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ABSTRACT

ENSO is the strongest interannual signal in the global climate system with worldwide climatic, ecological

and societal impacts. Over the past decades, the research about ENSO prediction and predictability has

attracted broad attention. With the development of coupled models, the improvement in initialization

schemes and the progress in theoretical studies, ENSO has become the most predictable climate mode at

the time scales from months to seasons. This paper reviews in detail the progress in ENSO predictions and
predictability studies achieved in recent years. An emphasis is placed on two fundamental issues: the
improvement in practical prediction skills and progress in the theoretical study of the intrinsic predictability

limit. The former includes progress in the couple models, data assimilations, ensemble predictions and so

on, and the latter focuses on efforts in the study of the optimal error growth and in the estimate of the

intrinsic predictability limit.

Keywords: ENSO prediction and predictability, coupled model, ensemble prediction, optimal error

growth, probabilistic prediction

INTRODUCTION

As a critical component of global change, climate
variability is potentially one of the most serious
environmental issues we face today. A prominent
example is the famous El Nifio phenomenon, the
strongest source of interannual climate variability
[1]. El Nifio events are characterized by abnor-
mal warming anomalies in the eastern or central
equatorial Pacific Ocean, which occurs irregularly
every 2—7 years. It involves changes both in the
sea-surface temperature (SST) and in the sea-level
pressure across the equatorial Pacific Ocean, so it is
also referred to as the El Nifio-Southern Oscillation
(ENSO) phenomenon. Although ENSO originates
in the tropical Pacific, its effects are not confined
to regional climate, but act to induce large weather
and climate anomalies worldwide. It is believed that
a modest predictability of global climate anomalies
can be gained owing to significant impacts of the pre-
dictable ENSO [2]. Skillful ENSO prediction offers
decision makers an opportunity to take into account
the anticipated climate anomalies, potentially reduc-
ing the societal and economic impacts by this natu-

ral phenomenon, and assisting in the management of
natural resources and the environment.

Since the 1980s, ENSO has been the focus
of oceanic and atmospheric science research.
With a series of international collaboration
programs and initiatives such as the Tropical
Oceans and Global Atmosphere (TOGA) Pro-
gram and the Climate Change and Prediction
(CLIVAR) Plans, significant progress in ENSO
prediction has been made over the past four
decades [2-5]. At present, there are more than
20 models on ENSO for real-time forecasts of
6 months to 1 year (see http://iri.columbia.edu/
climate/ENSO/ currentinfo/ update.html). Overall,
the current forecast models can provide effective
predictions of ENSO warm and cold events 6-
12 months ahead [S]. ENSO is currently regarded
as the most predictable target at the time scales of
seasonal climate prediction.

Such progress should be attributed to several
aspects. First, the observing systems have been
greatly developed with a series of meteorological
and oceanic satellites launched and international
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observing and research programs initiated such as
TOGA, GOOS (Global Ocean Observation Sys-
tem) and Argo, etc., offering an excellent oppor-
tunity to initialize ENSO prediction using various
oceanic and atmospheric data. Theoretically, ENSO
prediction is a problem of initial value. Under the
perfect model assumption, ENSO prediction skills
are dependent on the initialization scheme used in
the prediction models. The rapid development of
data-assimilation methods, from simple optimal in-
terpolation in the 1970s to 1980s, to 3D variational
(3Dvar) and 4D variational (4Dvar) in the 1980s to
1990s, to the Ensemble Kalman Filter (EnKF) and
other ensemble-based methods in the 1990s, greatly
advances the study of initialization, making the ini-
tial conditions of predictions as accurately as possi-
ble. Second, a hierarchy of ENSO prediction models
has been developed to investigate its physical mech-
anisms and to improve its predictability over the last
decades. These studies greatly improve model per-
formance by improving physical parameterizations,
fining spatial and temporal resolutions, and enhanc-
ing the understanding of the tropical oceanic and
atmospheric processes underlying the ENSO phe-
nomenon. Third, the theoretical predictability study,
including the prediction error growth dynamics and
the estimate theory of the intrinsic limit of pre-
dictability, has been well conducted and applied to
ENSO prediction. The predictability study greatly
promotes the development of ensemble prediction
system. In recent years, ENSO probabilistic predic-
tion, based on the ensemble prediction, has attracted
broad attention and is routinely issued by some re-
search and operational centers.

However, ENSO prediction still presents a great
deal of uncertainty [6]. A typical case is the latest
El Nifio event from 2014 to 2016, which poses a
severe challenge to the classic ENSO theory-based
forecasting models. For example, the El Nino event
did not occur in 2014 as anticipated by most mod-
els, whereas the 2015 El Nino, which is one of the
strongest events in history, was not predicted by al-
most all models at 1-year lead time. Moreover, the
2015 El Nifo is significantly different from the ex-
treme events of 1997-98 and 1982-83 in the for-
mation and warming pattern [7]. This challenge has
stimulated a new round of ENSO research in the
world.

The motivation of this paper is to review the re-
cent progress in ENSO prediction and predictabil-
ity studies. The predictability of Earth’s climate can
be categorized into two types: practical prediction
and theoretical predictability. The former is related
to a prediction skill achieved by models, which can
be expected to produce, to the best of our ability, the
best prediction skill by model improvement, predic-

tion initialization and ensemble construction, etc.,
whereas the latter is to assess theoretical upper limit
of the ENSO prediction skill, which is also called
the intrinsic predictability or potential predictability
in the predictability study. The intrinsic predictabil-
ity is an inherent characterization of a physical sys-
tem rather than our ability to make skillful predic-
tions in practice. The intrinsic predictability study
can answer such challenging questions as whether
the ENSO prediction skill can be further enhanced
by improvement in the prediction system and, if so,
how much room there is for improvement [8,9].

The remainder of this paper is organized as fol-
lows. The ‘ENSO prediction models’ section re-
views the development of ENSO prediction models,
with an emphasis on the development of operational
prediction systems in China. The progress in data
assimilations, initialization schemes and ensemble
predictions is reviewed in the ‘Initialization and en-
semble prediction of ENSO’ section. The section
on ‘The potential predictability study of ENSO’
discusses the optimal prediction error growth, the
Spring Predictability Barrier (SPB) and the esti-
mate of the Intrinsic Predictability Limit (IPL). The
‘Probabilistic prediction of ENSO’ section focuses
on the probabilistic prediction of ENSO. A brief
summary and discussion of the major challenges fol-
lows in the ‘Summary and discussion’ section.

ENSO PREDICTION MODELS

Physical basis for ENSO prediction

Since Bjerknes’s seminal work [10], the key pro-
cesses responsible for interannual variability and
predictability associated with ENSO have beeniden-
tified. That is, Bjerknes feedback is regarded as a ma-
jor process responsible for ENSO development, in-
volving interactions among the SST, surface wind
and thermocline. It has been recognized that sub-
surface thermal anomalies play important roles in
ENSO-related variability and predictability in the
tropical Pacific. In particular, the equatorial ocean-
wave dynamics and the thermal structure in the trop-
ical Pacific enable thermal perturbations to be sus-
tainable and to propagate around the basin, acting
to have remote influences basinwide. These slowly
evolving thermal anomalies in the subsurface ocean
on the basin scales offer seasonal-to-interannual
memory by which the coupled ocean—atmosphere
system can carry on past information with time into
the future. It is the existence of these long-lasting
thermal memories that provides a physical basis for
ENSO prediction. Thus, oceanic information ob-
served at the subsurface is critically important to
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ENSO prediction and needs to be adequately incor-
porated into models through data assimilation—a
technique used in the prediction initialization that
will be discussed in next section. One of the key fac-
tors that impacts on the ENSO prediction skill is the
representation of a model climatological state, which
is crucial in capturing the right annual cycle and char-
acterizes ENSO asymmetry [11]. Poor performance
for simulating the characteristic of ENSO asymme-
try in the coupled modes is probably the main rea-
son for it failing to capture the occurrence of super El
Nifo events, since it can have a rectification effect on
the time-mean state [12,13]. Also, it is worth noting
that ENSO can be significantly modulated by other
forcing and feedback processes within and/or out of
the tropical Pacific (see also Wang et al. 2018 in this
issue).

Current status of ENSO prediction models

Methodologically, there are two kinds of models
used for ENSO predictions. The first are the statis-
tical models, which use historical data to construct
the evolution of ENSO, typically represented by
the Nino3 (90-150°W, SN-5°S) or Nifio3.4 (120-
170°W, SN-5°S) SST anomaly index. The statisti-
cal models include linear statistical and non-linear
statistical models. The former is constructed using
linear methods such as multiple linear regression,
canonical correlation and Markov chain and so on
[14,15], whereas the latter is constructed mainly
using neural network and other machine learning
methods [16]. Both made success in ENSO predic-
tion and some are still in operation. However, the de-
velopment and application of statistical models have
been significantly reduced due to their lacking both
physical basis and the room for skill improvement.

The second kind of models are the coupled mod-
els, which have become the main tools for study-
ing ENSO mechanisms, simulation and prediction.
Since the first coupled ENSO model was devel-
oped [17,18], various types of coupled models have
been designed and used for ENSO simulation and
prediction. These coupled models include simple
models [19], intermediate coupled models [ 18], hy-
brid coupled models [20,21] and fully coupled gen-
eral circulation models (GCMs) [2,4,5]. Currently,
more than 20 models with different degrees of com-
plexity are routinely used to make real-time forecasts
of ENSO. The skillful ENSO predictions can now be
made at least 6 months and longer ahead [S]. There
have been several excellent review papers about the
progress and current status of ENSO coupled mod-
els [2-5] and readers are referred to these for further
information.

ENSO prediction in China

In China, there are two nationally operational
systems for ENSO real-time prediction. One system
is ENSO Monitoring, Analysis and Prediction,
called SEMAP2, developed in the National Climate
Center (viz. Beijing Climate Center) of China
(BCC/CMA)
[22]. This system is based on the operational
seasonal forecasting model (BCC_CSMI1.1m)
and the physics-based statistical prediction fol-
lowing the dynamical mechanisms of two types
of ENSO [23]. This system is composed of five
sub-systems including real-time monitoring of the

Meteorological ~ Administration

tropical atmosphere—ocean, dynamical diagnosis,
physics-based statistical prediction, model ensem-
ble forecasting and analogue-based correction of
the model prediction [24]. This system markedly
improves the operational capability of ENSO mon-
itoring and prediction in BCC/CMA. A 20-year
independent hindcast shows a good prediction skill
with the correlation skill of the Nifo 3.4 index reach-
ing 0.8 at 6-month lead [25]. It also has successfully
predicted the 2015-16 super El Nifio event at about
6-month lead [26]. The other operational prediction
system, run in the National Marine Environmental
Forecasting Center of State Ocean Administration
(NMEFC/SOA), is based on the Community Earth
System Model (CESM) developed by of the US Na-
tional Center for Atmospheric Research (NCAR).
A nudging assimilation system for multiple oceanic
data including subsurface ocean temperature is used
to initialize predictions. This prediction system also
has good performance in the prediction of ENSO,
reaching 0.7 correlation skill at 6-month lead [27].
There are also several other ENSO prediction sys-
tems being run in China. One is implemented in the
Institute of Oceanology, Chinese Academy of Sci-
ences (IOCAS), called the IOCAS ICM [28]. This
is an intermediate anomaly coupled model (ICM),
consisting of an intermediate ocean model and an
empirical wind-stress model. One crucial compo-
nent of the ICM is the way in which the subsur-
face entrainment temperature in the surface mixed
layer is explicitly parameterized in terms of the
thermocline variability [29]. The model is one of
the coupled models that made a good prediction
of the cold SST conditions in the tropical Pacific
in 2010-12 [30]. Another prediction system was
developed at the Institute of Atmospheric Physics
(IAP) at the Chinese Academics of Science Sci-
ences. It adopts the earlier version of IOCAS ICM
but includes a newly developed atmospheric and
oceanic data coupled assimilation system [31] and
an ensemble construction system [32]. A 20-year
retrospective hindcast experiment showed that the
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level, and better than the latest version of LDEOS

2.0 [34].

0.0

An example taken from the 201516 EI
Niino event as a demonstration

2.0

Here, the latest strong 2015-16 El Nifo event can
be taken as an example for illustrating the current
201 status of ENSO predictions using the state-of-the-
art coupled models. Figure 2 demonstrates the mod-
els’ real-time performance in predicting the 2015-
16 El Nino event, collected in IRI. As observed, one
striking feature associated with this 2015-16 ElNifio
event was the slow evolution of warm SST anoma-

0.0 4

-2.0

1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960
lies in the western tropical Pacific through 2014 and
early 2015 [7]; subsequently, the related ocean-

205! atmosphere anomalies were coupled and amplified
0ol in spring 2015 and developed rapidly into a warm

event in late spring 2015; then this warm event even-
-2.0 tually evolved into an extreme El Nino over the fol-

w w w w w w w w w w lowing months. Looking at the 2015 El Nifio predic-
1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 . Rk

tion by these coupled models (Fig. 2), the observed
Figure 1. Time series of observed and forecasted Nifio 3.4 SST indexes at 6-month lead ~ SST evolution fromA summer throulghlwinter 291§
time. The red line represents the observations and the blue line indicates the ensemble ~ Were adequately depicted when predictions were ini-

mean, and the gray shaded area represents the prediction of 100 ensemble members.  tialized from August 2015 (Fig. 2a). However, there

system can achieve good forecast skills for up to
1 year, comparable with some of the best ENSO
prediction models. In each month, the above four
operational systems issue routinely ENSO predic-
tions. Also, the predictions of the IOCAS ICM and
SEMAP2.1 have been collected by the IRI/CPC
ENSO plume product (http:/ /iri.columbia.edu/
climate/ENSO/currentinfo/update.html).
Recently, a super-ensemble of multiple-model
ENSO-forecast systems has been developed by the
Second Institute of Oceanography, State Ocean Ad-
ministration of China. The system is composed of an
ensemble-based coupled data-assimilation system
and a super-ensemble of multiple ENSO-forecast
models, including the LDEOS (the Lamont-
Doherty Earth Observatory version S) model, a
hybrid coupled model [21], and two fully cou-
pled GCMs (GFDL-CM2.1 and NCAR CESM).
The system will provide both deterministic and
probabilistic predictions. At present, the LDEOS
ensemble prediction system, which includes a
weakly coupled assimilation system of oceanic
and atmospheric observation and a stochastically
optimal perturbation-based ensemble construction
system [33], has started running. A long-term
hindcast experiment from 1856 to 2016, as shown in
Fig. 1, indicates that the system can capture almost
all warm and cold events at 6-month leads. Its
correlation skill is comparable with the current best

existed large uncertainties of the predictions of these
coupled models. For example, the predicted inten-
sity exhibits a wide spread across these coupled mod-
els in summer and fall 2015. In particular, almost
all models failed and missed the strongest warming
when the predictions were initialized in early 2015
(Fig. 2b), probably due to the SPB problem, west-
erly wind burst (WWB) problems or others [7]. The
uncertainty is also very apparent for ENSO predic-
tion in 2014 (figure not shown). Although warm
SST anomalies were observed to occur in the west-
ern equatorial Pacific in early 2014, the warm SST
anomalies weakened in mid-2014 and did not de-
velop into an El Nifo event in late 2014. However,
many coupled models predicted a strong El Nifo in
2014—a false alarm that embarrassed the ENSO sci-
entific community. The prediction casesin 2014 and
2015 clearly indicate that the real-time prediction of
ENSO remains challenging and problematic, even
when the state-of-the-art coupled models are used.
Further studies on understanding predictability and
improving real-time predictions using the coupled
models are clearly needed.

INITIALIZATION AND ENSEMBLE
PREDICTION OF ENSO

Initialization and data assimilation

Since the memory for ENSO mainly resides in the
ocean, oceanic data assimilation plays a vital role
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Figure 2. (a) The Nifio 3.4 SST anomalies in 2015—16 predicted (colored lines) in mid-August 2015 using different models.
Each colored line indicates a 3-month running mean of a 12-month forecast (ASO, August—September—October). (b) Same as
(a), but the result in mid-January. The black stars indicate the observation. This figure is taken directly from the IRl website
at http://iri.columbia.edu/our-expertise/climate/forecasts/enso.

610z Aenuer ¢z uo Jasn Sy saisAyd ousydsowny 1o axmnsul Aq v/ €2 1.5/928/9/S10B1Sqe-a[01e/Isu/woo dno olwapese//:sdiy Woll papeojumoc]


http://iri.columbia.edu/our-expertise/climate/forecasts/enso

in the history of ENSO prediction development.
There has been a long way in oceanic initialization
study in the field of ENSO prediction, from sim-
ple to complex algorithms, surface to subsurface ob-
servations and from single data to multiple data
sources. Initially, attempts had been made to gen-
erate consistent initial conditions by using SST ob-
servations [35,36]. Kirtman et al. [37] used an it-
erative ocean initialization procedure that modifies
the zonal wind-stress anomalies based on the sim-
ulated SST anomalies errors. With a 3DVar assim-
ilation scheme, Tang et al. [38] assimilated SST
into an OGCM with a statistically derived correction
scheme for subsurface surface temperature incre-
ment. Keenlyside ef al. [39] nudged observed SST
toinitialize ENSO prediction from 1969 to 2001 and
achieved good prediction skills. Recently, Merryfield
et al. [40] initialized ocean states by nudging SST
for the Canadian seasonal-to-interannual prediction
system and achieved a good prediction skill compa-
rable with the current best level.

A lot of work realized the importance of the
subsurface processes (e.g. entrainment and mixing)
in controlling interannual SST variability in the
equatorial Pacific [1]. It is well known that the
variation in the sea-level height in the tropical
Pacific is dominated by the subsurface dynamics
and thermodynamics [41]. Thus, much effort has
also been contributed to assimilating sea-level gauge
data and altimeter data [42], in situ profiles [43] and
even salinity observations [44]. All these studies
show that the inclusion of these new observational
data into the assimilation system can significantly
improve the estimation of subsurface ocean states,
and therefore achieve a more reliable ENSO
forecast.

More recently, the approach to assimilate atmo-
spheric observations to initialize ENSO prediction
was initiated in a more general context of the cou-
pled model assimilation [6,31]. As demonstrated
in Chen et al. [6], the ocean-only initialization ap-
proach is not necessarily the optimal method for
skillful forecast due to an ‘initial shock’ at the tran-
sition from uncoupled to coupled run. The more
natural method, coupled assimilation, allows the
adjustment of both atmosphere and ocean states by
assimilating either the atmospheric or oceanic obser-
vations. The concept of coupled assimilation is at-
tractive due to the potential benefit of the delivery
of a balanced and dynamically consistent estimate
of the coupled atmosphere—ocean state. The added
values of the coupled assimilation to the ocean-only
assimilation have been proven in ENSO predictions

[31,45].

Ensemble prediction

Owing to the high degree of non-linearity and
stochastic forcing of the atmosphere and ocean sys-
tems, the evolution of the future states of the at-
mosphere and the ocean contains large uncertain-
ties. An important way to consider the prediction
uncertainties is by ensemble forecasting, namely a
group of predictions that are generated by perturb-
ing a small number of ‘errors’ onto the initial con-
ditions or model parameters [6] and weighted (or
arithmetic) average or probability distributions are
taken as the forecast. Compared with a single fore-
cast, the ensemble forecast can remove some unpre-
dictable noises by the average and provides a practi-
cal tool for estimating the possible uncertainties by
additional information, such as the probability dis-
tribution function (PDF) of the forecast.

The development of the ensemble forecast is
mainly the development of perturbation methods.
In addition to the random perturbation methods,
the optimal perturbation methods based on dy-
namical constraints, such as the Breeding Vector
(BV), the Singular Vector (SV), Stochastic Opti-
mal (SO), Conditional Nonlinear Optimal Pertur-
bation (CNOP) and so on, were developed and
applied. The perturbation methods derived from
the data assimilation include the EnKF, the ensem-
ble transmission Kalman filter (ETKF) and other
ensemble-based filters [46]. Significant progress has
been made in using these optimal perturbations to
construct ensemble predictions and to study ENSO
predictability.

Generally, the strategies used to produce optimal
perturbations for ensemble predictions include
perturbation of the initial conditions and the per-
turbation of model parameters that consider errors
existing in physical/dynamical parameterizations.
The optimal perturbation of initial conditions was
often constructed by SV, BV, climatologically-
relevant singular vector (CSV) analysis and CNOP
[33,47-49]. The impact of model parameter un-
certainties on predictions was considered in many
pieces of work. For example, Zheng et al. [S0] devel-
oped an ensemble perturbation method by adding
some random terms to the right-hand side of the
model equations of an intermediate coupled model,
and these random terms or process noise sources
were explicitly defined as the model errors. For the
noise-free models, the stochastic noise is often con-
sidered in the framework of the SO theory, which
allows construction of a spatial-temporal coherent
noise [33,51]. In addition, the multiple models
and multi-methods are also used to construct the
super-ensemble predictions that can improve ENSO
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prediction skills in both deterministic measures and
probabilistic measures [25,52].

THE POTENTIAL PREDICTABILITY STUDY
OF ENSO

The optimal prediction error growth

An important aspect of potential predictability re-
search is the analysis and diagnosis of the optimal
growth of forecast error, which explores the dynam-
ics of forecast error and explains the physical mecha-
nism of forecast uncertainty. It is fundamental to the
construction of ensemble prediction. The current
optimal error analysis methods, as mentioned above,
include SV, BV and CNOP, as well as the Nonlinear
Local Lyapunov Vector (NLLV) [53], etc. These op-
timal error growth and optimal perturbation meth-
ods were introduced to the field of ENSO prediction
atthe 1990s and have since been used for ENSO pre-
dictability study [54-57].

There are a number of studies on ENSO pre-
dictability using SV and BV, as mentioned above.
Although these pieces of work used different inter-
mediate complexity dynamical models, they basi-
cally obtained consistent results—namely that the
first SV is basically dominated by a west—east dipole
spanning across the equatorial Pacific, with one cen-
ter located in the east and the other in the central
Pacific, and the fastest error growth rate (leading sin-
gular value) is little sensitive to initial conditions and
optimization time. However, the error growth is sea-
sonal, dependent on the largest growth during the
spring. The ENSO states can also influence the error
growth, with the largest error growth occurring on
the onset of El Nifio and the smallest growth during
the La Nifia [47,56,58].

While these pieces of work all used simplified or
intermediate complexity coupled models, Kleeman
et al. [S9] proposed a method to calculate the CSV
for the coupled GCM, in which the atmospheric
noise is filtered by running a large ensemble of inte-
grations. Tang et al. [48] first applied the CSV to a
fully coupled GCM to investigate the error growth
associated with ENSO forecasts. The results show
that the SVs share many of the properties already
seen in the simpler models. However, this particular
CGCM also displays some differences from the sim-
pler models; thus, subsurface temperature optimal
patterns are strongly sensitive to the phase of ENSO
cycle, and at times the east-west dipole in the east-
ern tropical Pacific basin [60].

Besides the study of the initial errors, increasing
efforts have been dedicated to exploring the effect
of model errors on the forecast. In the linear regime,

SO optimal [33] and forcing singular vector (FSV)
[61] were employed to represent the influence of the
stochastic noise on prediction error growth. Duan
and Zhou [62] extended the FSV approach to the
non-linear system and proposed the concept of the
non-linear forcing singular vector (NFSV). It was
found that the NFSV-related model errors have the
largest negative effect on the uncertainties of ENSO
prediction [63].

SPB

One specifically important prediction uncertainty in
ENSO prediction is SPB, which refers to a quick de-
crease in prediction skill during the boreal spring
[64]. From the perspective of error growth, the SPB
refers to the phenomenon that ENSO forecasting
hasalarge prediction error; in particular a prominent
error growth, during the spring when the predic-
tion is made before spring [65]. Quite a few studies,
including linear SV (LSV) and non-linear CNOP,
found that the SPB arises from the growth of initial
errors [54,55,65]. The comparison between CNOP
and LSV showed that the SPB-related initial errors
determined by the CNOP, although presenting spa-
tial patterns similar to those revealed by the LSV,
cover a broader region and result in a more signifi-
cant SPB [65]. It is therefore concluded that the ini-
tial errors of the CNOP structure are most likely to
cause the SPB.

The concept of the two types of El Nino was pro-
posed in early 2000s [66]. One type of El Nifio,
named the ‘central-Pacific EI Nino’, exhibits a warm-
ing center in the equatorial central Pacific, while the
other is named the ‘eastern-Pacific El Nifo’, which
shows a warming center in the equatorial eastern Pa-
cific. It was found in some work that the frequently
occurring central-Pacific El Nino since the 2000s in-
creases the uncertainties of ENSO forecasting [67].
Tian and Duan [68] showed that the central-Pacific
EINiio also has the SPB and possess an SPB-related
initial error pattern similar to the eastern-Pacific El
Nino, as illustrated in Yu et al. [65]. Both eastern-
and central-Pacific El Nifio forecasting could occur
SPB, but the latter has fewer chances of encounter-
ingan SPB [69]. Ren et al. [70] also revealed that the
central-Pacific ENSO has a much weaker persistence
barrier, closely related to the SPB, than the eastern-
Pacific ENSO. To filter out the SPB-related initial er-
rors, a hopeful strategy is target observation, which
aims to determine the optimal observing region for
minimizing prediction uncertainty [71]. Duan et al.
[69] concluded an optimal observational array, as
shown in Fig. 3, in which additional observations can

be deployed for dealing with the challenge of ENSO
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between the prediction and climatology distribution
can quantify the extra potential information from the
10N forecast. Specially, the relative entropy is always re-
lated to the strong ENSO events and decreases as
the lead time increases. It has a better relationship

with the correlation-based prediction skill than the

predictive information and predictive power due to
. the fact that the signal component dominates the

| relative entropy metrics [74,79]. The Ml is an indi-

|
120W cator of the overall potential predictability of a dy-
namic such as the ENSO system, obtained by aver-
aging the relative entropy or prediction information

over all predictions (Fig. 4a). Theoretically, the MI

Figure 3. The locations of the optimal observational array (the blue rectan-
gles) and the TAO/TRITON array (the red dots) (the TAO/TRITON array is from
http://www.pmel.noaa.gov/tao/drupal/disdel/). Adapted from Duan et al. (2018) [69].

prediction due to the diversity of El Nifio events and
the related SPB.

Measure of ENSO IPL

Predictability is the extent to which events can
be predicted [72], including the actual predictabil-
ity and the potential predictability. The actual pre-
dictability aims to quantify the accuracy of model
predictions against observations, measured with ei-
ther deterministic or probabilistic scores. The po-
tential predictability is often referred to as the up-
per limit of skill, namely IPL. Based on the ensemble
prediction, there are a couple of metrics that can be
used to quantify the IPL. Among them are variance-
based measures and information-based measures,
both quantifying the predictability or prediction un-
certainty from different angles.

Signal-to-Noise Ratio (SNR) is widely employed
in quantifying potential predictability [73]. The am-
plitude of signal and noise of the ENSO ensemble
prediction can be approximately quantified by the
variance of ensemble mean and the averaged en-
semble spread over all initial conditions [74]. The
prediction skill measures, such as anomaly correla-
tion [75] or rank probability skill score [76], are the
function of the SNR. The higher values of the SNR
indicate less contamination of the signal informa-
tion by unpredictable random effects, and higher po-
tential forecasting capability and higher prediction
skill [77]. The amplitude of the signal is much larger
than the noise in the ENSO prediction, suggesting
that the predictability of ENSO is dominated by the
ENSO signal [74,78].

Several information-based measures have been
applied to qualify the IPL, including the relative
entropy, predictive information, predictive power
and mutual information (MI). The essential of these
information-based measures is that the difference

has a strong relationship with actual prediction skill,
as shown in Fig. 4b.

Note that the MI-based potential predictabil-
ity measures the statistical dependence, linear or
non-linear, between the ensemble mean prediction
and hypothetical observation (an arbitrary ensem-
ble member), whereas the SNR-based potential skill
only measures their linear correlation, and there-
fore underestimates the non-linear statistical depen-
dence. In other words, the information-based poten-
tial predictability measures should be better than the
SNR-based measures in characterizing ‘true’ poten-
tial predictability. When the climatology and predic-
tion distribution are both Gaussian and the predic-
tion variances are constant, the information-based
measure is equivalent to the SNR-based potential
measure [80]. Note that both of the above two kinds
of measures do not involve observations, thereby
measuring the potential predictability of the model
forecast system.

In addition, the IPL of a chaotic system can also
be quantitatively determined by the NLLV using
observational data. Li and Ding [81] employed the
NLLYV approach to explore the temporal-spatial dis-
tribution of the tropical SST IPL. They found that
the annual mean predictability limit is very large in
the tropical central-eastern Pacific (>8 months), ex-
ceeding 10 months in the Nino3.4 region.

PROBABILISTIC PREDICTION OF ENSO

Probabilistic forecast aiming at predicting the
probability distribution for the future state of the
variable can express the forecast uncertainty infor-
mation. It has been argued to be more informative
and valuable than the deterministic forecast [82].
In practice, rather than a continuous probability
distribution, only the probabilities of some discrete
categorical events that are of particular interest
are usually predicted. The predicted probability
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Figure 4. (a) Variation of Ml calculated by averaged relative entropy (RE) and predictive information (Pl) over all initial conditions as functions of lead
times. (b) Averaged RE and Pl versus root-mean-square error (RMSE). Adapted from Cheng et al. (2011) [79].

for an event is usually estimated as the fraction of
ensemble members of forecasting of this event.

Kirtman [83] was the first to demonstrate the
importance of presenting ENSO predictions in the
probabilistic format and verifying ENSO ensemble
predictions from the probabilistic perspective. Even
when the deterministic prediction skill is insignif-
icant, skillful probabilistic prediction is still possi-
ble for the above- and below-normal events. It was
argued that the probabilistic verification is an im-
portant complement to the deterministic verifica-
tion. With the same methodology as Kirtman [83],
several subsequent studies [6,50] have also paid
significant attention to investigating the ensemble
prediction skill of the ENSO from the probabilis-
tic perspective. The receiver operating characteristic
(ROC)-based diagnostic in these studies confirmed
the main findings of Kirtman [83].

However, the ROC-based analysis cannot ex-
plore the full scope of the probabilistic prediction
skill, since it can only reflect the resolution aspect. As
argued in Yang et al. [ 84], while the resolution would
be strongly impacted by the intrinsic predictability of
the real world, there should be, in principle, no bar-
rier at the physical level in improving the reliability.
As such, compared to the resolution, the reliability
would be more sensitive to the change in the ensem-
ble prediction system itself and would therefore be
a more indicative criterion for testing the ensemble
construction strategies.

More recently, along the above line of discus-
sion, some studies have given prominence to exam-
ining the reliability of the ENSO ensemble prob-
abilistic predictions [33,52]. Using the LDEOS
model, Cheng et al. [33] (2010) produced retro-
spective probabilistic predictions of the ENSO using

different ensemble perturbation strategies and com-
pared their probabilistic prediction skills in terms
of the reliability and the resolution. The results in-
dicated that the reliability is very sensitive to the
uncertainties sampled in initialization and in model
errors (noise), whereas the resolution is not. Specifi-
cally, when either of the two uncertainties, especially
the atmospheric noise uncertainty, is not sampled,
the reliability suffers from a severe ‘overconfidence’
question. When both uncertainties are sampled, this
‘overconfidence’ is significantly reduced. The ampli-
fication of errors in initial ocean conditions can be a
large source of the uncertainties [85,86]. For exam-
ple, a so-called Multiple-ocean Analysis Ensemble
(MAE) [87] initialization scheme to sample struc-
tural uncertainty in initial ocean conditions can ef-
tectively improve the reliability of ENSO predictions
[88]. The ‘overconfidence’ was not merely associ-
ated with the immediate-complexity model used. It
was also observed in comprehensive coupled GCMs
(CGCMs) [52]. This cavity of the reliability seen
in CGCM-based ensemble prediction systems was
mainly attributed to the lack of sampling the uncer-
tainty associated with the model errors in the fore-
cast models. It was further found that, as a very prag-
matic approach of sampling model uncertainties, the
multi-model ensemble (MME) can alleviate this re-
liability defect of the ENSO ensemble probabilistic
predictions [52].

The benefit of the MME approach was not only
seen in the reliability. Kirtman and Min [52] also
found the benefit of the MME in the resolution
based on the analysis of the ROC score. Tippett and
Barnston [89] further provided more comprehen-
sive evidence for the effectiveness of the MEE in im-
proving the ENSO probability forecasts. The MME
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advantage was found to be greater than expected as
a result of an increase in ensemble size only. Typ-
ically, the probability forecasts for ENSO are only
considered for three categories (El Nifio, La Nifia or
neutral), which cannot reflect more detailed infor-
mation regarding ENSO phase and intensity. Very
recently, Tippett et al. [90] examined the ENSO
probabilistic forecast skill using the North Ameri-
can Multi-model Ensemble Products, with more cat-
egories being tested. The results indicated that the
current MME predictions have shown the capabil-
ity of providing detailed probabilistic forecasts of
ENSO phase and amplitude.

Compared with the probabilistic weather fore-
cast, the study of ENSO probabilistic prediction and
verification is still at an early stage. Existing studies
have demonstrated that the current ENSO prob-
abilistic forecasting tends to be prone to an ‘over-
confidence’ and that the MME is a pragmatic yet
effective approach to improving ENSO probabilistic
prediction. Further studies are required to compre-
hensively investigate the current status of ENSO
probabilistic prediction skills in terms of reliability
and resolution. Moreover, the ensemble generation
techniques adopted in previous studies to sample
the uncertainties of prediction systems are mostly
too simple, usually based on random perturbations
or the lagged ensemble approach, which are far from
sophisticated. Therefore, it is necessary to use more
refined ensemble generation techniques, such as the
SV, SO, NLLV or CNOP, to further improve the
reliability and ultimately the overall skill of ENSO
ensemble probabilistic prediction. While these
methods have been widely applied to weather
probabilistic forecasting, and even to ENSO pre-
dictability studies, they have not been much applied
to the study of ENSO ensemble (and especially
probabilistic) prediction.

SUMMARY AND DISCUSSION

Asrecognized, the ENSO is the most predictable in-
terannual signal in the climate system, providing the
basis for global short-term climate prediction. Real-
time prediction information is critically important
to mitigation and adaptation activities in response
to ENSO events and related natural disasters. Over
the past few decades, comprehensive understanding
of ENSO processes and its predictability has been
achieved, which provides the physical basis for
ENSO prediction. So far, various coupled ocean-
atmosphere models with hieratical complexity
have been developed for ENSO simulation and
prediction. The predictive skill has been improved
to a level at which it is possible to make successful

real-time ENSO prediction at lead times of seasons
and longer.

In this paper, we reviewed recent progress
achieved in the study of ENSO prediction and pre-
dictability. We discussed several main issues respon-
sible for the improvement in ENSO prediction skills
and the progress in predictability study. First, the
rapid development and huge achievements of the
observing systems provide the high-quality oceanic
and atmospheric data available. The progress in data-
assimilation methods and algorithms ensure suc-
cess in using observations to initialize prediction.
Second, a hierarchy of ENSO prediction models
has been employed with improved physical parame-
terizations and model resolutions. The state-of-the-
art models have been widely used for operational
ENSO predictions. Third, studies of the optimal
growth of forecast errors provide various linear and
non-linear optimal perturbations, producing multi-
ple approaches to constructing ensemble prediction
systems. The probabilistic prediction of ENSO has
been in operation in many countries, offering im-
portant information for stakeholders to make deci-
sions. Moreover, the newly developed information
theory-based framework of statistical predictability
promotes the theoretical study of ENSO predictabil-
ity and offers effective metrics to quantify the IPL of
ENSO.

There is no doubt that notable progress has
been made in the study of ENSO prediction and
predictability. However, several specific challenges
still exist in improving the ENSO prediction
skills and understanding ENSO predictability,
particularly enlightened from recent research and
predictions of the 2014-16 super El Nifo event
[91]. Among them is model systematic error, which
is probably the most challenging issue. Focused on
the birth region of ENSO, the tropical Pacific Ocean
remains an area in which pronounced biases exist
in model simulations compared with observations.
For example, obvious discrepancies exist in ocean
GCM (OGCM) simulations, including the sim-
ulated thermocline being too diffuse, with a weak
vertical gradient of temperature [92]. Furthermore,
OGCM-based coupled simulations commonly have
an unrealistic structure of interannual SST variabil-
ity, with SST anomalies being underestimated over
the eastern equatorial Pacific but overestimated
in the central equatorial Pacific. Additionally, the
real climate system in the tropical Pacific is char-
acterized by interannual oscillations with a main
period band of 4-5 years, but some coupled GCMs
favor a quasi-biennial oscillation accompanied by
the predominance of the westward propagation
of simulated SST anomalies over the eastern and
central equatorial Pacific. These discrepancies
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between model simulations and observations are
attributed to processes that still have not well
been represented in models. For example, vertical
mixing and diffusion are important processes that
determine how SSTs are affected by subsurface
thermal conditions [93]. In ocean models, the
vertical mixing/diffusion processes are generally
parameterized using large-scale oceanic fields,
including the K-profile parameterization (KPP)
scheme [94,95]. It is difficult to accurately deter-
mine these effects in models and large uncertainties
are inevitable in representing the related subsurface
effects on SST's, which can cause large biases in SST
simulations. In addition, many processes that can
affect model performance in ENSO simulations are
still missing or are not adequately represented in
current low-resolution climate models, including
mesoscale processes (e.g. Tropical Instable Waves,
TIWs), multi-sphere processes (e.g. ocean biology),
Madden-Julian Oscillation (MJO) and so on [96].
Coupled models with problems in representing
physical processes cause large errors in ENSO
simulations. Zhu et al. [97] demonstrated that bias
in representing thermodynamic processes is one of
factors contributing to the 2014 El Nino false alarm.
Another well-known example is double the Inter-
Tropical Convergence Zone (ITCZ) problem in the
tropics, which may be solved with better mean state
simulation. To achieve this goal, the importance
of the atmospheric convection scheme in ENSO
prediction should not be ignored [98]. These biases
in simulations inevitably lead to errors in ENSO
predictions, including the SPB phenomenon.

There are clear needs for improving to under-
standing of variability and predictability associated
with ENSO. The ENSO variability exhibits its
diversity and asymmetry features [99]. What is
not clear now is whether the predictability also
varies with the different types of El Nino, which
should be specifically studied. Mathematically,
prediction systems themselves need to be improved,
not only by model parameterization processes,
but also by initialization methods, ensemble-based
prediction procedures and post-processing, etc.
For example, model components (the atmosphere,
the ocean and their interactions) need to be im-
proved further so that relevant processes can be
accurately represented in the coupled models,
including various feedback and coupling processes
that can modulate ENSO. More care needs to be
taken with the parameterization of unresolved
or missing processes in oceanic and atmospheric
models. Also, model resolution needs to be
enhanced so that processes that are missing in low-
resolution models can be adequately represented,
including convection, TIWs, MJO and so on. More-
over, representation of the ENSO periodicity in

climate models also needs to be quantitatively eval-
uated and specifically improved to make predictions
of different timescales in ENSO diversity better.

In addition to model process-related issues,
ENSO prediction skills can also be enhanced by
various techniques, including initializations and pre-
diction procedures. Due their important role in pre-
dictions, for example, subsurface thermal conditions
in the ocean need to be coherently incorporated
into prediction models through initialization proce-
dures using data-assimilation techniques. The more
natural initialization method, coupled assimilation,
should be developed and applied to provide initial
conditions for the predictions. Also, stochastic
non-deterministic processes are prominent in the
tropical Pacific, so it is necessary to treat ENSO as a
stochastic system. It is still a challenge to realistically
characterize some important stochastic processes,
such as the WWB, in prediction models by adequate
parameterization. It is expected that realistic repre-
sentations of these stochastic processes can improve
prediction skills. Since ENSO prediction contains
uncertainties, adequate ensemble construction
strategies that can efficiently represent the uncer-
tainties associated with initial and model errors
should be well configured in developing ENSO
prediction systems. On the one hand, prediction
uncertainties can be measured and quantified by
probabilistic prediction. Efforts to develop prob-
abilistic prediction and verification should have
practical value and guide meaning for the economic
society. The probabilistic prediction study of ENSO
should be greatly promoted in the future. On
the other hand, due to model deficiencies, post
calibration of the ensemble mean is still needed to
further improve ENSO prediction by developing
some empirical/statistical correction methods of
model forecasts.
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