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ABSTRACT

This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the
Global/Regional Assimilation and Prediction System (GRAPES). In Part I, it is shown that the model error of GRAPES may
be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II.
Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and
bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component
has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60◦S
and 60◦N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from
tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of
the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are
made. The average forecasting capability using the rectified model is improved compared to simply improving the initial
conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC
track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the
forecasting capabilities of the corresponding rectified model will be improved.
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1. Introduction

Although the forecasting of tropical cyclone (TC) tracks
has been improved notably in recent decades, large track-
forecast errors still exist for some TCs. The improvement
of TC track forecasts is a longstanding concern. Currently,
as the theory of TC motion is mature and widely accepted
(Chan, 2010), error diagnosis has become an important way
to further improve TC track forecasts (Galarneau and Davis,
2013).
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Many studies have examined factors that may cause large
forecast errors in TC tracks. These studies have found that
TC track errors can arise from an erroneous forecast of the
environmental winds (Brennan and Majumdar, 2011), or of
storm structure or intensity (McTaggart-Cowan et al., 2006),
and these forecast errors can be traced back to errors in the
initial conditions of the model (Komaromi et al., 2011), or
bad representations in the model of the physical processes
known to contribute to TC motion (Kehoe et al., 2007). Carr
and Elsberry (2000a, b) also found that TC position errors in
the Navy Operational Global Atmospheric Prediction System
model and the Geophysical Fluid Dynamics Laboratory hur-
ricane model are commonly driven by errors in TC or mid-
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latitude cyclone size and separation distance. Galarneau and
Davis (2013) studied the TC position forecast errors that re-
sult from the definition of the steering flow. They suggested
that an optimal steering layer depth and an optimal TC re-
moval radius for each TC should be first found when using
the steering flow to forecast TC tracks.

The uncertainties associated with models are another
source of TC track forecast errors. For instance, it has been
shown that the physical parameterization schemes chosen in
a model’s configuration has a significant impact on its TC
forecasts (Miglietta et al., 2015). Among them, the cumu-
lus parameterization scheme has the greatest impact, while
the boundary layer schemes and land-surface models appear
to play only a marginal role. Kepert (2012) compared the
simulation results from several boundary layer parameteriza-
tion schemes with observations, and recommended the use
of the Louis boundary layer scheme and a higher-order clo-
sure scheme for TC simulation. Green and Zhang (2014) ex-
amined the sensitivity of TC simulations to parametric un-
certainties in air–sea fluxes by varying four key parameters,
and found that both the intensity and the structure of TCs
are highly dependent upon the two multiplicative parameters,
suggesting that these parameters could be estimated by as-
similating near-surface observations.

In an actual forecast, errors usually result from uncertain-
ties in the model and in the initial conditions. However, if
we can identify which type of uncertainty results in larger
forecast errors, we can focus on that, and a substantial im-
provement can then be expected.

In Part I, the ability of the Global/Regional Assimilation
and Prediction System (GRAPES) Global Forecast System
(GRAPES GFS) to forecast landfalling TCs is examined, re-
vealing that the model error associated with GRAPES GFS
(hereafter, GRAPES) forecasts may be the main cause of poor
forecasts of landfalling TCs. As a result, we further examine
the source of model errors in Part II.

There are several ways to explore model errors. A pop-
ular approach is to test the sensitivity of the forecasts to dif-
ferent physical parameterization schemes, as previously in-
troduced in the works of Miglietta et al. (2015) and Kepert
(2012). Another common method is to selectively perturb the
parameters in some of the schemes (Green and Zhang, 2014).
Recently, Sun and Mu (2017) proposed a method that can
find the largest impacts of the parameters based on the con-
ditional nonlinear optimal perturbation related to the parame-
ter (CNOP-P), and they found that the nonlinear interactions
among parameters play a key role in identifying the sensitive
parameters. As a result, the most important parameter is dif-
ferent from that obtained by examining the impacts of param-
eters separately. However, the calculation of CNOP-P is com-
putationally very expensive when applied to a complex model
with a large number of parameters. In addition to the physi-
cal parameterization schemes and the parameters, model er-
rors also derive from the discretization of the finite difference
scheme and the accuracy of the computer. The effects of these
model errors are mixed, making it difficult to distinguish the
role of each type of model error in yielding prediction uncer-

tainties. Duan and Zhou (2013) introduced a nonlinear forc-
ing singular vector (NFSV) approach to approximately de-
scribe the combined effect of different types of model errors.
An NFSV is the tendency error that generates the notable
prediction error within a nonlinear model during a predeter-
mined forecast period, and it can be roughly identified as re-
sponsible for processes that are omitted or mistreated by the
model system. Duan and Zhao (2015) and Duan et al. (2016)
used the NFSV approach to explore the role of model error in
causing the so-called “spring predictability barrier” related to
El Niño events. In this study, we adopt a similar approach to
investigate the combined effects of different types of model
errors, and then identify a simple and efficient way to reduce
the model errors.

The structure of Part II is as follows: Section 2 outlines
the method and experimental design. Section 3 presents the
features of model errors and confirms their impacts on the
forecasts using the results from hindcasting experiments. A
summary and discussion finalize the paper in section 4.

2. Methods

2.1. Error diagnosis
As mentioned in the introduction, we use tendency er-

rors to approximate the combined effect of different types of
model errors. In the following, we present how the model er-
rors are diagnosed in the form of tendency.

The evolution equations for the state vector UUU can be
written as

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂UUU
∂t
= F(UUU(xxx, t))

UUU |t=0 = UUU0

(1)

where UUU0 is the initial state; (xxx, t) ∈ Ω × [0, τ], in which
Ω is a domain in N-dimensional real space RN and xxx =
(x1, x2, · · · xN); t is time; and τ < +∞ is the final time of evo-
lution of the state variables. F is a nonlinear operator. The
future state can be determined by integrating Eq. (1) if the
dynamic system equation, Eq. (1), and the initial state are
known exactly. The solution to Eq. (1) for the state vector UUU
at time t is given by

UUU(xxx, t) = Mt(UUU0) (2)

where Mt propagates the initial value to the prediction time t.
Errors relating to both the initial conditions and the model

itself exist in a realistic forecast system. To evaluate the im-
pacts of initial condition errors on the forecasts, a common
approach is to superimpose an initial perturbation on the ini-
tial conditions of the numerical model. Meanwhile, to in-
vestigate the effect of model errors on the prediction results,
it has been suggested to superimpose a tendency perturba-
tion on the right-hand side of the evolution equation, Eq. (1)
(Roads, 1987; Moore and Kleeman, 1999; Barkmeijer et al.,
2003; Duan and Zhou, 2013).

A forecast model that describes both initial perturbations
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and tendency perturbations can be written as
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂(UUU +uuu)
∂t

= F(UUU +uuu)+ fff (xxx, t)

UUU +uuu|t=0 = UUU0+uuu0

, (3)

where uuu is the perturbed state vector, and uuu0 is a vector of
initial perturbations. fff is the tendency perturbation. If Mtf is
the propagator of Eq. (3), then we have

UUU(xxx, t)+uuuIf(xxx, t) = Mtf(UUU0+uuu0) (4)

where uuuIf (xxx, t) is the departure from the state UUU(xxx, t) caused
by both the initial perturbations uuu0 and the tendency perturba-
tion fff . From Eq. (2) and Eq. (4), we get uuuIf(xxx, t) = Mtf (UUU0 +

uuu0)−Mt(UUU0). If we set fff = 0 (the tendency perturbations
are equal to zero), Eq. (4) changes to UUU(xxx, t) + uuuI(xxx, t) =
Mt(UUU0 + uuu0), where uuuI(xxx, t) represents the evolution of ini-
tial errors uuu0, and the above problem is referred to as the first
type of predictability problem (Mu et al., 2003). For the sec-
ond type of predictability problem, the initial fields are as-
sumed to be perfect (i.e., uuu0 = 0), meaning Eq. (4) changes to
UUU(xxx, t)+ uuuf(xxx, t) = MMMtf(UUU0), where uuuf(xxx, t) describes the de-
parture from the state UUU(xxx, t) caused by the tendency errors
fff , which may describe a type of model systematic error.

Here, we consider the second type of predictability
problem—that is, the initial condition errors are set to zero
(uuu0 = 0). Subsequently, the discrete form of Eq. (1) can be
written as

UUU(xxx,1)−UUU(xxx,0)
Δt

= F(UUU(xxx,0))

UUU(xxx,2)−UUU(xxx,1)
Δt

= F(UUU(xxx,1))

UUU(xxx,3)−UUU(xxx,2)
Δt

= F(UUU(xxx,2))

· · ·
UUU(xxx, t)−UUU(xxx, t−1)

Δt
= F(UUU(xxx, t−1))

. (5)

Considering the model errors but ignoring the initial con-
dition errors, the discrete form of Eq. (3) can be presented
as

UUUf(xxx,1)−UUUf(xxx,0)
Δt

= F(UUU(xxx,0))+ fff (xxx,0)

UUUf(xxx,2)−UUUf(xxx,1)
Δt

= F(UUU(xxx,1))+ fff (xxx,1)

UUUf(xxx,3)−UUUf(xxx,2)
Δt

= F(UUU(xxx,2))+ fff (xxx,2)

· · ·
UUUf(xxx, t)−UUUf(xxx, t−1)

Δt
= F(UUU(xxx, t−1))+ fff (xxx, t−1)

, (6)

where UUUf indicates the state vectors in the imperfect model.
Summing Eqs. (5) and (6), we respectively obtain

UUU(xxx, t)−UUU(xxx,0)
Δt

=F(UUU(xxx,0))+F(UUU(xxx,1))+· · ·+F(UUU(xxx, t−1))
(7)

and

UUUf (xxx, t)−UUUf(xxx,0)
Δt

= F(UUU(xxx,0))+F(UUU(xxx,1))+ · · ·+
F(UUU(xxx, t−1))+ fff (xxx,0)+ fff (xxx,1)+ · · ·+
fff (xxx, t−1) . (8)

Subtracting Eq. (7) from Eq. (8), we obtain

UUUf(xxx, t)−UUUf(xxx,0)
Δt

− UUU(xxx, t)−UUU(xxx,0)
Δt

= f (xxx,0)+ f (xxx,1)+ · · ·+ f (xxx, t−1) . (9)

Equation (9) can be generalized to

UUUf(xxx, t)−UUUf(xxx, t−n)
Δt

− UUU(xxx, t)−UUU(xxx, t−n)
Δt

= fff (xxx, t−n)+ fff (xxx, t−n+1)+ · · ·+ fff (xxx, t−1) (0 < n � t) ,
(10)

where n is the real number that satisfies 0 < n � t. Note that
when n = t, Eq. (10) is equal to Eq. (9). When n = 1,

UUUf(xxx, t)−UUUf(xxx, t−1)
Δt

− UUU(xxx, t)−UUU(xxx, t−1)
Δt

= fff (xxx, t−1) .
(11)

According to Eq. (11), if an accurate forecast or a high-
resolution observation UUU(xxx, t) is known, we can derive the
systematic model errors at each time step t. If the output of
the forecast is not known at each time step, e.g., outputs at
every 180 steps, according to Eq. (10) we can obtain the cu-
mulative effect of model errors every 180 steps. By defining
EEE(xxx, t−n) as the cumulative model error every n steps, there is
EEE(xxx, t−n) = fff (xxx, t−n)+ fff (xxx, t−n+1)+ · · ·+ fff (xxx, t−1). Then,
Eq. (10) can be written as

UUUf (xxx, t)−UUUf(xxx, t−n)
Δt

− UUU(xxx, t)−UUU(xxx, t−n)
Δt

= EEE(xxx, t−n) .
(12)

Also of note is that the initial conditions of the per-
fect model [Eq. (1)] and the initial conditions of the imper-
fect model [Eq. (3)] are assumed to be the same. That is,
UUUf(xxx,0) = UUU(xxx,0). Accordingly, Eq. (9) can be written as

UUUf(xxx, t)−UUU(xxx, t)
Δt

= fff (xxx,0)+ fff (xxx,1)+ · · ·+ fff (xxx, t−1) . (13)

Equation (13) indicates that the differences between the
state vector at time t obtained from the imperfect model and
the state vector at time t obtained from the perfect model re-
flect the cumulative effects of model errors from the initial
time to time t.

2.2. Experimental design
In this study, the GRAPES model is used to forecast 16

TCs that occurred in 2008 and 2009 in the West Pacific. In
Part I (Zhou et al., 2016), it is found that the forecasts of
these landfalling TCs are poor, and the model error may be
the main cause. This indicates that the GRAPES model may
have defects. In Part II, we consider GRAPES as an imperfect
model, and its forecasts are described as the state vector UUUf .
In Part I, it is demonstrated that the forecasts of the ECMWF
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model are generally good. Thus, in this study, we take the
ECMWF model as the perfect model, and the initial condi-
tions of the ECMWF model are assumed to have no errors.
We mark the forecasts of the ECMWF model with the state
vector UUU. According to Eq. (11), by comparing UUUf and UUU
at each time step, we can obtain the systematic model error
[ fff (xxx, t−1)] of GRAPES at each time step.

The following describes the design of the GRAPES
model and introduces the dataset that supplies the forecasts of
the ECMWF model. The horizontal resolution of GRAPES is
1◦ × 1◦, and there are 36 levels in the vertical direction. The
physical parameterizations of GRAPES include the WSM6
scheme for microphysics (Hong and Lim, 2006), the RRTMG
(Iacono et al., 2008) scheme for longwave and shortwave ra-
diation, the COLM (Dai et al., 2003) scheme for the land
surface processes, the MRF (Hong and Pan, 1996) scheme
for the planetary boundary layer, and the simple Arakawa–
Schubert (Han and Pan, 2011) scheme for the cumulus cloud.
The default initial conditions of GRAPES are supplied by
the National Centers for Environment Predictions (NCEP)
FNL (Final) Operational Global Analysis (1◦ × 1◦) interpo-
lated into the GRAPES model. However, in our experiment,
the default initial conditions are replaced with the initial con-
ditions of the ECMWF model. The ECMWF model’s fore-
casts of the TCs in 2008 and 2009, as well as the initial con-
ditions of the forecasts, can be downloaded from the Year of
Tropical Convection (YOTC) dataset (http://www.wmo.int/
pages/prog/arep/wwrp/new/yotc.html). Because GRAPES is
a global model, its resolution cannot be adjusted. Conse-
quently, we download the YOTC dataset with a horizontal
resolution of 1◦, equivalent to that of GRAPES. The output
of the forecasts of the ECMWF model is saved every three
hours. Therefore, we save the output of GRAPES every three
hours too. The time step of GRAPES is 600 seconds, mean-
ing the output of GRAPES is saved every 18 steps. Therefore,
we cannot calculate the model errors of GRAPES at each
time step using Eq. (11), but we can calculate the model er-
rors of GRAPES every 18 steps (every three hours) according
to Eq. (12). To summarize, what we obtain are the cumula-
tive model errors every 18 steps (every three hours). So, if t
indicates the integration time step, then n = 18 in Eq. (12); if
t indicates the integration time period, then n = 3 in Eq. (12).

In the following, the forecasts by GRAPES with ini-
tial conditions of the ECMWF model are denoted as
GRAPES EI, and the forecasts by ECMWF with the same
initial conditions are denoted as ECMWF EI. The track data
from the Chinese “Typhoon Online” website are considered
as the true (observed) values (www.typhoon.org.cn; Ying et
al., 2014).

3. Results

3.1. Brief review of the TCs
In this study, a total of 16 TCs that made landfall in 2008

and 2009 are considered (Table 1). In each case, forecasts are
obtained 72 h before making landfall. In Part I, it is shown

that, due to the marked improvement in position forecasting
capability when replacing the initial conditions of GRAPES
with those of the ECMWF model, 4 of the 16 cases are iden-
tifiable as TCs whose position forecast errors are attributable
to the initial condition errors; and due to the negligible or
complete absence of improvement in position forecasting ca-
pability when renewing the initial conditions of GRAPES,
12 TCs are identifiable as TCs whose position forecast errors
are attributable to the model errors. The improvement rates
(IM) are given in Table 1, and a threshold value of IM = 0.5
is used to differentiate between initial error cases and model
error cases. Thus, in this part, for convenience, we refer to
the first type of TCs as initial-error-determined TCs, and the
other type as model-error determined TCs. Next, we begin by
examining the model errors that exist in every TC; then, we
explore their common aspects, before finally rectifying the
model errors and demonstrating the improvements following
this revision.

3.2. Systematic errors in the model
From Table 1, four of the TCs (Goni, Mujigae, Fengshen,

Parma) show no improvement when replacing initial condi-
tions from the FNL analyses with ECMWF analyses; thus,
it is thought that the model errors are notable when forecast-
ing these four TCs. We therefore refer to these four TCs as
notable model-error-determined TCs, and the model errors
associated with them are diagnosed first.

Table 1. Summary of the TCs studied in this paper. The initial
time is the start of the 72-h forecast. The improvement rates (IM)
are calculated (only for the improved cases) using the equation
IM = [(EGRAPES FNL − EECMWF EI)− (EGRAPES EI − EECMWF EI)]/
[EGRAPES FNL − EECMWF EI], where E indicates the departure of
the forecast from the observations (the 72-h accumulated track er-
rors calculated every six hours) and the subscripts indicate the vari-
ous forecast errors. The forecasts by GRAPES with its default ini-
tial conditions is denoted as GRAPES FNL, while the forecasts by
GRAPES with initial conditions of the ECMWF model is denoted
as GRAPES EI, and the forecasts by ECMWF with the same initial
conditions is denoted as ECMWF EI.

Category Name Initial times IM value

Initial-error- Higos 1200 UTC 1 Oct 2008 0.55
determined Hagupit 1200 UTC 20 Sep 2008 0.51

Morakot 1200 UTC 4 Aug 2009 79.9
Ketsana 1200 UTC 25 Sep 2009 1.32

Model-error- Lupit 1200 UTC 21 Oct 2009 0.16
determined Kammuri 1200 UTC 4 Aug 2008 0.44

Nuri 1200 UTC 18 Aug 2008 0.08
Linfa 1200 UTC 18 Jun 2009 0.38
Nangka 1200 UTC 23 Jun 2009 0.43
Koppu 1200 UTC 12 Sep 2009 0.33
Soudelor 1200 UTC 10 Jul 2009 0.16
Molave 1200 UTC 16 Jul 2009 0.33
Fengshen 1200 UTC 21 Jun 2008 –
Mujigae 1200 UTC 9 Sep 2009 –
Goni 1200 UTC 1 Aug 2009 –
Parma 1200 UTC 30 Sep 2009 –
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Figure 1 shows the global distribution of the model errors
of geopotential height at 500 hPa at forecast times of 12 h to
45 h (with an interval of 3 h) diagnosed from the forecasts
of TC Fengshen. The model errors have north–south zonal
banded distributions. From 60◦S to 60◦N, the positive errors
and negative errors appear alternately from west to east. The
patterns at 12 h, 24 h, and 36 h are similar, as the positive
errors appear from about 30◦W to 60◦E, and from 150◦E to
120◦W. Meanwhile, the positive model errors at 15 h, 27 h,
and 39 h are located slightly west compared to those at 12
h, 24 h, and 36 h, respectively. At these times, the positive
errors are located at about 60◦W to 30◦E, and at 120◦E to
150◦W. The positive errors move further west at the forecast
times of 18 h, 30 h, and 42 h, and are located at about 60◦E to
150◦E and about 120◦W to 30◦W. The positive errors again
move westward at the forecast times of 21 h, 33 h, and 45 h,
meaning they are now located at 30◦E to 120◦E and 150◦W
to 60◦W. As time progresses to 48 h, the distributions of the
patterns are identical to those at 12 h. Indeed, the positive
errors located at about 150◦E to 120◦W at the forecast time
of 12 h catch up with those primarily located at about 30◦W
to 60◦E at the forecast time of 24 h, before then returning to
the previous position when the forecast time is 36 h. This cir-
cular pattern continues with a period of 24 h. Figure 2 shows
the distributions of the model errors of geopotential height at
500 hPa at forecast times from 12 h to 72 h with an interval of

12 h. The patterns are similar, meaning that every 12 h the
model errors present the same pattern. However, notably,
the model errors vary periodically with a periodicity of 24
h, which is a favorable regularity that it is easy for us to over-
come.

This periodic regularity of the model errors can be
diagnosed not only from these four notable model-error-
determined TCs, but also from all other model-error-
determined TCs (figures not shown). Even more encourag-
ing is that the model error patterns diagnosed from all cases
present high levels of similarity. For example, the positive er-
rors are all located at about 30◦W to 60◦E, and from 150◦E
to 120◦E, at the forecast time of 12 h (Fig. 3). Likewise, at
the forecast time of 15 h they are all located at about 60◦W
to 30◦E and at 120◦E to 150◦W (Fig. 4), and so on.

Clearly, this periodic distribution of the model errors is
case-independent, and thus inherent to the model. It is a real
model error that is easy to rectify due to its periodicity.

In addition, there are randomly exhibited model errors
in the wave-like flows at 60◦S in the Southern Hemisphere
(Figs. 1–4). Unlike the previously mentioned periodic errors,
these errors are on a small scale, propagate eastward with
wave-like flow, move much slower, and have a short dura-
tion (Figs. 1 and 2). They usually appear at the trough of
the basic flow, then move downstream and, after a period
of growth, decay gradually and die before reaching another

Fig. 1. Global distribution of geopotential height (contours; units: m; contour interval: 200 m) and the model errors of geopo-
tential height [shaded; units: m (3 h)−1] at 500 hPa, at forecast times of (a) 12 h to (l) 45 h (every 3 h per panel) for the Fengshen
case. The red line denotes the errors moving west.
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Fig. 2. As in Fig. 1 but at forecast times from (a) 12 h to (f) 72 h (every 12 h per panel) for the Fengshen case.

trough. Since these model errors are far away from the ty-
phoons and their durations are short, they may have only
a small impact on the typhoon forecasts. From another per-
spective, because these model errors present different distri-
butions from case to case (Fig. 3), they may not be intrinsic
model errors. Besides, their small-scale patterns and irregu-
lar distributions make them more like random errors, which
makes them hard to rectify.

The largest model errors for temperature and wind seem
to be concentrated from 30◦S to 60◦S (Figs. 5–7). Their be-
haviors are somewhat like those of geopotential height in this
area. That is, both are small-scale, propagate eastward with
the wave-like basic flow, move slowly, and have short dura-
tions. Similarly, these kinds of model errors present different
distributions from case to case (Fig. 7), meaning it is difficult
to extract the common characteristics to be rectified. We hy-
pothesize that because these model errors exist far from the
typhoons, and their durations are short, they may have only a
small impact on typhoon forecasts.

3.3. Possible source of the systematic model errors
According to the analysis in section 3.2, there are two no-

table phenomena of model error. One is the periodic model
error that exists in the forecasts of geopotential height, with
a period of 24 h. This model error exhibits a wave-like pat-
tern (wavenumber 2) around the globe and is mainly con-

centrated between 30◦S and 30◦N. This type of error can be
diagnosed from all TC forecasts, so it is deemed to be an in-
trinsic model error. The other type of error is the small-scaled
model error located from 30◦S to 60◦S that exists in the fore-
casts of all variables. However, because this kind of model
error presents different distributions from case to case, they
are more like random errors and hard to rectify. They are lo-
cated in the westerly jet over the Southern Hemisphere, and
possibly triggered by the departure of the wind simulations in
that region. It has been reported that the wind there is difficult
to simulate well (Swart and Fyfe, 2012). In this section, we
focus on the systematic errors of the first kind (namely, the
periodic model error), and discuss its possible source.

With regard to the source of periodic model errors, we
find that they present similar features to the atmospheric
semidiurnal (S2) tide. Atmospheric tide is the dynamical re-
sponse to periodic diabatic heating (Chapman and Lindzen,
1970), and the S2 tide is a predominant component of at-
mospheric tides that prevails in the tropics (Sakazaki and
Hamilton, 2017). The S2 tide can interact with the mean flow
through convective precipitation (Woolnough et al., 2004),
and thus influences the weather systems that occur in the
tropics. Hotta et al. (2013) pointed out that the tidal sig-
nals can effectively reflect signals from tropical diabatic heat-
ing, which is considered to be the most significant source
of model uncertainty, and thus the discrepancy in atmo-
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Fig. 3. Global distribution of geopotential height (contours; units: m; contour interval: 200 m) and the model errors of
geopotential height [shaded; units: m (3 h)−1] at 500 hPa, at the forecast time of 12 h for eight TC cases: (a) TC Lupit;
(b) TC Koppu; (c) TC Nangka; (d) TC Linfa; (e) TC Nuri; (f) TC Goni; (g) TC Mujigae; (h) TC Parma.

spheric tides between the model and observation might give
us some information about model errors. They conducted
an intercomparison of S2 tides in TIGGE (The International
Grand Global Ensemble) models, and found that not all mod-
els are successful in representing them. The S2 tides in the
ECMWF model are consistent with observations, while those
in the China Meteorological Administration’s global model
are much weaker than their counterparts in the ECMWF
model, and show a phase shift. Combined with our work, this
result suggests GRAPES is ineffective at representing the S2
tides. Since the S2 tides can reflect signals from tropical di-
abatic heating, this means that GRAPES does not perform
well in describing the tropical diabatic heating. Thus, the pa-
rameters or physical processes that are related to the tropical
diabatic heating deserve closer attention. Some studies have

also pointed out that the absorption of shortwave radiation by
ozone triggers the greatest meridionally symmetric mode for
the migrating S2 tide, and at low latitudes this forcing ex-
plains about 70% of the amplitude of S2 tides; whereas, the
absorption of longwave radiation by water vapor in the tro-
posphere explains 20% of amplitude, and the latent heating
associated with tropical convection explains about 10% (But-
ler and Small, 1963; Chapman and Lindzen, 1970). Lindzen
(1978) pointed out that, although the contribution from latent
heat is small, it significantly affects the phase. Sakazaki and
Hamilton (2017) used a comprehensive numerical model to
verify the theory of the importance of the latent heat on the
phase of S2 tides. From the above studies, it is speculated that
the parameters (or parameterization schemes) related to the
tropical diabatic heating including the shortwave absorption,
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Fig. 4. As in Fig. 3 but at the forecast time of 15 h for eight TC cases: (a) TC Lupit; (b) TC Koppu; (c)TC Nangka; (d)
TC Linfa; (e) TC Nuri; (f) TC Goni; (g) TC Mujigae; (h) TC Parma.

longwave absorption and latent heat in the GRAPES model
may have defects, which may be the source of the periodic
model errors presented above.

3.4. Adjustment of the forecasts by rectifying systematic
model errors

The results presented in section 3.3 suggest that revising
the parameters (or parameterization schemes) related to the
tropical diabatic heating could be one way to improve the
TC track forecasts produced by the GRAPES model. How-
ever, before this revision, a series of sensitivity experiments
regarding the parameters or parameterization schemes need
to be conducted, and this requires a lot of work. Instead, we
adopt a simpler and more efficient way to improve the TC
track forecasts. Since the periodic model error is obtained
in the form of tendency error, we can thus subtract it from
the model equations directly. Then, an improved model can

be obtained. In the following, we describe the detail of the
experiments and their corresponding results.

In Part I, it is shown that there are four TCs whose fore-
casts do not improve despite improvement in their initial con-
ditions. Therefore, the model errors in these four TCs are
notable. Accordingly, we first use the information on the
model errors diagnosed from these four TCs to rectify the
model. Since the periodic model errors have the same pe-
riod and similar patterns, we average them and use the av-
eraged model errors to rectify the model and then produce
forecasts. Specifically, the averaged model errors are taken
as the negative tendency perturbations in Eq. (3) or Eq. (6)
in discrete form in the forecasts of geopotential height. Since
the model errors are obtained every three hours, the negative
tendency perturbations are added every three hours too in the
model integration. All forecasts of the TC tracks are recalcu-
lated, and the new forecasts are named GRAPES FNL rec 4.



OCTOBER 2018 ZHOU ET AL. 1285

Fig. 5. Global distribution of the temperature component of model errors [shaded; units: K (3 h)−1] at 500 hPa, at forecast times
from (a) 12 h to (l) 45 h (every 3 h per panel) for the Fengshen case.

Fig. 6. Global distribution of the zonal wind component of model errors [shaded; units: m s−1 (3 h)−1] at 500 hPa, at forecast
times from (a) 12 h to (l) 45 h (every 3 h per panel) for the Fengshen case.
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Fig. 7. Global distribution of the temperature component of model errors [shaded; units: K (3 h)−1] at 500 hPa, at the
forecast time of 12 h for eight TC cases: (a) TC Lupit; (b) TC Koppu; (c) TC Nangka; (d) TC Linfa; (e) TC Nuri; (f)
TC Goni; (g) TC Mujigae; (h) TC Parma.

The results show that nine TCs are improved compared to
the original forecasts (using the original GRAPES model and
the FNL initial conditions—hereafter, GRAPES FNL), while
eight TCs are further improved compared to the forecasts that
use the ECMWF initial conditions and the original GRAPES
model (hereafter, GRAPES EI) (Fig. 8). If we only rectify the
model but do not improve the initial conditions, the forecasts
of the initial-determined TCs are not improved. However, the
four TCs whose information is used show larger improve-
ments than the others. The average forecast errors show that,
regardless of whether we improve the initial conditions or the
models, the largest benefits are obtained during the later fore-
cast periods (Fig. 9); and generally, reducing model errors
results in more benefits compared with reducing initial errors
(Fig. 9).

Because notable benefits are apparent when using the
model error information obtained from just four TCs, it

would be interesting to use information from additional TCs
to rectify the model. Therefore, we next use the model error
information diagnosed from 12 TCs that belong to the model-
error determined category of TCs. As before, we average
them, and use this information to rectify the model, before
producing a series of new forecasts called GRAPES FNL
rec 12. The results are highly encouraging. All the forecasts
of the model-error determined TCs are obviously improved
(Fig. 8), with 10 that are further improved compared to the
GRAPES EI forecasts and the other two having comparable
forecast capabilities with the GRAPES EI forecasts. How-
ever, the four initial-determined TCs remain unimproved,
which further confirms the importance of the initial condi-
tions for those four TCs. The average forecast errors of all
16 TCs are reduced notably during the later forecast time pe-
riods. The improvement in the forecasting capabilities ob-
tained from the reduction in model errors is nearly twice as
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Fig. 8. Accumulated track errors (units: km; accumulated every 6 h with a total time period
of 72 h) for each typhoon by the GRAPES model with its default initial conditions (GRAPES-
FNL) and with ECMWF initial conditions (GRAPES-EI), the revised GRAPES model with
its default initial conditions (GRAPES FNL rec 4, GRAPES FNL rec 12), and the revised
GRAPES model with ECMWF initial conditions (GRAPES EI rec 4, GRAPES EI rec 12).
The “rec 4” and “rec 12” parts of the names represent the model having been revised by sub-
tracting the averaged model errors diagnosed from 4 TCs and 12 TCs, respectively.

Fig. 9. As in Fig. 8 but for averaged forecast errors (units: km) of the 16 cases at 6-h intervals.

much as that obtained from the reduction in initial errors dur-
ing the later 36 h of the forecast period (Fig. 9). This result
indicates that if a model can be rectified based on a larger
quantity of information diagnosed from numerous cases, it is
possible to obtain a more reliable model that produces better
forecasts than before its adjustment.

Next, we further reduce the initial errors in the rectified
model. As shown in Part I, the initial conditions generated
from the ECMWF dataset (hereafter, EI) are generally better
than those generated from the FNL data set (hereafter, FNL).
So, here, we use EI to generate the initial conditions, and
then use the rectified model to produce new forecasts. We

refer to the rectified model obtained from adding the nega-
tive tendency perturbations deduced from four TCs as rec 4
model, while that deduced from 12 TCs is referred to as
rec 12 model. The new forecasts from the rec 4 model with
EI initial conditions are named GRAPES EI rec 4, while
the forecasts from the rec 12 model with EI initial condi-
tions are named GRAPES EI rec 12. We find that by us-
ing EI to generate the initial conditions, whether with the
rec 4 model or the rec 12 model, the forecasting capabilities
are further improved compared with GRAPES FNL rec 12
(Fig. 9). If we take the difference between GRAPES FNL
and GRAPES EI as the improvement in GRAPES EI, then
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the improvement of GRAPES FNL rec 4 is comparable to
that of GRAPES EI at the final time, while the improvements
in GRAPES FNL rec 12, GRAPES EI rec 4, and GRAPES
EI rec 12 are 1.5, 2.1, and 2.4 times the improvement in
GRAPES EI, respectively. It is clear that, among the six
groups, GRAPES EI rec 12 generally has the best forecast-
ing capability, as the forecast error is the smallest, followed
by GRAPES EI rec 4 and then GRAPES FNL rec 12. This
means that using more information to rectify the model, i.e.,
the model is better presented (with either ECMWF or FNL
initial conditions), is more beneficial. The rectified model
using the FNL initial conditions generally has slightly infe-
rior forecast capabilities compared to that using the EI initial
conditions.

Looking specifically at each individual case, for most
cases, GRAPES EI rec 12 has the best forecasting capabil-
ity (Fig. 8), and the rectified model with initial conditions
generated using EI has better forecasting capability than that
with initial conditions generated using FNL. This is consis-
tent with the averaged results shown in Fig. 9. Clearly, the
rectified model improves the forecast in most cases. How-
ever, for the four initial-determined cases, if we only rec-
tify the model (using either rec 4 or rec 12) and not the ini-
tial conditions, the forecasts are not improved and, in fact,
worsen. This further confirms that they belong to the cate-
gory of initial-determined TCs.

Finally, it is found that for the initial-determined TCs, the
model-error determined TCs, and the notable model-error de-
termined TCs, most TCs have a bias toward the right-hand
side of the observed track. This phenomenon has also been
reported by Yamaguchi et al. (2012), using a model devel-
oped by the Japan Meteorological Agency. We can see that
when reducing the initial errors or the model errors, the track
shifts to the left of the original forecast track but remains to
the right of the observed track (Fig. 10). This indicates that
there is another type of systematic error (yet to be identified)
that leads to this phenomenon of a right-sided bias.

4. Summary and discussion

Exploring the source of forecast errors is an important
way to improve forecasts. In this second part of a two-part
study, we focus on the source of the forecast errors that can
be attributed to the model errors. Similar to the NFSV, the
model error is taken as a type of forcing, which can be de-
duced by combining a good forecast with a well-developed
model and a bad forecast with the model to be evaluated.

It is found that the model errors of the geopotential height
component have a periodic structure, with a period of 24 h.
This wave-like and periodic-structured model error can be di-
agnosed from all TC forecasts. As it is located between 60◦S
and 60◦N, and globally from west to east with a wavenumber-
2 pattern, it may be an intrinsic model error and have a no-
table influence on TC track forecasts. The model errors of the
wind and temperature components turn out to be small-scale
and situated a long distance from the TCs. Additionally, their
durations are short. Since they are different from case to case,

Fig. 10. Tracks of (a) TC Hagupit, (b) TC Nuri (b), and
(c) TC Fengshen. The black line indicates the observational
track; the green line with a dot indicates the track fore-
casted by the GRAPES model with its default initial condi-
tions (GRAPES-FNL); the green line with a cross or a verti-
cal line indicates the track forecasted by the revised GRAPES
model with its default initial conditions (GRAPES FNL rec 4,
GRAPES FNL rec 12). The “rec 4” and “rec 12” parts of the
names represent the model having been revised by subtracting
the averaged model errors diagnosed from 4 TCs and 12 TCs,
respectively. The red lines are similar to the green lines but with
ECMWF initial conditions.
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they are more like random errors. Thus, taking everything
into account, they may have little influence on TCs.

The periodic model error presents similar features to the
atmospheric semidiurnal (S2) tide. Since the model errors
are obtained from the deduction of the difference between
the outputs of GRAPES and the ECMWF model, and the
ECMWF model can successfully represent S2 tides, we hy-
pothesize that GRAPES cannot represent the S2 tides well.
Since the S2 tides reflect signals from tropical diabatic heat-
ing including the absorption of shortwave radiation by ozone,
the absorption of longwave radiation by water vapor, and
the latent heating associated with tropical convection, it is
therefore speculated that the parameters or parameterization
schemes related to the tropical diabatic heating may have de-
fects, which result in the periodic model errors. However,
this requires further investigation.

The model is rectified according to the periodic model
errors. First, the model is rectified using only the model er-
ror information diagnosed from four TCs identified as no-
table model-error determined TCs, and the corresponding ex-
periment is referred to as GRAPES FNL rec 4. Next, the
model is rectified using the model error information diag-
nosed from 12 TCs identified as model-error determined TCs,
and this experiment is referred to as GRAPES FNL rec 12.
It is found that, for both experiments, the average forecast-
ing capability is improved. The GRAPES FNL rec 4 exper-
iments improve the forecasts of the four notable model-error
determined TCs considerably, but improve the forecasts of
the other TCs to a limited degree only. The GRAPES FNL
rec 12 experiment generally obtains better results, achieving
an improvement that is nearly 1.5 times greater than that from
simply improving the initial conditions. This indicates that
the more information used to rectify the model, the greater
the benefit. Furthermore, the initial conditions are also im-
proved in the rectified model, and this further reduces the
forecast errors. The rec 12 experiment with ECMWF initial
conditions (referred to as GRAPES EI rec 12) shows the best
forecasting capability, with an improvement that is nearly 2.5
times greater than that obtained by simply improving the ini-
tial conditions. The rec 4 experiment with ECMWF initial
conditions (referred to as GRAPES EI rec 4) is second best,
with an almost twofold improvement over simply improv-
ing the initial conditions. An analysis of each individual case
broadly confirms the averaged results.

Generally, by rectifying the periodic model errors of
geopotential height, the track forecasts of landfalling TCs can
be improved considerably, demonstrating the strong impact
of periodic model errors on landfalling TC track forecasts.
However, the improved tracks also remain biased to the right
of the track, indicating that another kind of systematic model
error, yet to be identified, may exist.

In this paper, model errors are diagnosed after the fore-
casts have been made, which of course seems unrealistic in
a practical sense. However, if we can identify a model error
that can be diagnosed from a specific kind of weather event,
it is speculated that this model error will affect the model’s
forecasts of the same type of weather in the future. Thus, if

we can rectify the model error, we should then be able to im-
prove the model’s forecasts of this type of weather. The model
tendency error represents the overall effect of each type of
model error. Rectifying the model using a negative tendency
is a simple and effective way to improve forecasts of the spe-
cific type of weather event; however, it may fail to improve
the forecasts of other types of weather. Therefore, identify-
ing the source of the model tendency error is also necessary.
This paper indicates that the parameters or parameterization
schemes related to tropical diabatic heating may be the source
of the periodic model tendency errors; however, to confirm
this suggestion, numerous sensitivity experiments by model
developers are required.

Finally, it is important to note that the resolution of the
model used in this study is only 1◦, which is too coarse to
discuss the behavior of TCs in depth. The forecasts of TC
tracks produced by the GRAPES model only have indicative
significance. High resolutions are necessary for a better repre-
sentation of TC movement. In the study, we propose a method
to identify the source of the forecast errors generated by the
GRAPES model, and TCs are used as cases to show the ap-
plication. With such a low resolution, the errors found are
synoptic to global in scale. The next step will be to analyze
the forecasts of TC tracks produced by other models with rel-
atively higher resolution.
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