability using the Community Earth System Model (CESM). They demonstrated that
the prediction errors for Nifio-3 SSTA are mainly due to the contributions from initial sea
surface temperature errors in the regions with large errors in the upper layers of the
eastern tropical Pacific and/or in the lower layers of the western tropical Pacific; these
regions may represent optimal observational locations for ENSO predictions. Compared
with the optimal observational locations determined by the Zebiak-Cane model, the
CESM-based study further revealed that subsurface layers of the western tropical Pacific
are also particularly important observing locations for EP-El Nifio predictions. Hu and
Duan (2016) further obtained the OPRs for EP-El Nino and La Nina and showed the
similarity between OPRs and the OGEs as identified in the Zebiak-Cane model by Mu et
al. (2014). However, comparing the OPRs identified in the two models with each other, the
OPRs in the CESM model, due to the influence of the subsurface layer, present a much
earlier signal for the occurrence of El Nifio and La Nifia. Therefore, the OPRs obtained
from the CESM model precede those of the Zebiak-Cane model. In addition, the resultant
target observations in the sensitive areas identified using the OPRs and OGEs of the
CESM model could be helpful for improving the skill of ENSO forecasts with much longer
lead times.

For the CP-El Nino events, few studies have examined the predictability of CP-El Nifio
events, since most climate models only produce EP-El Nifio events and fail to produce CP-
El Nino events. In an exploratory study, Tian and Duan (2016), as mentioned in section 3.1,
used a corrected Zebiak-Cane model to study the predictability of CP-El Nifio events. In
particular, they identified the CNOP-type initial errors that cause the most significant SPB
and then the largest prediction errors and determined the optimal observing locations for
advancing beyond the SPB for ENSO. Comparing the results for CP-El Nifio events with
those for EP-El Nifio events shown in Yu et al. (2012), it is found that, for either CP- or EP-
El Nifio, the CNOP-type initial errors that cause a prominent SPB are concentrated in the
eastern tropical Pacific. This may indicate that the prediction uncertainties of both types
of El Nifno events are most sensitive to the initial errors in the same region. The region
may represent a common optimal observing location for the target observation of the two
types of El Nino events. The common optimal observing location for the two types of El
Nifio events forecasting indicates that, when the errors at the optimal observing location
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are prioritized to be reduced or even eliminated, not only will the prediction errors be
reduced substantially, but also models could succeed in predicting the true spatial
structure of the two types of El Nifio events.

Kramer and Dijkstra (2013) argued that the optimal observation locations for SST are
located in the central Pacific for minimizing the uncertainty in the NINO4 index, which
may indicate that the optimal observing location for CP-El Nifio forecasting is located in
the central Pacific. This seems not to be consistent with that determined by Tian and
Duan (2016). Kramer and Dijkstra (2013) adopted the sequential importance sampling (SIS)
method to assimilate the observations for decreasing the spread of ensemble members
and used the predictive power index to measure the gain in skill from the pdf produced
by the analysis, finally determining the optimal observing locations for ENSO forecasting.
Obviously, in the study by Kramer and Dijkstra (2013), the skill of the optimal observations
in improving ENSO forecast level is determined by the decrease in the spread among
ensemble forecast members, while in Tian and Duan (2016), the skill is measured by
reducing prediction errors for ENSO, which corresponds to the difference between
forecast results and observations. In an ensemble forecast, an effective ensemble forecast
system means that the ratio between the spread and the prediction errors should be
approximately equal to 1 (Brankovi¢, Palmer, Molteni, Tibaldi, & Cubasch, 1990;
Buckingham, Marchok, Ginis, Bothstein, & Rowe, 2010; Eckel & Mass, 2005), which, on the
other hand, implies that the possibility exists that the sensitivities measured by the
spread and the prediction error are different. This may explain why the optimal observing
locations for CP-El Nifo events obtained by Tian and Duan (2016) and Kramer and Dijkstra
(2013) are different. However, prediction errors measure the distances between
predictions and observations and are quite reasonably used to evaluate the sensitivity of
the optimal observation method in terms of its ability to improve ENSO forecast skill.
Consequently, the optimal observing location for CP-El Nifio obtained in Tian and Duan
(2016) is much more transparent.

It is also recognized that the optimal observing locations associated with the two types of
El Nino obtained here are derived from perfect model predictability experiments and
should be further examined in realistic ENSO predictions. In particular, the optimal
observing location for CP-El Nifio should be further explored by models possessing the
ability to reproduce CP-El Nino events. Considering that the onset and evolution of the
EP- and CP-El Nino may possess different dynamical and physical mechanisms, the
commonality of the optimal observing location associated with the two types of El Nino
events remains questionable. Of course, the possibility exists that the two types of El
Nifio events possess common optimal observing location but different secondarily
important observing locations. In any case, the locations for targeting observations
associated with the two types of El Nifio events should be further explored in depth. A
new observation plan named the TPOS (Tropical Pacific Observing System) 2020 has
been implemented, which emphasizes the importance of target observation for the two
types of El Nifo events and provides a good opportunity to study the predictability of the
two types of El Nifo events (Cravatte et al., 2016). In addition, one should not only
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identifies the optimal observing location in the ocean but also in the atmosphere for
ENSO forecasting; in particular, the role of coupled ocean-atmosphere processes in
determining the optimal observing locations for the two types of El Nifio should be
considered.

ENSO Predictability Associated With Model
Errors

Uncertainties in physical parameterizations are a source of model errors (Syu & Neelin,
2000). Zebiak and Cane (1987) and Liu (2002) considered each model parameter and took
different values of these parameters to investigate the effect of uncertainties in the
parameters on climate simulations and to explore the sensitivity of the climate
simulations to the parameter perturbations. Kirtman (1997) found that the ratio of the
Rossby radii of deformation in the atmosphere and the ocean has a strong effect on the
meridional structure of oceanic Rossby waves, thereby influencing the period of ENSO.
MacMynowski and Tziperman (2008) also reported the sensitivity of ENSO’s period to
various parameters. The results of these studies indicate that parameter uncertainties
have an effect on long-term ENSO simulations. However, realistic ENSO predictions focus
on short-term climate predictions with lead times from one month to one year, although
several ENSO hindcast experiments have employed a lead time of 2 years (Chen et al.,
2004; Luo et al., 2008). Furthermore, the multiple parameters of the model may
simultaneously have uncertainties, and the method of varying the values of relevant
parameters cannot enumerate all combinations of relevant model parameters and explore
their effects on the uncertainty associated with ENSO predictability. Additionally, there
exist not only model parameter errors but also initial errors in realistic ENSO predictions.
To explore predictability in realistic situations, Mu et al. (2010) extended the CNOP
approach to include both optimal initial perturbations (CNOP-I) and optimal model
parameter perturbations (CNOP-P). This revised CNOP approach is a usable and effective
method to search for the optimal combined mode of initial perturbations and model
parameter perturbations, and can be used to explore the relative importance of initial
errors and parameter errors in yielding substantial prediction errors. Duan and Zhang
(2010) and Yu et al. (2012) used the revised CNOP approach and emphasized the important
role of initial errors in causing the SPB for EP-El Nifno events. In addition, Yu, Mu, and Yu
(2014) demonstrated that parameter errors led to neither a noticeable prediction error nor
a significant SPB, and had less influence on the prediction uncertainties associated with
EP-El Nino. From these studies, it is inferred that initial errors, rather than model
parameter errors, are more likely to cause a significant SPB for EP-El Nifo events, which
emphasizes the importance of data assimilation in El Nifio predictions and provides a
theoretical basis for ENSO target observations.
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Gebbie and Tziperman (2009) found that implementation of WWBs improves predictions of
the onset and development of the exceptionally large 1997 El Nifio event, suggesting the
potential for improving ENSO predictions during the SPB. In addition, Lopez and Kirtman
(2014) showed that including state-dependent WWBs in a fully coupled prediction model
significantly increased ENSO prediction skill. These two studies indicate that when the
model lacks the effect of WWBs and yields model errors, the ENSO forecast skill is also
significantly influenced. In particular, Yu, Weller, and Liu (2003) suggested that the
characteristics of WWBs depend on the large-scale SST field and are therefore not purely
stochastic, which implies that the model errors induced by the lack of WWBs may have a
certain structure and thus have a large effect on prediction errors for ENSO. It is clear
that, in realistic ENSO predictions, the prediction errors are generally caused by not only
initial errors but also model errors (Blanke, Neelin, & Gutzler, 1997; Fliigel & Chang, 199s;
Hao & Ghil, 1994; Latif et al., 1998; Liu, 2002; Williams, 2005; Wu, Anderson, & Davey, 1993; Yu
& Kim, 2010; Zavala-Garay, Moore, & Kleeman, 2004; Zhang, Zebiak, Kleeman, &
Keenlyside, 2003); furthermore, the model errors may exhibit patterns reflecting a
particular structure.

Kleeman and Moore (1997) explored the effects on ENSO predictability due to stochastic
atmospheric transients using the stochastic optimal approach. They showed that the
sensitivity of ENSO predictability to forcing is greatest during the northern spring season
and prior to warm events, and that a western Pacific dipole pattern in heat flux noise is
most efficient in forcing eastern Pacific SST variance; in particular, they demonstrated
that the noise projects predominantly onto the dominant stochastic optimal, and in
addition, approximately 95% of the error growth can be attributed to stochastic forcing
with a strong synoptic component. These results also indicate that model error having a
particular pattern would induce large prediction errors for ENSO, which supports the
viewpoint of Yu et al. (2003). Moore and Kleeman (1999) demonstrated that the stochastic
optimal noise forcing produces perturbations in the system that grow rapidly, and the
response of the system to the stochastic optimals is to induce perturbations that bear a
strong resemblance to the westerly and easterly wind bursts frequently observed in the
western tropical Pacific, which, in the model, acted as efficient precursors for ENSO
episodes. Moore et al. (2006) demonstrated that the optimal forcing patterns characterized
by stochastic optimal are remarkably similar to those described by the FSV method and
to the dominant singular vectors computed in a previous related study. Therefore, they
suggest that, irrespective of whether the forcing is in the form of an impulse, is time
invariant, or is stochastic in nature, the optimal excitation for the eigenmode that
describes ENSO in each model is the same. It may indicate that the optimal forcing
characterized by stochastic optimal is equivalent to that derived using the FSV method, at
least for ENSO.

Model errors are produced by not only uncertainties in model parameters, but also by
unrecognized physical processes and atmospheric noise, etc. Furthermore, the effects of
these kinds of model errors on ENSO predictability are mixed and cannot be exactly
separated. Therefore, one has to explore the combined effects of the different kinds of
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model errors to provide information useful for improving prediction skill. In fact, the FSV
method is often used to describe the optimal tendency error, which reflects combined
effect of kinds of model errors and causes the largest prediction error (Barkmeijer et al.,
2003). However, the FSV method is established on a linear dynamical system frame and
cannot fully consider effect of nonlinearity. Then Duan and Zhao (2015) used the NFSV
approach (the generalization of the FSV method) and studied the combined effect of
different kinds of model errors to identify the most disturbing tendency error of the
Zebiak-Cane model associated with El Nino predictions and presented the spatial
distribution of tendency error that contributes most to the prediction uncertainties of EP-
El Nino prediction. They found that the most disturbing tendency errors associated with
EP-El Nifo events often present a structure different from that described by the FSV
method and often concentrate the tendency errors with large values in a few areas, which
indicate that the model errors in these areas make much larger contributions to the
occurrence of prediction errors. Duan et al. (2014) superimposed an external forcing term
generated using an optimal forcing vector approach to the model tendency and corrected
the model simulation closest to the observational data, reproducing the observed ENSO
events. The results shown in Duan, Zhao, and Hu (2016) suggest that if one assimilates the
observational data to determine an external forcing term and make the model simulation
closest to the observational data in the area where the model tendency errors
concentrate beforehand, the corrected model may generate much more skillful forecasts
for ENSO than do it in other regions. In particular, what is more interesting is that the
most disturbing tendency error associated with EP-El Nifio predictions shows
considerable similarities with the CNOP-type initial errors in Yu et al. (2012; Figure 3).
Regarding the regions provided by the CNOP sensitivity as optimal observing locations
for EP-El Nifo events, the similarities between the CNOP-type initial errors and the
NFSV-type tendency errors may show that the ENSO prediction errors are most sensitive
to not only the initial errors in the sensitive area but also the model errors in this area.
Therefore, we infer that increasing the density of observations collected in this sensitive
area will help us to not only decrease the initial uncertainties to improve ENSO forecast
skill, but also understand the dynamical mechanism of El Nifio events and then improve
models.

CWOP
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Figure 3. The SSTA component of CNOP-type initial For CP-El Nifo events,
error (Yu et al., 2012) and NFSV-type tendency error most models fail to
obtained by the Zebiak-Cane model (Duan & Zhao, . .
2015). Regions A and B represent the sensitive areas simulate CP-El Nifio
for targeting SST observations associated with ENSO events, which may cause

predictions. few studies to explore

their predictability from an
error growth viewpoint. In particular, the authors are unaware of any paper that explores
the effects of model error on the predictability of CP-El Nifio events from an error growth
viewpoint. Therefore, there exist many unresolved questions regarding the predictability
of CP-El Nino events. For example, what is the tendency error (in the scenario of chaotic
ENSO) or the stochastic forcing (in the scenario of damped and noise-driven ENSO) that
has the largest effect on prediction uncertainties for CP-El Nino events? What is the
relationship between the optimal initial error and tendency error or stochastic optimal
forcing? And what useful information on increasing forecast skill can be provided by the
optimal tendency error or stochastic optimal for CP-El Nino events? Finally, for EP- and
CP-El Nifio events, which physical process is responsible for the most disturbing tendency
error or stochastic forcing? Can one obtain insight into the climatological conditions for
the two types of El Nifo events, especially CP-El Nino events? In any case, it is expected
that future ENSO studies will lead to improved skill in predicting which types of El Nifio
events will occur.

Summary and Discussion

In examining traditional optimization methods (such as the LSV, stochastic optimal, and
FSV methods) for exploring the predictability of ENSO events with reference to initial
errors and model errors predictability, it becomes clear that the traditional methods are
often based on linearized dynamical systems and present linear approximations to
nonlinear ones; therefore, they do not enable us to fully consider the effects of nonlinear
physical processes on predictability. Reviewing the results obtained using traditional
methods demonstrates the usefulness of newly developed nonlinear techniques,
especially the CNOP and NFSV methods, in characterizing the predictability of ENSO
events with reference to initial errors and model errors. For the ENSO predictability
caused by initial errors, the “spring predictability barrier” (SPB) for ENSO, based on
several studies, is shown to result from the combined effects of the climatological annual
cycle, the ENSO events themselves, and the initial error structures. In particular, there is
an emphasis on the role of particular initial error patterns in causing a significant SPB.
CNOP-type initial errors, compared with other types of initial errors, such as linear
singular vector (LSV)-type initial errors, cause much more significant SPB for ENSO
events and present more sensitivity to ENSO predictions. This also sheds light on the fact
that the CNOP is superior to the LSV in demonstrating the SPB, especially the effect of
nonlinearity on SPB for ENSO. Then, based on a review of studies of target observations
for ENSO forecasting, it seems that the CNOP approach is superior to the LSV approach
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in identifying the optimal observing locations associated with target observations;
however, the results from the CNOP and OSSE methods are generally similar, giving
credibility to the sensitive areas identified. Furthermore, it is possible that the diversity of
ENSO does not influence the optimal observing locations. From the results mentioned
here, it could be concluded that the CP-El Nifio events, in situations in which model error
effects can be neglected, may be more predictable than EP-El Nifio events because of the
SPBs’ much weaker sensitivities to initial uncertainties. Together with the optimal
observing locations for the two types of El Nifio events identified here, this result can
then provide guidance for ongoing and planned observation networks, including
TPOS-2020.

For the effects on ENSO predictability associated with model errors, different studies
have shown that model errors with a particular structure have a significant effect on
prediction uncertainties for ENSO; furthermore, these studies show that the optimal
tendency errors or optimal forcing noise present a structure similar to that of the optimal
initial error, which may indicate that the prediction errors for ENSO are most sensitive to
not only the initial error with a particular structure but also the model tendency error
having a similar structure. If using such optimal initial errors to determine the initial
sensitivity and the optimal observing locations for ENSO forecasting, the model errors
occurring in the optimal locations have the most significant effect on ENSO forecast
uncertainties. As such, one can use the additional observations in the optimal locations to
optimize not only the initial fields but also the model behavior.

In spite of the considerable progress that has been made, the results described here still
need much more work to validate their accuracy. In addition to these, other studies are
also required to further our understanding of the complexity of the ENSO events and
their predictability. Most of the presently obtained results on predictability limits may
only be applicable to the stationary EP-El Nifio events, and future works should make
further contributions to account for the uncertainties of ENSO forecast caused by the CP-
El Nifio events, as well as by global warming and its recent hiatus. On February 6-8,
2013, a workshop on ENSO diversity was held by CLIVAR in Boulder, Colorado, and a
report was published (U.S. CLIVAR Project Office, 2013). This report noted the outstanding
issues and research priorities. One of the major issues is the diversity of ENSO and the
related predictability limit.

In addition, the results presented here are mainly derived from data confined to the
tropical Pacific. However, quite a few studies indicated that various regions outside the
tropical Pacific regions, such as the North Pacific (Kim, Yu, Kumar, & Wang, 2012; Yu &
Kim, 2011), South Pacific (Zhang, Clement, & Di Nezio, 2014), Indian (Yuan, Zhou, & Zhao,
2013; Zhou, Duan, Mu, & Feng, 2015) and Atlantic Oceans (Boschat, Terray, & Masson, 2013),
as well as local atmospheric noise (e.g., westerly wind bursts [WWBs]; Chen et al., 2015;
Fedorov, Hu, Lengaigne, & Guilyardi, 2015) can excite ENSO events of different types.
Therefore, the uncertainties existing in other ocean basins should also be investigated in
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terms of their effects on ENSO predictability. Meanwhile, uncertainties arising from the
atmosphere and the coupling between the ocean and the atmosphere are especially of
concern for ENSO predictability.

From the studies that have been reviewed here, it is known that the LSV, CNOP,
stochastic optimal, FSV, and NFSV approaches are, in the early 21st century, being used
to consider the uncertainties of either oceanic or atmospheric variables with common
timescales. As mentioned in the “inTrobucTiON,” ENSO arises from the coupling between
ocean and atmosphere. However, the related oceanic and atmospheric motions display
very different timescales; but they interact with each other and strongly influence
weather and climate, especially through ENSO. Consequently, these approaches have to
address the issues on the different scales that ocean and atmosphere present in
initialization. Similar issues also occur in variational data assimilation, but they present
challenges in exploring how to resolve it. In addition, these approaches, by definition,
have to depend on the models used. Especially for the parameter errors or tendency
errors, model dependence can be particularly severe. Despite some of the conclusions
reviewed here have shown to be robust in different models, there exist some results that
should be further examined in other models. It is expected that useful information for
improving ENSO forecast skill can be provided and applicable to most of the ENSO
forecast systems.

Studies of the predictability of ENSO are challenging. Studies of predictability of ENSO
are multidisciplinary in nature, requiring collaboration among different fields of science,
including meteorology, oceanography, mathematics, and physics. The work presented
here shows considerable promise, and there is every reason to believe that more exciting
progress is yet to come that will significantly improve the accuracy of ENSO forecasts
and thus disaster prevention, climate change mitigation, and sustainable socioeconomic
development (Mu, Duan, Chen, & Yu, 2015).
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