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Abstract  The orthogonal conditional nonlinear optimal perturbations (CNOPs) method, orthogonal singular vectors (SVs)
method and CNOP+SVs method, which is similar to the orthogonal SVs method but replaces the leading SV (LSV) with the first
CNOP, are adopted in both the Lorenz-96 model and Pennsylvania State University/National Center for Atmospheric Research
(PSU/NCAR) Fifth-Generation Mesoscale Model (MMS5) for ensemble forecasts. Using the MMS, typhoon track ensemble
forecasting experiments are conducted for strong Typhoon Matsa in 2005. The results of the Lorenz-96 model show that the
CNOP+SVs method has a higher ensemble forecast skill than the orthogonal SVs method, but ensemble forecasts using the
orthogonal CNOPs method have the highest forecast skill. The results from the MMS5 show that orthogonal CNOPs have a wider
horizontal distribution and better describe the forecast uncertainties compared with SVs. When generating the ensemble mean
forecast, equally averaging the ensemble members in addition to the anomalously perturbed forecast members may contribute to
a higher forecast skill than equally averaging all of the ensemble members. Furthermore, for given initial perturbation ampli-
tudes, the CNOP+SVs method may not have an ensemble forecast skill greater than that of the orthogonal SVs method, but the
orthogonal CNOPs method is likely to have the highest forecast skill. Compared with SVs, orthogonal CNOPs fully consider the
influence of nonlinear physical processes on the forecast results; therefore, considering the influence of nonlinearity may be
important when generating fast-growing initial ensemble perturbations. All of the results show that the orthogonal CNOP method
may be a potential new approach for ensemble forecasting.
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Introduction distribution information of the atmospheric state. However,
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Due to the chaotic characteristics of the atmospheric system
and the existence of initial errors and model errors, a single
and deterministic forecast is simply an estimation of the
future atmospheric state and, thus, has uncertainties. To re-
duce forecast error, Epstein (1969) suggested the explicit
integration of the Liouville equations to obtain probability
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the degree of freedom for a numerical weather forecast
system reaches the order of millions, which indicates that the
integration of the Liouville equations is impractical due to
huge computational costs. Subsequently, Leith (1974) pro-
posed the Monte Carlo forecasting (MCF) approach, which
adds random perturbations to the initial analysis field to
generate a set of forecast members and estimate the prob-
ability density function (PDF) of the forecast state. This is
the basic idea behind ensemble forecasting. Epstein and
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Leith hypothesized that if a set of initial perturbations could
well describe the uncertainty of the initial condition, then the
forecasts obtained by integrating the perturbed initial con-
ditions could be used to estimate the uncertainty of the real
atmospheric state. Generally, the ensemble mean filters the
unpredictable components of different forecast members and
maintains the common predictable components of the fore-
cast members. Therefore, the ensemble mean could improve
a single and deterministic forecast (Leith, 1974; Leutbecher
and Palmer, 2008). Furthermore, ensemble forecasts could
provide probability information for events occurring com-
pared with the single and deterministic forecast and, thus,
could serve society more adequately.

In fact, there are several ensemble forecasting methods
used in operational forecasts. For example, the linear sin-
gular vectors (SVs) method (Lorenz, 1965; Molteni et al.,
1996; Mureau et al., 1993) has been successfully applied at
the European Centre for Medium Range Weather Forecasts
(ECMWF). However, SVs are a set of orthogonal initial
perturbations that have maximum linear growth rates in
different subspaces, and they do not consider the influence of
nonlinear physical processes on the forecast results. Gilmour
and Smith (1997) noted that the SVs method has linear
limitations in the generation of ensemble initial perturba-
tions. Anderson (1997) indicated that SVs are only sensitive
to the evolution of initial perturbations in the linear regime
and could not describe extreme perturbations. Barkmeijer et
al. (2001) noted that SVs with large and spurious perturba-
tion growth in the upper troposphere may arise when com-
puting tropical SVs. Li et al. (2005) showed that the Florida
State University Global Spectral Model (FSUGSM) appears
to have more leading SVs dominated by spurious modes than
the ECMWF model. Reynolds et al. (2009) found that the
linear calculations lead to SVs that have case-by-case
variability when reflecting actual nonlinear perturbation
growth. Hence, the SVs method has linear limitations in the
generation of initial perturbations for ensemble forecasts.

To consider the influence of nonlinearity, Mu et al. (2003)
proposed the conditional nonlinear optimal perturbation
(CNOP) approach. As a nonlinear extension of leading SV
(LSV), the CNOP is an initial perturbation that satisfies the
physical constraints and has the largest nonlinear evolution at
the time of the forecast (Duan et al., 2004; Mu and Zhang,
2006; Duan and Mu, 2009). Considering the linear limitation
of LSV, Mu and Jiang (2008) replaced the LSV with the
CNOP and maintained the other SVs (hereafter called the
CNOP+SVs method for simplicity) to conduct ensemble
forecasting experiments; this study achieved higher forecast
skill than those using the orthogonal SVs method. The results
showed that considering the influence of nonlinearity when
generating fast-growing initial perturbations is important.
However, this study simply replaced LSV with CNOP, and
other SVs still had linear limitations.
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To guarantee the diversity of the ensemble members and
fully consider the influence of nonlinear physical processes
on the forecast results, Duan and Huo (2016) proposed the
orthogonal CNOPs method and applied it to the Lorenz-96
model. The results showed that ensemble forecasts using the
orthogonal CNOPs method could contribute to higher fore-
cast skill compared with the orthogonal SVs method. How-
ever, Duan and Huo (2016) did not compare the ensemble
forecast skills of the orthogonal CNOPs method and CNOP
+SVs method. Since the CNOP+SVs method may also
contribute to higher ensemble forecast skill than the ortho-
gonal SVs method (Mu and Jiang, 2008; Jiang and Mu,
2009), does the orthogonal CNOPs method perform better
than the CNOP+SVs method? In addition, Duan and Huo
(2016) note that when the initial analysis errors grow rapidly,
the orthogonal CNOPs method may have a higher ensemble
forecast skill; they deduce that the orthogonal CNOPs
method may have a higher ensemble forecast skill for strong
weather and climate events. In fact, a typhoon is a strong
event that brings severe disastrous effects to the whole world
and leads to huge losses in national economy, lives and
property. Therefore, for strong typhoon events, do ensemble
forecasts using the orthogonal CNOPs method contribute to
higher ensemble forecast skill than those using the ortho-
gonal SVs method or CNOP+SVs method?

To answer these two questions, this paper first compares
the ensemble forecast skills of the orthogonal SVs method,
orthogonal CNOPs method and CNOP+SVs method with
that of the Lorenz-96 model (Lorenz, 1996). Then, to test the
effectiveness of the orthogonal CNOPs method for typhoon
ensemble forecasts, the Pennsylvania State University/Na-
tional Center for Atmospheric Research (PSU/NCAR) Fifth-
Generation Mesoscale Model (MMS5) (MMS; Dudhia, 1993)
is adopted in this paper.

2. Experimental strategy

2.1 Models and Typhoon Matsa

In this paper, we use the Lorenz-96 model to compare the
ensemble forecast skills of the orthogonal CNOPs method,
orthogonal SVs method and CNOP+SVs method. The Lor-
enz-96 model has been used to study various questions as-
sociated with predictability, especially in the field of
ensemble forecasting (Roulston and Smith, 2003; Descamps
and Talagrand, 2007; Revelli et al., 2010; Basnarkov and
Kocarev, 2012; Li et al., 2013; Feng et al., 2014; Ding et al.,
2017). The Lorenz-96 model is governed by the following
differential equation with cyclic boundary conditions:

dX;/dt = (X=X, )X~ X+ F, (1)

where j=1, ..., m, , m=40 represents the number of variables,
X; represents the variable being analyzed, and F=8 is the
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external forcing value. For details on the Lorenz-96 model,
please refer to Duan and Huo (2016).

To test the usefulness of the orthogonal CNOPs method in
typhoon ensemble forecasts, we adopt the MMS and its
corresponding tangent linear model and adjoint model (Zou
et al., 1997) to conduct the ensemble forecasting experi-
ments. The MMS5 is a mesoscale model developed by the
National Center for Atmospheric Research (NCAR) and
Pennsylvania State University (PSU). The MMS5 possesses
effective tangent-linear and adjoint models (Zou et al.,
1997), which makes the computation of SVs and CNOPs
possible. Furthermore, the MMS and its tangent-linear and
adjoint models have been widely adopted in studies on the
predictability of extreme weather events, such as typhoons
and heavy rain (Cheung, 2001; Hao et al., 2007; Wang and
Liang, 2007; Mu et al., 2009; Zhou and Mu, 2011; Qin et al.,
2013; Mu et al., 2014; Yu et al., 2017). Their results show
that the MM is an alternative platform for examining the
usefulness of new approaches. Therefore, it is suitable for us
to examine the usefulness of orthogonal CNOPs in yielding
initial perturbations for ensemble forecasts by using the
MMS5. In our numerical experiments, physical para-
meterizations include the Anthes-Kuo cumulus para-
meterization scheme, high-resolution PBL scheme, simple
cooling radiation scheme, and stable precipitation scheme.

In this study, the horizontal resolution of the model was
60 km, with a model domain of 51x61 grids (y-directionxx-
direction), and the vertical direction was evenly divided into
20 o levels. The initial and boundary conditions were sup-
plied by the FNL (Final) Operational Global Analysis (1°
x1°) from the National Centers for Environmental Prediction
(NCEP), which were interpolated onto the MMS5 grids. By
integrating the MMS5 with the initial and boundary condi-
tions, we obtained a control forecast. Historical tropical cy-
clone data (available online at http://tcdata.typhoon.org.cn/
en/zjljsjj_zlhg.html; Ying et al., 2014) supplied by the Tro-
pical Cyclone Data Center of the China Meteorological
Administration were used to evaluate the forecast results.

Here, we randomly chose STY Matsa in 2005 to study the
ensemble forecast skills of different methods. Matsa made
landfall in China and brought severe and disastrous effects to
China. For STY Matsa in 2005, the model domain center is
28°N, 122°E, and the 5-day forecast period is from 12:00 on
August 3, 2005, to 12:00 on August 8, 2005 (UTC), which
starts 2 days before the landing of Matsa in the Zhejiang
Province and contains the processes of landfall and propa-
gation during Matsa. It is noted that we randomly choose the
initial forecast time so that the whole forecast period covers
the processes before, during and after the tropical cyclone
made landfall in China. In addition, the domain is randomly
selected to encompass the tropical cyclone track during the
forecast period.

2.2 Initial perturbation schemes

For the Lorenz-96 model, based on Duan and Huo (2016),
we further replace the LSV with the first CNOP and maintain
the other SVs to obtain 15 initial perturbations. Then, these
15 initial perturbations are superimposed on and subtracted
from the initial analysis field to obtain 30 perturbed initial
conditions. Combined with the unperturbed initial analysis
field, there are 31 initial conditions. By integrating the
Lorenz-96 model with these 31 initial conditions, we can
obtain 31 ensemble members. Then, the ensemble forecast
skills of different methods are compared. For details on the
computation of orthogonal CNOPs and SVs, please refer to
Duan and Huo (2016).

To evaluate the ensemble forecast skills of the orthogonal
CNOPs method for typhoon forecasts, we adopt the ortho-
gonal CNOPs method, orthogonal SVs method, and CNOP
+SVs method to generate the ensemble members and com-
pare the ensemble forecast skills of these methods. Con-
sidering the limitations of the computational resources, we
adopt each of these methods to generate 5 initial perturba-
tions in this study, and then add them to or subtract them
from the initial analysis field to obtain 10 perturbed initial
fields. By integrating the initial analysis field, we can obtain
the control forecast. Integrating the 10 perturbed initial fields
gives us the other 10 ensemble members. Thus, we can ob-
tain 11 ensemble members in total for each method. The
initial perturbation scheme for each method is described as
follows.

The computation of orthogonal CNOPs is the same as that
in Duan and Huo (2016). It is noted that two norms are
related to compute orthogonal CNOPs. One norm is used to
measure the amplitude of the initial perturbations, and the
other norm is used to evaluate the amplitude of the nonlinear
evolution of initial perturbations. The fact that the dry total
energy norm accounts for wind, temperature and surface-
pressure disturbances makes it a suitable candidate for these
two norms. Several studies have pointed out that the most
appropriate initial time norm in an SVs-based ensemble
prediction system should be based on the inverse of the
analysis-error covariance matrix (Ehrendorfer and Tribbia,
1997; Palmer et al., 1998). However, the spectrum of
dominant SVs with respect to the dry total energy norm is
consistent with the spectrum of estimates for the analysis-
error variance (Palmer et al., 1998). Therefore, among the
simple norms, the total dry energy norm is a reasonable first-
order approximation of the analysis-error covariance metric
(Buizza et al., 1997), and the total dry energy SVs are
probably reasonable substitutes for the analysis-error cov-
ariance SVs (Molteni et al., 1996). As a result, the most
commonly used norm at both the initial and final times in the
ensemble prediction system is the dry total energy norm.
Specifically, the dry total energy norm has been widely
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adopted in studies on atmospheric predictability and targeted
observations using the CNOP and SV methods based on the
MMS5 and its tangent linear and adjoint models (Mu et al.,
2009; Zhou and Mu, 2011; Qin et al., 2013; Mu et al., 2014,
Yu et al., 2017). In this study, for all initial perturbation
methods, we perturbed the zonal wind, meridional wind,
temperature and surface pressure and used the dry total en-
ergy norm for each of these two norms. The main conclu-
sions of this paper are anticipated to be unchanged when the
norms are changed since the main differences between the
orthogonal CNOPs and SVs are thought to be caused by
nonlinear processes.

Specifically, the dry total energy norm is described as
follows:

6X]* = 6X'CoX
2
dodD, (2)

1 12 2 G _» P’
== +v + =T +
D ID.[O u +v T T +R,T, 7

s

T

where the perturbation 6X is composed of u’, v, T’ and P/,
which represent the perturbed zonal and meridional winds,
temperature, and surface pressure components, respectively;
C represents the operator corresponding to the norm; D re-
presents the horizontal domain of integration; ¢ represents
the vertical coordinate; ¢,=1005.71 J kg ' K" represents the
specific heat at a constant pressure; R,=287.04 T kg ' K ' is
the gas constant of dry air; and P,=1000 hPa, T,=270 K are
reference parameters. Specifically, the cost function to
compute orthogonal CNOPs has the following equation:

JOXG,) = s [M(Xy+0X ) =M (X[
XCZ[M(X0+5X0)_M(X0)]a 3)

{0, € R”

D) FEVENESE

Q= 1{0X,, € R"| 06X C0X,, <, )

0Xoy L Quk=1,..j-1}j>1,

where M is the propagator of the nonlinear model, R denotes
the set of real numbers, n is the dimension of the vector
space, 0X,C 06X, </ represents the constraint condition,
[>0 is a positive constant with a unit of J kgfl, and L re-
presents the orthogonality among different vectors. Here, the
initial perturbations focus on the whole model domain (i.e.,
the horizontal domain for the integration of D, corresponding
to C, represents the whole model domain, D;). However,
computational instability usually occurs while computing
orthogonal CNOPs when the horizontal domain of integra-
tion (D,) corresponding to C, represents the whole model
domain. Hence, we cut off three grids near the boundary of
the horizontal model domain to achieve a remaining simu-
lation model domain of size D,. Similar to Duan and Huo
(2016), we first compute the global CNOP (i.e., the first
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CNOP) and then compute the second CNOP in the initial
perturbation subspace orthogonal to the first CNOP. Second,
we compute the third CNOP in the initial perturbation sub-
space orthogonal to the first CNOP and the second CNOP.
By repeating this process, we can obtain the first 5 ortho-
gonal CNOPs.

It is noted that different methods are adopted in this study
under the same conditions. The phrase “under the same
condition” means that the perturbation variables, horizontal
model domain for the initial perturbations (i.e., D,), norm to
measure the perturbations, and optimization time (for the
orthogonal CNOPs and orthogonal SVs methods) are con-
sistent for different methods. This phrase is adopted here to
exclude interference due to the nonconformity of conditions,
which allows for the comparison of ensemble forecast skills
from different methods to be relatively fair. Next, the pro-
cesses of generating the initial perturbations for the ortho-
gonal SVs method and CNOP+SVs method are introduced
sequentially.

Based on the cost function for computing orthogonal
CNOPs, the cost function for computing SVs follows the eq.
3.

JOXg) = ax LL0Xd CILOX,]

X 0X,C 10X,

where L is the propagator of the linearized model,
0={oX,eRr"
condition of the initial perturbations. SVs cause the cost
function to obtain maxima for the initial perturbations in
orthogonal subspaces. According to eq. (5), we can compute
the first 5 orthogonal SVs. It is noted that the ensemble
forecast skills for different methods are compared under the
same conditions. Therefore, we scale the first 5 SVs so that
they have the same amplitude as that for the orthogonal
CNOPs. Then, the scaled SVs are used to generate the en-
semble members.

When ensemble forecasts are conducted with the CNOP
+SVs method, we replace the scaled LSV with the first
CNOP and maintain the other scaled SVs. Specifically, we
take the first CNOP and the remaining scaled SVs as the
initial perturbations, and then add them to and subtract them
from the initial analysis field to conduct the ensemble fore-
casting experiments.

, (%)

9X,C 10X, < ﬁ} represents the constraint

2.3 Evaluation

After obtaining 11 ensemble members, we evaluate the en-
semble forecast skills. Here, we mainly evaluate the en-
semble forecast skills of different methods by computing the
track forecast error of the ensemble mean. The tropical cy-
clone center is determined by the location of minimum sea-
level pressure. Assuming that F; represents the forecast track
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of the i-th ensemble member, and N represents the ensemble
size, then the ensemble mean track F is determined by the
following equation:

1 Y
F=+<)F. (6)
i=1

=

Here, the forecast error of the tropical cyclone center lo-
cation is determined by the great-circle distance between two
points on Earth. Assuming that F=(x, y,) represents the
forecast location, A=(x,, y,) represents the observation lo-

cation, x,and x, represent the longitudinal coordinates, and y,

and y, represent the latitudinal coordinates, then the forecast
error of a tropical cyclone center location is expressed as:

[F—A|=111.11 - cos '
X[sin(yo )sin(y,) + cos(y, )cos(y,)cos(x, *xf)].

Based on eq. (7), the forecast error of the ensemble mean

(7

track is expressed as e= [F — A|. To measure the forecast skill

of the ensemble mean, we define an improvement of the

ensemble mean to the control forecast as s:

_EE,
E

C

s x 100%, (8)

where E, represents the forecast error of the control forecast
and E, represents the forecast error of the ensemble mean.
The ensemble mean improves the control forecast when s>0.
Otherwise, the ensemble mean does not improve the control
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forecast and is actually worse than that of the control fore-
cast. The larger s is, the higher the forecast skill of the en-
semble mean.

3. Ensemble forecast results with the Lorenz-96
model

Based on Duan and Huo (2016), the ensemble forecast re-
sults with the Lorenz-96 model show that the orthogonal
CNOPs method has a higher forecast skill than the ortho-
gonal SVs method. However, Mu and Jiang (2008) show that
the CNOP+SVs method may also have a higher ensemble
forecast skill than the SVs method. Therefore, for ensemble
forecasts with the Lorenz-96 model, whether the CNOP
+SVs method behaves better than the orthogonal SVs
method is unknown. In addition, whether the orthogonal
CNOPs method has a higher ensemble forecast skill than the
CNOP+SVs method is also unknown. To solve these pro-
blems, we apply the CNOP+SVs method in the ensemble
forecasts with the Lorenz-96 model and compare the en-
semble forecast skills of the orthogonal CNOPs method,
orthogonal SVs method and CNOP+SVs method (Figure 1).
The results show that the CNOP+SVs method has a higher
forecast skill than the orthogonal SVs method, but the or-
thogonal CNOPs method has the best ensemble forecast

T=2 days

3 days 4 days 5 days

(b)

0.7
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0.68

0.66

0.11

0.1

BS (ev2)

0.09

0.86

0.84

0.82

ROCA (ev2)

0.8

0.78

S-1 -4 S-5 -8 S-9 -12 S-13 -16
Combinations of T and ¢

Ensemble forecast results for different methods with the Lorenz-96 model: the orthogonal CNOPs method (red lines), orthogonal SVs method

(green lines), and CNOP+SVs method (black lines). The dots denote the highest forecast skill for each method. The horizontal axis denotes different schemes
used to compute the initial perturbations, and the vertical axis denotes different evaluation scores. For details, please refer to Duan and Huo (2016).
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skill. This means that only replacing the LSV with the first
CNOP (but maintaining the other SVs) still has linear lim-
itations, and fully considering the influence of nonlinearity is
important when generating fast-growing initial perturbations
for ensemble forecasts.

4. Ensemble forecast results for STY Matsa in
2005

To test the effectiveness of the orthogonal CNOPs method in
this study, we study the typhoon track ensemble forecast
skills of the orthogonal CNOPs method for the case of STY
Matsa in 2005. Figure 2a gives the observed typhoon tracks
(red line) and the control forecast (black line). Figure 2b
gives the evolution of the track forecast error for the control
forecast compared with the observed track. The results show
that the forecast error of the control forecast increases
quickly, and the forecast error of the control forecast at a lead
time of 24 h is 113.4 km, which is reasonable (Chou et al.,
2011; Yu et al., 2012). This means that experiments with the
MMS are feasible.

Compared with the orthogonal SVs, orthogonal CNOPs
consider the influence of nonlinear physical processes on
forecast results. Hence, the spatial structures of orthogonal
SVs and orthogonal CNOPs should have large differences. In
Section 4.1, we compare the spatial structures of orthogonal
SVs and orthogonal CNOPs. Because the ensemble forecast
skills are closely related to the amplitude of the initial per-
turbations, we specifically analyze the influence of the am-
plitude of the initial perturbations on the ensemble forecast
skills of the orthogonal CNOPs method and discuss how to
generate an ensemble mean with a higher forecast skill in
Section 4.2. Finally, we compare the ensemble forecast skills
of the orthogonal CNOPs method, orthogonal SVs method
and CNOP+SVs method in Section 4.3.

40°N

36°N —

32°N

28°N

24°N —

20°N

16°N

106°E 114°E 122°E 130°E

138°E

Track forecast error (km)
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4.1 The spatial structures of orthogonal SVs and or-
thogonal CNOPs

Previous studies have shown that there is a great difference
between CNOP and LSV. According to the cost functions
used to compute orthogonal SVs and CNOPs, orthogonal
CNOPs and SVs may have large differences when non-
linearity is strong. Therefore, we set =0.3 to compute or-
thogonal CNOPs and SVs and compare their spatial
structures. The results are shown in Figure 3, which shows
that orthogonal CNOPs have a wider spatial distribution and
for each CNOP, there is a vortex center that is located near
the center of STY Matsa at the initial time (as shown in
Figure 2a). However, among the first 5 SVs, only SV 3 and
SV 4 present a vortex around the typhoon center. This in-
dicates that orthogonal CNOPs better describe the initial
uncertainty of typhoons and may have higher forecast skill.
Furthermore, the spatial structures of orthogonal SVs and
orthogonal CNOPs are largely different, which reflects the
large influence of nonlinear physical processes on forecast
results. In addition to the first CNOP and LSV, there are also
great differences between the other CNOPs and their corre-
sponding SVs. These differences sufficiently indicate that
considering the influence of nonlinearity when generating
fast-growing initial perturbations may be necessary.

4.2 TImpact of the amplitudes of initial perturbations on
ensemble forecast skills using the orthogonal CNOPs
method

In this section, we separately set £=0.3, p=0.3x4, and
£=0.3x9 to compute orthogonal CNOPs for the ensemble
forecasts. For simplicity, the ensemble mean for the ortho-
gonal CNOPs method is called the CNOPs-ensemble mean.
First, we define the ensemble mean as the equally weighted
mean by averaging over all ensemble members and compare

7001 1)
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5001
400+
300

200

1001

0 T T T T T T T T T
0 12 24 36 48 60 72 84 9 108 120

Lead time (h)

Figure 2 The control forecast results of STY Matsa in 2005. (a) The observed track (red line) and the control forecast track (black line); (b) the evolution of
the forecast error for the control forecast track relative to the observed track.
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Figure 3 The spatial structures of the temperature component (shaded) and wind component (vector) for the first 5 orthogonal CNOPs ((a)—(e)) and SVs

((D—()) at model level 6=0.975 for p=0.3.

the corresponding forecast skills for different amplitudes of
the initial perturbations. Figure 4a shows the control forecast
track, observed typhoon track and forecast tracks of the
equally weighted CNOPs-ensemble mean with different
amplitudes of S. The results show that the forecast track of
the CNOPs-ensemble mean is closer to the observed track as
p increases. The CNOPs-ensemble mean successfully fore-
casts the landfall location of Matsa and resembles the ob-
served track the best when f=0.3x9. Figure 4b gives the
evolution of the track forecast error for the control forecast
track and equally weighted CNOPs-ensemble mean with
different amplitudes of . Table 1 gives the corresponding
average track forecast error over a 5-day forecast period. The
results show that the average track forecast error of the
CNOPs-ensemble mean is smaller than that of the control
forecast, but the extent is small. Specifically, the CNOPs-
ensemble mean has a comparable track forecast error when
p=0.3x4 and p=0.3x9. This is not consistent with the
CNOPs-ensemble mean tracks shown in Figure 4a. By ana-
lyzing the forecasts at different forecast times, we find that
the typhoon center of the CNOP-ensemble mean has a for-
ward speed that is too fast when $=0.3x9. Hence, when
$=0.3x9 (though the CNOPs-ensemble mean is closest to the
observed track regarding the forecast track), the track fore-
cast error of the CNOPs-ensemble mean is not the smallest.

The above results correspond to the equally weighted
CNOPs-ensemble mean. In fact, Toth et al. (2001) showed
that in a reliable ensemble prediction system, most ensemble
members resemble the observations, and high forecast skills
usually correspond to the fact that most ensemble members
have relatively consistent results. Therefore, increasing the
weights of ensemble members whose forecast results are
relatively consistent usually has a positive impact on the
ensemble mean (Zhang and Krishnamurti, 1997; Duan and
Wang, 2006; Elsberry et al., 2008). However, what does this
indicate about the distribution of ensemble members ob-

tained with the orthogonal CNOPs method? Are there
anomalously perturbed forecast members? To answer these
questions, we analyze the tracks of ensemble members cor-
responding to orthogonal CNOPs with different amplitudes
and the track errors of ensemble members relative to the
control forecast. Figure 5a and 5b respectively give the
tracks of the ensemble members and the evolutions of the
track errors for the ensemble members relative to the control
forecast for £=0.3x9. Figure 5c and 5d give the same results
but for f=0.3x4, and Figures 5e and 5f give the same results
but for £=0.3. The results show that there exists an anom-
alously perturbed forecast member whether =0.3, f=0.3x4
or /=0.3x9. The tracks of the anomalously perturbed forecast
members are shown with purple lines in Figure 5a, 5c and 5Se,
and the track errors of the anomalously perturbed forecast
members relative to the control forecast are shown with
purple lines in Figure 5b, 5d and 5f. The results show that the
anomalously perturbed forecast has much larger relative
track errors in the early period than those from other per-
turbed forecast members.

Here, to remove the negative impact of the anomalously
perturbed forecast on the ensemble mean, when there is an
anomalously perturbed forecast, we compute the ensemble
mean as the equally weighted ensemble mean by averaging
the ensemble members in addition to the anomalously per-
turbed forecasts. If there is not an anomalously perturbed
forecast, we compute the ensemble mean with all ensemble
members. Figure 6a gives the tracks of the control forecast,
observations, and CNOPs-ensemble means for the initial
perturbations with different amplitudes. Figure 6b gives the
evolution of the track forecast errors for the control forecast
and CNOPs-ensemble means. The results show that the track
of the CNOPs-ensemble mean better resembles the ob-
servations when the initial perturbations are larger, and the
CNOPs-ensemble mean successfully forecasts the landfall
location of the typhoon when =0.3x9. In addition, the track
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Figure 4 Ensemble forecast results for STY Matsa in 2005 with the orthogonal CNOPs method for different initial perturbation amplitudes. (a) Control
forecast (black line), observed (red line), and CNOPs-ensemble mean (5=0.3, green line; =0.3x4, blue line; and =0.3x9, carmine line) tracks. (b) Evolution
of the track forecast errors for the control forecast (black line) and CNOPs-ensemble mean (5=0.3, green line; f=0.3x4, blue line; and £=0.3x9, carmine line).
Here, the CNOPs-ensemble mean is the equally weighted ensemble mean by averaging all of the ensemble members.

Table 1 The average track forecast error (km) over a 5-day forecast
period for the control forecast and the equally weighted CNOPs-ensemble
mean by averaging all of the ensemble members for different amplitudes of

B

Method /

0.3 0.3x4 0.3x9
Control 311.04 311.04 311.04
CNOPs 301.55 291.01 292.71

forecast errors of the CNOPs-ensemble means for f=0.3x4
and $=0.3x9 are much smaller than the track forecast errors
for the control forecast. Table 2 gives the average track
forecast errors over 5 days for the control forecast and the
CNOPs-ensemble means for different amplitudes of 5. The
results show that the average track forecast error of the
CNOPs-ensemble mean decreases with £, and the CNOPs-
ensemble mean has the smallest average track forecast error
when £=0.3x9.

Effectively obtaining more reasonable and accurate ana-
lyses with the information provided by the ensemble mem-
bers is very important for the success of the ensemble
forecasts. If the treatment is not suitable, we may obtain an
ensemble mean forecast that performs worse than a single
and deterministic forecast. Zhang and Krishnamurti (1997)
showed that the selected ensemble mean could further im-
prove the equally weighted ensemble mean. Hence, when
obtaining an ensemble mean, we should selectively obtain
the ensemble mean based on the performances of different
forecast members rather than using the simply equally
weighted ensemble mean to avoid the negative impacts of
anomalously perturbed forecasts with small probabilities on
the skill of the whole forecast. Of course, information for
anomalously perturbed forecasts requires the attention of

forecasters because anomalously perturbed forecasts result in
extreme probabilities. If we can set different weights for
different forecast members according to the performance of
each forecast member and obtain the unequally weighted
ensemble mean, we may further improve the forecast skills
of the ensemble mean. This is the topic of our future re-
search. In this paper, we concentrate on whether the ortho-
gonal CNOPs method could effectively improve typhoon
control forecasts.

4.3 Comparison of ensemble forecast skills with dif-
ferent methods

In section 4.2, we analyzed the influence of varying ampli-
tudes of orthogonal CNOPs on the ensemble forecast skill.
The results showed that the orthogonal CNOPs method could
improve the control forecast. However, does it perform better
than the orthogonal SVs method and CNOP+SVs method?
To answer this question, we adopt the orthogonal SVs
method and CNOP+SVs method here to conduct ensemble
forecast experiments and compare the ensemble forecast
skills of different methods. According to section 4.2, we
know that the orthogonal CNOPs method obtains the highest
ensemble forecast skill when f=0.3x9. Hence, we first set
$=0.3%9 to produce 5 initial perturbations for each method
and then compare the forecast skills of the ensemble mean
tracks for different methods. For simplicity, we call the en-
semble means obtained by the orthogonal CNOPs method,
orthogonal SVs method and CNOP+SVs method the
CNOPs-ensemble mean, SVs-ensemble mean and CNOP
+SVs-ensemble mean, respectively. It is noted that there is
not an anomalously perturbed forecast member for the or-
thogonal SVs method. Therefore, the SVs-ensemble mean is
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Figure 5 The ensemble forecast results with the orthogonal CNOPs method for STY Matsa in 2005 when =0.3x9 ((a) and (b)), f=0.3x4 ((c) and (d)), and
£=0.3 ((e) and (f)). (a), (c), and (e) Perturbed forecast (gray lines), observed (red line), control forecast (black line), and anomalously perturbed forecast
(purple line) typhoon tracks. (b), (d), (f) Evolution of track errors (km) for the perturbed forecasts compared to the control forecast (black lines), where the

purple line corresponds to the anomalously perturbed forecast.

Table 2 The average track forecast errors (km) over 5 days for the control
forecast and the ensemble means for different methods and amplitudes of S

Method b
0.3 0.3x4 0.3x9
Control 311.04 311.04 311.04
CNOPs 294.63 269.45 269.03
SVs 308.43 302.24 295.48
CNOP+SVs 31343 324.76 291.18

the equally weighted mean obtained by averaging all of the
ensemble members. However, for the CNOP+SVs method,
because the first CNOP considers the influence of non-
linearity, the corresponding perturbed forecast is always the
abnormal forecast relative to the ensemble members gener-

ated by the orthogonal SVs method. If we abandon the
anomalously perturbed forecast and obtain the ensemble
mean with the other ensemble members, the significance of
the CNOP+SVs method is lost. Therefore, the CNOP+SVs-
ensemble mean is the equally weighted mean obtained by
averaging over all ensemble members.

Figure 7a gives the forecast tracks of the ensemble means
for different methods when £=0.3x9. The results show that
the CNOPs-ensemble mean successfully forecasts the land-
fall location of STY Matsa, while the landfall locations for
the ensemble means using the other methods are very close
to the landfall location of the control forecast and far away
from the observed landfall location. Regarding the whole
forecast track, the CNOPs-ensemble mean is the closest to
the observed track. Figure 7b gives the evolution of the track
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Figure 6 Ensemble forecast results for STY Matsa in 2005 with the orthogonal CNOPs method for different initial perturbation amplitudes. (a) Control
forecast (black line), observed (red line), and CNOPs-ensemble mean (5=0.3, green line; 5=0.3x4, blue line; and =0.3%9, carmine line) tracks. (b) Evolution
of track forecast errors for the control forecast (black line) and CNOPs-ensemble mean (5=0.3, green line; f=0.3x4, blue line; and £=0.3x9, carmine line).
Here, the CNOPs-ensemble mean is the equally weighted ensemble mean by averaging all of the ensemble members that are not abnormal.

forecast errors for the ensemble means using different
methods when =0.3%9. The results show that the orthogonal
CNOPs method improves the forecast of the typhoon track at
its largest extent throughout the whole forecast period.
Specifically, the 5-day average track forecast error for the
CNOPs-ensemble mean (see Table 2) is 42.01 km smaller
than that of the control forecast, with an improvement of
13.51%.

Since the amplitudes of the initial perturbations can affect
the ensemble forecast skills, we compared the ensemble
forecast skills of the different methods for different values of
p. The results are shown in Figure 7 and Table 2. All of the
results show that when =0.3 and =0.3x4, the CNOP+SVs
method not only has a lower forecast skill than the ortho-
gonal SVs method but also performs worse than the control
forecast; when f=0.3x9, the CNOP+SVs method has a
higher forecast skill than the orthogonal SVs method, but the
improvement is small. Hence, only replacing the LSV with
the first CNOP while maintaining the other SVs may not
contribute to a higher forecast skill compared to the ortho-
gonal SVs method. Furthermore, when compared with the
SVs-ensemble mean and CNOP+SVs-ensemble mean, the
CNOPs-ensemble mean has the highest forecast skill for a
given value of  which, in some ways, validates the super-
iority of the orthogonal CNOPs method. It is noted that STY
Matsa in 2005 is a strong event. These results may validate
the deduction that Duan and Huo (2016) made (i.e., the or-
thogonal CNOPs method has a higher forecast skill when
forecasting strong events).

5. Summary and discussion

In this study, we first compare the ensemble forecast skills of

the orthogonal CNOPs method, orthogonal SVs method and
CNOP+SVs method with the Lorenz-96 model. The results
show that the CNOP+SVs method has a higher forecast skill
than the orthogonal SVs method, but the orthogonal CNOPs
method has the highest ensemble forecast skill. This means
that only replacing the LSV with the first CNOP (but
maintaining the other SVs) still has linear limitations; fully
considering the influence of nonlinearity is important when
generating fast-growing ensemble initial perturbations.

To test the usefulness of orthogonal CNOPs in typhoon
ensemble forecasts, we applied the orthogonal CNOPs
method in the typhoon ensemble forecasts with the MMS.
Specifically, we conducted typhoon track ensemble forecast
experiments for STY Matsa in 2005 and compared the en-
semble forecast skills of the orthogonal CNOPs method,
orthogonal SVs method and CNOP+SVs method.

The spatial structures of orthogonal CNOPs and orthogo-
nal SVs show that there are large differences between or-
thogonal CNOPs and SVs, which reflects the influence of
nonlinear physical processes on the forecast results. Ortho-
gonal CNOPs have a wider spatial distribution and better
describe uncertainties in the initial analysis field, which may
help to achieve higher ensemble forecast skills. In addition to
the first CNOP, other CNOPs also have large differences
compared with SVs. This suggests that fully considering the
influence of nonlinearity may be necessary when generating
fast-growing ensemble initial perturbations.

We studied the influence of the amplitudes of initial per-
turbations on the ensemble forecast skill of the orthogonal
CNOPs method. The results show that when the ensemble
mean is defined as an equally weighted mean obtained by
averaging all ensemble members, the orthogonal CNOPs
method has a higher forecast skill than the control forecast
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Figure 7 Ensemble forecast results with different methods for STY Matsa in 2005 when £=0.3x9 ((a) and (b)), 5=0.3x4 ((c) and (d)) and $=0.3 ((e) and (f)).
(a), (c), and (e)) Tracks from the observations (red line), control forecast (black line), CNOPs-ensemble mean (carmine line), SVs-ensemble mean (green line)
and CNOP+SVs-ensemble mean (blue line). (b), (d), and (f) Evolution of the track forecast errors for the control forecast (black line), CNOPs-ensemble mean
(carmine line), SVs-ensemble mean (green line), and CNOP+SVs-ensemble mean (blue line).

for given amplitudes of the initial perturbations. However,
the CNOPs-ensemble mean has a comparable track forecast
error when £=0.3x4 and $=0.3x9, which does not coincide
with the CNOPs-ensemble mean tracks. Further investiga-
tion shows that there is an anomalously perturbed forecast
member among the ensemble members, which is obtained by
the orthogonal CNOPs method. To avoid the negative impact
of the anomalously perturbed forecast member on the en-
semble mean, we compute the ensemble mean as an equally
weighted mean by averaging ensemble members that are not
abnormal and compare the forecast skills of the new en-
semble mean and the equally weighted ensemble mean by
averaging over all ensemble members. The results show that
the new ensemble mean has a higher forecast skill. Of
course, information regarding the anomalously perturbed

forecasts requires the attention of forecasters because
anomalously perturbed forecasts result in extreme prob-
abilities. If we can set different weights for different forecast
members according to the performance of each forecast
member and obtain the unequally weighted ensemble mean,
then we may further improve the forecast skill of the en-
semble mean. This is an area we need to pay more attention
to in future research.

Finally, we compare the ensemble forecast skills of the
orthogonal CNOPs method, orthogonal SVs method and
CNOP+SVs method. The results show that only replacing
the LSV with the first CNOP (but maintaining the other SVs)
may not contribute to a higher forecast skill compared with
the orthogonal SVs method. However, if we adopt the or-
thogonal CNOPs method for ensemble forecasts, we may
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obtain the highest ensemble forecast skill. This indicates that
fully considering the influence of nonlinear physical pro-
cesses on forecast results may be very important when
generating fast-growing ensemble initial perturbations. All
of the results consistently verify that the orthogonal CNOPs
method may be a potentially new ensemble forecasting
method.

Jiang et al. (2009) showed that ensemble forecast skills of
different initial ensemble perturbations (e.g., SVs and CNOP
+SVs) depend on the type of analysis error. They pointed out
that understanding the information for the analysis error and
adopting a suitable initial ensemble perturbation method are
very important. Their results show that the determination of
the constraint value f needs further discussion. Generally, £
should be an estimation of the analysis-error variance.
However, practical implementation indicates that the de-
termination of £ should be based on experience through a
large number of numerical experiments. This issue needs our
attention in the future.

The norm used at the initial time and final time to compute
the SVs and CNOPs is the dry total energy norm in this
paper. However, the correct choice is indeed the analysis-
error covariance norm (Ehrendorfer and Tribbia, 1997).
Gelaro et al. (2002) found that the distribution of leading
analysis-error covariance SVs is consistent with the expected
distribution of analysis errors. Hamill et al. (2003) further
showed that operational ensemble forecasts based on total
energy SVs could be improved by changing total energy SVs
to be flow-dependent analysis-error covariance SVs. When
focusing on tropical cyclone track prediction, the norms that
are more directly related to typhoon movement are of in-
terest. Due to the fact that SVs and CNOPs are sensitive to
the chosen norm, it is also of interest to compare the dif-
ference in orthogonal CNOPs and SVs using different norms
at the initial time and examine how sensitive the perfor-
mances of the orthogonal CNOPs method, SVs method and
CNOP+SVs method in typhoon ensemble forecasts are to the
norms. Mu et al. (2009) showed that the structures of CNOPs
differed much from those for first singular vectors (FSVs)
depending on the constraint, metric and basic state. Wang et
al. (2011) indicated that the background-error covariance
metric at the initial time and the total energy norm at the final
time are reasonable choices for the computation of CNOPs.
They pointed out that the benefit of employing a back-
ground-error covariance is that statistical uncertainties in the
background field are also considered, which helps the CNOP
represent the structure that is likely to occur statistically and
initial perturbation that has the largest nonlinear evolution.
The information of analysis or background errors is im-
portant for ensemble forecasts. The impact of taking the
analysis-error or background-error covariance metric as the
initial norm to compute SVs and CNOPs and using the in-
formation of analysis or background errors to constraint the
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SVs and CNOPs will be studied in our future work.

Here, one case (i.e., STY Matsa) is chosen to preliminarily
study the effectiveness of the orthogonal CNOPs method in
typhoon ensemble forecasts. However, since analysis error
information, SVs and CNOPs are flow-dependent, a few
cases are required to draw a solid conclusion. Moreover, the
forecast of typhoon intensity has important significance for
early warnings and decisions on typhoons. Therefore, for
more typhoons and the forecasting of typhoon intensity, how
will the orthogonal CNOPs method perform? This issue will
be considered in our future work. Two other issues in this
paper are the coarse resolution and how the results shown are
affected by resolution, which will also be studied in our
future work. Furthermore, there are many other ensemble
forecasting methods that generate initial perturbations, such
as the bred vector method (Toth and Kalnay, 1993) and the
ensemble Kalman filter method (EnKF; Evensen, 1994). In
our future work, we will further compare the ensemble
forecast skills of the orthogonal CNOPs method and other
methods to verify the superiority of the orthogonal CNOPs
method and improve the details of the orthogonal CNOPs
method. In addition, to advance the success of operational
ensemble forecasts of tropical cyclones, it is crucial to in-
vestigate the efficiency of optimization algorithms when
solving CNOPs since we are required to obtain the initial
perturbations as soon as possible for operational ensemble
forecasts.
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